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The leave-one-out cross-validation scheme for generalization assessment of neural network 
models is computationally expensive due to replicated training sessions. In this paper we sug- 
gest linear unlearning of examples as an approach to approximative cross-validation. Further, 
we discuss the possibility of exploiting the ensemble of networks offered by leave-one-out for 
performing ensemble predictions. We show that the generalization performance-of the equally 
weighted ensemble predictor is identical to that of the network trained on the whole training 
set. 

Numerical experiments on the sunspot time series prediction benchmark demonstrate the 
potential of the linear unlearning technique. 

1. Introduct ion  

Consider nonlinear regression in which the output y is regressed nonlinearly on 
the input vector x. In this paper we focus on a neural network implementation, in 
which the output is predicted by ~" = F(x, w), where F(.)  denotes the nonlinear 
mapping of  the neural net and w is the vector of  network parameters. 

The conditional input-output distribution, i.e., the probability distribution o f  the 
output  conditioned on a test input, is a basic objective for neural net modeling. A 
main source of uncertainty, when estimating the parameters of  the conditional dis- 
tribution, is the random selection of  training data. The associated risk of  overfitting 
is of  major concern in neural network design. The use of system identification design 
tools in neural net learning has been pioneered by Moody  [8], who derived estima- 
tors for the expected generalization error of  regularized networks. These estimates, 
however, depend on a number of  assumptions that can be quite hard to justify. 
Hence, it would be highly desirable to be able to perform an additional data- 
driven consistency check offered by the cross-validation technique. 

The idea of  cross-validation [12,13] is based on training and testing on disjunct 
subsets resampled from the database, forming the cross-validation ensemble of  
models. The leave-one-out (LOO) ensemble of  networks trained on all subsets leav- 
ing out one training example is an attractive - though computationally expensive - 
vehicle for generalization assessment of  a neural network model. For  the conven- 
tional neural net approaches unlearning of  examples is not  possible, and one 
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basically has to train the full ensemble of networks, making the approach compu- 
tationally unfeasible. 

In this paper we suggest approximate evaluation of  the ensemble using linear 
unlearning of  individual examples. It is assumed that unlearning of a single exam- 
ple only affects the network weights slightly. Under this hypothesis we estimate the 
change in the network parameters within the quadratic approximation of  the net- 
work cost function. Using the ensemble we derive an estimator for the test error of a 
regularized network which in fact is similar to an estimate due to Wahba [14], but 
different from the conventional estimators such as FPE [1], Wahba's GCV, and 
GPE [8]. The proposed method is further related to NCV [9] which approximates 
leave-v-out cross-validation. We finally discuss the possibility of exploiting the 
ensemble of  networks for making ensemble predictions and for obtaining error 
bars on future examples. 

The leave-one-out test error is compared to that obtained through linear 
unlearning on a benchmark case showing the viability of  the approach. 

2. L inear  un lea rn ing  

The network cost function is assumed to be a sum of  the loss function E(w) 
(additive in the example losses denoted e) 1 and a regularization term R(w), as 
shown by 

N 

C(w) : E(w) + R(w) : Z e(y~,y~,w) + R(w), (1) 
C~=I 

where y,~ is the desired output  2 (target) and N is the number of training examples, 
i.e., input-output pairs: D = [(x~,y~), . . . ,  (xu,Yu)]. Training on the full set of  
examples provides a parameter vector denoted by ~; hence, 

oc( ) 
ow . = 0 .  (2) 

A N 
Likewise, a leave-one-out ensemble of network parameters, { w e }a=l, is obtained by 
training on the N subsets, De, containing N - 1 examples: 

N 

Ca(w ) = ~ ,(y~,~'~,w) + R(w), (3) 
~=1,~#3 

hence 

OC~(~a) O. (4) 
Ow 

Most learning problems come with a natural loss measure, e.g., the squared error measure 
e(y, y-") = (y - y)2, where the desired target is denoted y and the network output is denoted y. 

