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Given two finite point sets .4 and B in the n-dimensional real space/~, we consider the NP- 
complete problem of minimizing the number of  misclassified points by a plane attempting to 
divide R ~ into two halfspaces such that each open halfspace contains points mostly of .4 or 
B. This problem is equivalent to determining a plane {xlxrw = "r} that maximizes the 
number of points x E .4 satisfying xrw > 7, plus the number of points x E B satisfying 
xrw < 3'. A simple but fast algorithm is proposed that alternates between (i) minimizing the 
number of misclassified points by translation of the separating plane, and (ii) a rotation of 
the plane so that it minimizes a weighted average sum of the distances of  the misclassified 
points to the separating plane. Existence of a global solution to an underlying hybrid minimi- 
zation problem is established. Computational comparison with a parametric approach to solve 
the NP-complete problem indicates that our approach is considerably faster and appears to 
generalize better as determined by tenfold cross-validation. 

1. Introduct ion 

A fundamental problem in machine learning is that of  discriminating between 
two given point sets ,A and B in the n-dimensional real space R". This is typically 
achieved by constructing a plane 

such that 

xrw = 7, (1) 

xrw > 7 for x E al, 
xrw < 7 for x E 13. (2) 

Here w is the normal to the plane and (171/llwll) is the Euclidean distance from the 
origin to the plane. In general it is not  possible to satisfy (2) except in the special 
case when the convex hulls of  ,At and B do not intersect. Thus, one resorts in the 
general case to minimizing some error criterion in the satisfaction of  (2). The 
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simplest such criterion is to use linear programming in order to construct a plane 
(1) that minimizes a weighted average of the sum of the distances of the misclassi- 
fled points to the plane [7,2] as follows: 

y O,z O} 
,,,,~,y,z / m 

(3) 

Here the rows of the matrices A c R m×'' and B E R kxn represent the m points in .4 
and the k points in B respectively, while e is a vector of ones of appropriate dimen- 
sion. The objective function of (3) represents the sum of the average distances, 
multiplied by ]]wll, of the misclassified points in .4 to the plane xTw = 3' + 1 and 
of the misclassified points of B to the plane xTw = 3' -- 1. If the convex hulls of 
.4 and B are disjoint, then there are no misclassified points and the linear program 
(3) yields a zero minimum. However in the general case of intersecting convex hulls, 
the linear program (3) obtains an approximate separating plane that minimizes an 
average sum of distances of misclassified points as described above. However, this 
criterion for discrimination may not minimize the actual number of the mis- 
classified points. The problem of constructing a plane (1) such that the number 
of misclassified points is minimized, is considerably more difficult and in fact is 
NP-complete, as shown in proposition 2 of section 2 below. This problem was 
considered in [8], where a parametric minimization approach was proposed and 
implemented in [1]. Although the parametric procedure is effective, it is costly com- 
putationally, which is to be expected since the underlying problem is NP-complete. 
In the present approach we shall propose a fast alternative hybrid criterion that is 
quite effective in approximately minimizing the number of misclassified points as 
determined by tenfold cross-validation [15]. The basic idea is to minimize the 
number of misclassified points by translating the separating plane, and then 
rotating the plane in order to minimize a weighted average sum of the distances 
of misclassified points to a separating plane. This hybrid separability criterion 
leads to an effective finite algorithm for solving the separation problem. 

We outline the contents of the paper now. In section 2 we define the misclassifi- 
cation minimization problem (7), and establish the NP-completeness of the equiva- 
lent problem (8) in proposition 2. We then define our Hybrid Misclassification 
Minimization (HMM) problem 3 and establish the existence of a global solution 
to it in theorem 4, and prescribe a finite hybrid algorithm, HMM algorithm 5, 
for its approximate solution. Section 3 contains numerical results that. indicate 
that the proposed hybrid algorithm is fast and appears to generalize better than 
the parametric algorithm misclassification minimization [1]. 

A word about our notation now. For a vector x in the n-dimensional real space 
R", x+ will denote the vector in R" with components (x+)i := max{x,-, 0}, 
i =  1 , . . . , n .  Similarly x. will denote the vector in R n with components 
(x,)i := (xi)., i =  1 , . . . , n ,  where (.), is the step function defined as one for 
positive xi and zero otherwise. The norm 1[. [I will denote the /2 norm, while 
A ~ R m×" will signify a real m x n matrix. For such a matrix, A T will denote the 
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transpose, and A; will denote row i. For two vectors x and y in R", x _1_ y will denote 
x r y  = 0. A vector of ones in a real space of arbitrary dimension will be denoted by 
e. The notation arg minf (x)  will denote the set of minimizers of f (x)  on the set S. 
By a separating plane, with respect to two given point sets .4 and/3 in R n, we shall 
mean a plane that attempts to separate R n into two half spaces such that each open 
halfspace contains points mostly of .4 or 13. The cardinality of a set .4 will be 
denoted by card(,4). The symbol " :="  defines a quantity appearing on its left by 
a quantity appearing on its right. 

2. The Hybrid Misclassification Minimization problem 

We begin by defining the "'pure" misclassification minimization problem as 
in [8] with the help of the step function (.),. For the two finite point sets .,4 
and B in R", represented respectively by A E R "×n and B E R k×n, we need to 
find a plane xrw  = '7 such that as many as possible of the following ~nequalities 
are satisfied: 

Aw > e'7, Bw < el. (4) 

Upon normalization, this is equivalent to satisfying as many as possible of the fol- 
lowing inequalities 

Aw >>_ eT + e, Bw <_ e~/ - e. (5) 

Thus, we wish to minimize the number of misclassified points by the plane 
xrw  = 7. This problem can be stated as the following misclassification minimi- 
zation problem 

m i n e r ( - A w  + e'y + e), + er(Bw - e3, + e).. (6) 

In [8,1] this problem was reformulated as a linear program with equilibrium con- 
straints (LPEC) [6], that is a linear program with a single complementarity con- 
straint. An implicitly exact penalty method as well as a parametric method were 
proposed for solving the LPEC in [8] and successfully implemented in [1]. Although 
effective, the parametric approach is costly, because for each value of the param- 
eter, a noncon'Vex bilinear program need to be solved. We propose here an alterna- 
tive hylzrid approach that is considerably faster and which appears to generalize 
better than the parametric approach. 

The basic idea of the hybrid approach is to use two criteria for obtaining 
(w, 3') E R "+1 that characterizes the separating plane x T w  = "~. More specifically, 
for a fixed 7 we solve the linear program (3) to determine w. Then for this w we 
solve a one-dimensional minimization problem (6) in 3' to minimize the number 
of misclassified points. The process is repeated until no improvement in the 
number of misclassified points is possible. We term such a point a stationary 
point. The idea of using different criteria to determine different parts of the solution 
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(w, ,),) is similar to that of finding equilibrium points [13] and solving multicriteria 
optimization problems [14]. 

Before defining precisely our problem, we slightly modify the misclassification 
minimization problem (6) as follows: 

mine r ( e -  ( A w -  eT),) + e r(e - ( - B w  + eT),). (7) 
W~'y 

We note that while (6) counts the number of violated normalized inequalities (5), 
the minimization problem (7) counts the number of violated un-normalized 
inequalities (4). In fact, (7) is equivalent to maximizing the number of satisfied 
inequalities in (4), that is 

m a x e r ( A w  - eT), + e r ( - B w  + eT),. (8) 

We note further, as in the case of robust linear programming separation [2] 
achieved by the linear program (3), when the null solution (w ,7 )=  (0 ,+1)E 
R "+1 gives a maximum value of max{m, k) for (8), then it is never unique in w. 
This is because any plane w r x  = "7, with w ~ 0 will also achieve the same maximum 
by placing the appropriate set .A or/3 in one of the open halfspaces it generates. 
This is a useful property of (8), otherwise the null solution w = 0 would pose a 
computational difficulty similar to that addressed in [2]. 

If we now assume that A and B have integer entries, then problem (8) belongs to 
the following class of problems which, we will show, is NP-complete. 

Problem 1: Maximum Inequality Satisfiability (MIS) 
Let the matrix H E R p×q have integer entries. Find the maximum number of satis- 
fiable inequalities 

H x > 0 ,  

where x is a vector of q rational numbers. 

Note that in (9), H plays the role of the matrix [ A o 
that this problem is NP-complete. L 

(9) 

-ee ] of (4). We now show 

Proposition 2 
The MIS problem 1 is NP-complete. 

 roof 
The NP-complete Open Hemisphere (OH) problem [4, p. 246, problem MP6] is the 
problem of determining whether, for a positive integer r _< p, r of the inequalities 
H x  > 0 can be satisfied by a rational vector x. 

We first show that MIS is in NP by reducing it to at most two instances of OH 
which is in NP. If we are given an integer r _< p, then we can decide whether it is a 
solution of MIS as follows. The integer r is a solution of MIS if and only if r is a 
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solution of OH and r + 1 is not a solution of OH when r + 1 < p. Since OH is in NP 
and checking whether r solves MIS can be performed by solving at most two 
instances of OH, it follows that MIS is in NP. 

Now we show that MIS is NP-hard by reducing OH to an instance of MIS. 
Given a positive integer r, we solve MIS and obtain F for its maximum. The integer 
r solves OH if and only if r < ?. [] 

We note that Heath's NP-completeness result [5, appendix C] is for a differently 
stated problem than ours. In particular, Heath minimizes 

min{card{i I Aiw > 7i}, card{/I Biw > 7i}} + min{card{i [ Aiw < 7i}, 

card{ilBiw < 7i}}- 

We believe that our measure of misclassification minimization as given in the (MIS) 
problem 1 is simpler and more direct than Heath's. 

In order to avoid the solution of the NP-complete problem (8), we replace it 
by the following problem, that is more tractable computationally: Translate the 
plane xrw = 7 by varying ~, so that it maximizes the number of correctly clas- 
sified points, where the plane orientation w has been determined by a rotation 
that minimizes a weighted average sum of distances of misclassified points to 
the plane. This results in the following hybrid misclassification minimization 
problem. 