2 For simplicity we consider single output networks only. However, without further ado, the theory is 
valid for multiple output networks. 
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We suggest to estimate the variation of  the parameter vectors of  the leave-one-out 
ensemble, Aw a ---- wa - w, by using a Taylor expansion of  equation (4). Since 

Ca(w ) = C(w) - e(ya, Ya, w), (5) 

Aw a satisfies 

Ja/Xwa - ga + °(ll/Xwall) = o, (6) 

where o(.) is the vector order function. We further have defined the the Hessian of  
the regularized cost function, Ja, and the gradient of  the example loss, ga, bY 3: 

02Ca(w) O,(ya,ya, w ) 
Ja = OwOw'r , ga = Ow (7) 

Solving equation (6), with the additional assumption that the regularized Hessian is 
non-singular, we find the N weight vectors in the ensemble given by: 

= + J; ga + o(l lAwal l )  • (8) 

With this ensemble in hand, we can get approximations of various interesting quan- 
tities which help us in validating the network model. 

2.1 Average generalization error estimate 

A common measure of  the quality of a neural model is the expected generaliza- 
tion error 4 (see e.g., [5,8]) defined as the expected loss on a test sample, further 
taking the expectation to the training set distributionS: 

(Etest(w)) 0 = ( ( e ( y , y ,  ff))(x,y))o 

= f [ f  c(y,y, ).p(x,y)dxay]p(D)aB, (9) 

where (.)(x,y) is the expectation to the joint input-output probability density p(x, y), 
and p(D) is the joint probability density of  the training data. (')D denotes the expec- 
tation w.r.t, to all training sets of  size N 6 

Since p(x, y) is unknown we seek for an estimate of (Etest)o, like the leave-one- 
out test error given by, 

1 u 
ELoo = ~ ~ e(Ya,Ya, wa). (10) 

In general, it is difficult to give quantitative results on the L O 0  test error as an esti- 
mator  of (Etest)o; however, one simple theorem applies: 

3 Here we implicitly assume that the cost function is twice continuously differentiable. 
4 Also known as the expected test error or the expected prediction risk. 
5 By assumption all expectations exist, i.e., Etest < t:X~. 
6 Note, for notational convenience, we do not explicitly distinguish between the particular realization 

of the data set and the data set regarded as a random variable. 
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Theorem 1 
If  the training data  are independently distributed, ELO O is an unbiased estimate of  
(Etest(w~))oe where D n is the training data  with sample 13 left out, and wn is the esti- 
mate  obtained by training on N - 1 examples. 

Proof 
Assume training data  independence,  
simply follows by evaluating (ELoo)o. 

then p(D) =p(Dn).p(x~,yn). The p ro o f  
[]  

Theorem 2 
An o(1/N) approximat ion  of  the LOO test error (10) is given by 

A 1 u 
E oo = + 

575 
(11) 

Pt'oof 
F r o m  (6) it is easy to verify that  Aw n = O(1/N), where O(.) is the Landau  order 
function. For  consistency, the approximat ion  of  the LOO est imator  should not  
include terms of  O(1/Ni), i _> 2. Thus  expanding the LOO test error (10) linearly 
in Aw n and using (7), (8) we get the desired result. Note  that  o(1/N) is the order  
function, i.e., if a(N) = o(1/N) then a(N)/N ~ 0 as N ~ oo. []  

Since only one data  example is left out  when resampling, we generally expect the 
o(I/N) approximat ion to be fairly good - even for modera te  training set sizes. 
Only in the case of  a network which is linear in the parameters  and trained with 
a quadrat ic  cost function 7, it is possible to obtain an exact expression (see further 
[ 14] and section 3.1). 

3. Mean square error learning 

Our scheme can be applied to any cost funct ion and network type requiring the cost 
to be twice cont inuously differentiable in the weights. Here we consider the stan- 
dard case of  a regression net trained with the mean  square error  measure. Let 
F(x, w) be the ne twork  function, then the loss is the squared error  between the 
ou tput  and the predicted output ,  as follows: 

e(y~,y~, w) = (y~-  F(x~,w)) 2. (12) 

In t roducing the gradient  of  the ne twork  function, h n = OF(xn, ~)/Ow we use (7) 
and find 

g~ = -2(y~ - F(xn, ~,) )h ~. (13) 

7 That is, e = (y - )3) 2 and R(w) c~ wVRw. Furthermore, (10) should be expanded quadratically in Aw e. 



L.K. Hansen, J. Larsen / Linear unlearning 273 

3.1. The L O 0  test error 

If (13) is inserted into (11) we get: 

A 1 ~ ( y a _ F ( x a , ~ , ) ) z [ 1  +4h~J~-'h~]. ELO0 = N B=! (14) 

Furthermore, it is often advisable to invoke the so-called Gauss-Newton approxi- 
mation for mean square error based problems (see e.g., [7]), in which 

N 
2Zheh  + 

O~=1 
(15) 

Within this approximation the estimator takes a particularly simple form. Using, 
J~ = J -  2h~h~, and the matrix inversion lemma (see e.g., [7]) we find: 

2J-lh~h~J -I 
j~-, = j -1  + 1 - 2h~J-lh~" (16) 

Inserting this expression into the estimate (14) we get the remarkably simple result, 

^ 1 N 2h~J-lh~ 
ELOO = -~ ~_I (Y~ - F(x~, w))2{ + 

- 2h-~ J - ~ h e" 
(17) 

With a pointer to classical test error estimators, (17) may be interpreted as a modi- 
fied "example based" FPE. Thus the term 2h~J-lha corresponds to the effective 
number of parameters divided by the training set size for the particular example 
/3. With this construction one may hope that the statistical properties of the 
input distribution are reflected in the estimator. In the conventional asymptotically 
estimators the properties of the input distribution are eliminated from the theory by 
invoking the limit of large training sets. For further reference, see [5,8]. 

There is a close connection with (17) and the "leaving-one-out lemma" [ 12,14] 
which relates the LOO errors e(y~,~, ~ )  with the losses from the full set model, 
e(ya, ~'~, ~). In fact, if the model is linear in the weights and weight decay regulariza- 
tion is used (i.e., a quadratic regularizer) then the estimate coincides with the 
"leaving-one-out lemma" except that one has to take the regularization into 
account. Suppose the network is linear, i.e., F(x,  w) = w-Cx, then the LOO test 
error reads: 

( y ~ -  ~rx~)Z 
(18) 

Notice that this is an exact expression, unlike the result of theorem 2. 



274 L.K. Hansen, J. Larsen / Linear unlearning 

3.2. Ensemble of  networks 

With the ensemble of  LOO estimates {w~}~'=l one might  consider the ensemble 
network output  which results by combining F(x,  ~ ) .  

Now, for the sake of  generality, we consider leave-v-out cross-validation. That  
is, split the training set D into K disjoint cross-validation sets of  size v, with 
N = Kv 8, and train on the remaining N - v samples. The training sets are denoted  
by D~,/3 C [1;K]. 

Considering the ensemble network,  we state the following 

Theorem 3 
Assume a leave-v-out cross-validation scenario, and let C~(w) be the cost function 
(1) evaluated on the training data D~, fl E [I; K]. The loss is the mean square error, 
and the weight estimates are defined as ~ = argmin, ,  C~(w). 

Secondly, assume that  the data are generated according to y,, = ~b(x~)+ n~,, 
where ~b(-) is a nonlinear  function, and no is zero mean white noise with variance 
~r,~ < oo, independent  of  the input. Further ,  that  the neural model  is complete,  
i.e., 3w °, Vx : F(x,  w °) - ok(x). 

Thirdly, assume that  the ensemble ne twork  is defined by 

where {u~}~=, 
~ u ~  = 1. 

. 

2. 

K 

f f(x,  @l, " " , ~x) = Z uzF(x,  ~#), (19) 
3=1 

is a set of  weights, independent  of  the training data 9, satisfying 

The following properties then apply to the expected generalization error (9): 

The expected generalization error is minimized when u~ = 1/K, fl E [1;K]. 
In the o(1/N)  approximat ion  1°, the expected generalization error of  the 
ensemble network equals that  of  using a single ne twork  trained on all data. 

P r o o f  
Using an o(1 /N)  approximat ion  of  the expected generalization error, Larsen and 
Hansen [5] showed for a single ne twork  trained on all N data: 

(Et¢st)o = a~(1 + merr/N) + o(1/N),  (20) 

where merf is the effective number  of  weights, 

merf = tr[Ho,~- '-qo~- ' l ,  (21) 

s The results presented are easily modified to deal with the case of v not being a divisor of N. 
9 The case where the weights depend on data is treated e.g., in [4]. 
J0 See, e.g., [5,8]. 
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tr[.] is the trace operator, and the "true" scaled Hessians ll are defined by: 

/02Etest(W°)\ ,Jo = if:lo + 1 02R(w °) (22) 
flo = \  OwOw T /l~,~l N OwOw r" 

(')ix,y/denotes the expectation the joint input-output density p(x,y) and w ° are the 
optimal weights. 

Define the weight fluctuations 6w~ = w ° - ~ and let (Et¢~t(~t,'' ', WK))O denote 
the expected generalization error of the ensemble network (19). Using a technique 
similar to that reported in [5], we perform a second order Taylor series expansion of 
the expected generalization error around w e = w °, as follows: 

K Wo OE~.~( , . . . , w  °) 
<Etest(Wl, " • •, wK))o =Etest(W°,'", w°) + ~ -Ow~ <6We>D 

+ 2 E l  K E t r K  OZEt¢~t(wO,...,WO)o___w~O~,~ (6w, y6w-~)o 
3,=1 e = l  

K 

+ ~ o(116well2). (23) 
S3=t 

Since w ° defines the optimal weight vector, the following facts are easily recognized: 

• Etest(W°,...,w°)=cy 2. 
• w ° = arg rain,, Et¢st(W); hence, OEtcst (w°, ' ' '  , w°)/Owe = O. 

Furthermore, straightforward calculations show 
2 o 

0 Etest(w , . . . ,  w °) = uTue[_lo" (24) 
OwTOwZ 

Thus (23) reads: 

1 K K K 

(Etest(Wl,""", WK))D = tYn 2 + ~  E E u~uetr [/-)° (6w76w~)o] + E °(ll6wetl 2) 
7=I e=l D=I 

(25) 
What remains is to find the covariance matrix of the weight fluctuations. Expand- 
ing OCe(w)/Ow to first order in aw e and using the fact that OCe(~e)/,gw = 0 one 
gets 12 

[02C~(w)] -' OF(x~, w °) OR(w °) 
~we = [ ~ /  E 2 ~ n~ (26) 

L~,-~,- j 

11 Note that Jo does not scale with N, whereas J does. 
- The notation a E D o means that the summation runs over the indices of the data in training set D 0. 
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Using this expression it can be shown that 
T 

i 4 / O r ( x a , ,  W °) 
×J°- '  N--v)2 Z Z \ ~ww 

at cD-~ o, 2 ~D~ 

+ o ( I / N ) .  

tlaj 
OF(x~2 , w °) 

Ow v 

(27) 

Since the noise is white, the expectation (')o only gives a non-zero contribution, viz. 
a, 2, when al = a2. When 3' =/3 this occurs N - v times, whereas when 3' -¢/3 it 
occurs N - 2v times; equal to the overlap between two different training sets. In 
consequence, (25) becomes 

2 I x  x K ] 9 t7 n D~ef f N - 2v . (28) 

In order to find the weights u a which minimize (28) under the constraint ~ u a = 1, 
we apply a Lagrange technique. That is, minimize instead the Lagrange function 
L = (Etest(~l,..., wK))o + A(~--]a ua - 1) with A denoting the Lagrange multiplier. 
It is easily verified that u;~ = IlK, /3 C [1;K], minimizes the Lagrange function. 
Moreover, straightforward manipulations show that (Ete~t(~1,-",wK))o 
= (Etest(~))D. [] 

Although the ensemble network does not deliver better generalization perfor- 
mance, one might hypothesize that the individual predictions for a test input x 
could be used to obtain sensible error bars. Error bars were mentioned in Buntine 
and Weigend [2] who formulated the classical result (see [1 I, p. 193]) in a neural net- 
work context. 

If we return to the specific LOO case, approximate predictions for a new test 
input, x, are obtained by expanding the network function F(x, w), as follows: 

OF(x, ~) A,~, (29) F(x, ~ )  = F(x, ~) + Ow v 

hence, using (6), (16), 

hr(x)J-~h~ 
F ( x , ~ )  = F(x, ~ ) -  (y~ -  F(x~, ~)) 1 - h ~ J - l h ~  ' (30) 

where h(x) = OF(x, ~,)/Ow. 
Unfortunately, it turns out that the error bars which can be formed from (30) are 

only qualitative by nature, i.e., they may indicate in which parts of the input region 
high errors can be expected. The reason for this statement should be sought in the 
following: First the fluctuations among the individual predictions only reflect the 
variations due to the fact that we estimate from a finite training set. That is, the 
noise inherent in the data generating system n~ is not included. The latter is easily 
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Figure 1. Corre la t ion of  individual  squared errors (losses) in the leave-one-out  (I0) with  the l inear  
unlearned leave-one-out estimates (17) on the N = 209 sunspot  t ra in ing set. 

incorporated by estimating the noise variance by other means, e.g., o;,, z = E(~)/ 
(N - m'err), where m'ef r reflects an effective number of weights which differs slightly 
from met r, as reported by [5]. More importantly, the fluctuations in the predictions 
do not scale properly with N. From the theory of the so-called Jackknife estimator 
(see e.g., [3,11]), it is known that in order to estimate the covariance matrix of the 
weight fluctuations from the LOO ensemble, we need to multiply the LOO fluctuations 
Awe in (6) by a factor of ~ t. We are currently pursuing this topic further, see [6]. 

4. N u m e r i c a l  example  

For illustration of the test error estimate and the ensemble predictions we study 
the well-known "sunspot" prediction benchmark [15]. The network is a tapped 
delay line architecture with I = 12 input units, H = 3 hidden sigrnoid units and a 
single linear output unit. The network function can be written as: 

J:," (3-2.'-' F(%,w) = ~ ~h' tanh ...., w.+x,_/+ wi + Wo n, (31) 
\ i=O 

where x:  = Ix:, • • •, x,,_++~] is the input vector with x :  denoting the sunspot activity 
in the years 1700-1979 and w = [w +, w ++] are the network parameters. The loss 
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Figure 2. Estimates of the leave-one out ensemble on the sunspot "test set 1" (1921-1955) (above). 
Estimates of the linearly unlearned ensemble on "test set 1" (1921-1955) (below). The 209 network 
predictions are indicated by individual heavy dots, and the dotted line connects the predicted output 

F ( x ,  ~ ) .  
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function is the squared error, and the regularization is a simple weight decay, i.e., 
R(w) =  lwl 2, with t~ = 0.01. We used a second order batch mode Gauss-Newton 
algorithm for training. 

In figure 1 we show how the individual test errors (squared residuals) entering the 
test error estimate (17) correlate with the results of a full leave-one-out procedure, 
i.e., the result of training N = 209 networks on the corresponding subsets of the 
sunspot training set. 

The LOO test error estimates (10), (17) are: 
A 

ELO O = 0.0050, ELO O = 0.0047, (32) 

which gives a 6% discrepancy. 
To illustrate the capacity of the ensemble for representing the distribution of pre- 

dictions on test inputs we show in figure 2 the ensemble evaluated on the sunspot 
"test set 1" (years 1921-1955). In the upper panel are shown the exact leave-one- 
out ensemble predictions, while in the lower panel we show the predictions of the 
approximate linearly unlearned ensemble. Recall that the fluctuations.on these fig- 
ures are merely qualitative by nature, i.e., in the regions where large fluctuations 
occur we believe that the true error is high. 

5. Conclusion 

This paper suggested the use of linear unlearning of examples to approximate the 
computationally expensive leave-one-out cross-validation technique. Numerical 
studies on the sunspot time series prediction benchmark demonstrated the viability 
of this approach. 

We analyzed the possibility of employing the ensemble of networks produced by 
the cross-validation scheme for constructing an ensemble predictor. Considering a 
linear combination of networks, it was shown that the generalization performance 
is identical to that of using a single network trained on the full set of data. 
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