Problem 3: Hybrid Misclassification Minimizat ion ( H M M )  problem 
Find 0i,,-y) c R "+l that determine the plane xrff~ = -y, such that # = #('y) 
and 

"~ E argmaxf(7)  := argmaxer(Aw(7) - el), + er(-Bw(7) + e3'), (10a) 
7 

such that w(3') E arg m!n er er - -  ( - A w  + e'y + e)+ + -~ Bw - e',/ + e)+.  
m 

(lOb) 

We note that for each 7 ~ R, the subproblem (10b) is equivalent to the linear 
program (3) with fixed % Because this linear program is feasible and its objective 
is bounded below by zero, it always has a solution. Hence the objective function 
f (7 )  of the HMM problem (10a) is well defined. We show now tha t f (7 )  attains 
a maximum for some ~, C R. 

Theorem 4: Existence of  solut ion to the H M M  problem 3 
For any A E R m×', B E R k×', the HMM problem 3 has a solution (~, "~) E R "+l. 
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Proof  
We observe frst that f('7), as defined in (10a) is bounded above by m + k. Hence 

sup f('7) = cr < c~. 
7 

Since f('7) takes on integer values only, it follows that cr is an integer. Hence, there 
exists a -y such thatf(-y) > cr - 1/2, and hencef(q)  = cr and consequently 

E arg max f('7) 
"7 

We state now our algorithm for solving the HMM problem 3. 
[] 

Algorithm 5: The Hybrid Misclassktication Minimization (HMM) algorithm 
Initialization 

e T e T 

(w°, "7-l,y°,z°)E arg m i n { I y  +-~-z [Aw + y >_e'7 + e, Bw - z  <_ e '7 -  e , y , z  > 0}. 
w,"7~,z m 

(11) 
Iteration 

7 i E arg maxg(w ~, '7) := argmax er(Aw i - e'7), + eT(--Bw i + e'7),. (12) 
7 "7 

Stop if g(wi,'7 i) _< g(wi-~,Ti-I ). (13) 

. e T . e T . 

w i+l E argrr~l, nh(w, 'y  := argmm--(-Aw+e~*w rn +e)+  + - ~ ( B w  - e~' +e)+. 

(14) 

Note that the first subproblem (12) of the HMM algorithm is a one-dimensional 
problem with a finite number of objective function values that lie in the set 
{0, 1 ,- . . ,  m + k} and is easily solved by a line search procedure. The second sub- 
problem (14) is equivalent to the initialization linear program (11) with '7 fixed at 
7 = 7  i. 

Although the HMM algorithm does not necessarily solve the HMM problem 3, 
it does terminate very quickly after two to five iterations at a solution that is about 
as good as that obtained by the more complex parametric misclassification algo- 
rithm [8,1]. Furthermore, the HMM algorithm appears to generalize better than 
the parametric algorithm, as indicated by the numerical computations given in 
the next section. 

We state now a finite termination result for the HMM algorithm 5. 

Theorem 6: Finite termination of the H M M  algorithm 
The HMM algorithm 5 terminates in a finite number of steps at a stationary point 
(w ~-I , 7 '~l) satisfying the stopping criterion (13). 
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Proof  
Since the sequence {g(w i, 7i)} is in the finite set {0, 1,- • •, m + k}, it cannot increase 
indefinitely. Hence at some iteration ~, it must satisfy the stopping criterion (13) and 
the HMM algorithm 5 terminates. [] 

We note that the stopping criterion (13) leads to a stationary point (w T-I, 7i-1) in 
the sense that g(w i-l , 3 ,r-l) = max max g(w ~, ~/). In the real world problems solved 

in the next section, such a poifi~ ~ seems to be as good as that obtained by a more 
complex and costly algorithm, and generalizes better. 

3. Numerical  computat ion and comparisons 

We report now on numerical results on the Wisconsin Breast Cancer Database 
(WBCD) and other data sets from the Irvine Machine Learning Database Reposi- 
tory [10] as well as the Star/Galaxy database collected by Odewahn [12] and the 
Wisconsin Breast Cancer Prognosis Database [9,16]. 

For each data set, a separating plane was obtained by three methods: the param- 
etric misclassification minimization (PMM) procedure of [8,1], the HMM algor- 
ithm 5 of section 2, and the robust linear program (RLP) algorithm [2], that is 
the linear program (3). In order to measure how well each separating plane gener- 
alizes to unseen data, we performed tenfold cross-validation on each data set [15]. 
Specifically, we divided each data set into ten equal parts, obtained a separating 
plane for the combined nine parts (training) and tested the correctness of the 
plane (generalization) on the tenth set. The percent generalization correctness for 
each data set was an average of the correctness over the ten different subsets 
used for training and testing. The time reported was the average time for the ten 
different subsets used for training. 

The parametric misclassification minimization procedure was coded in the mod- 
eling language AMPL [3] in [1] utilizing the MINOS [11] linear programming 
solver. The HMM algorithm and the robust linear program algorithm were imple- 
mented using C and called MINOS as a subroutine to solve the linear programs. 

Table 1 gives a summary of the numerical results. To address the possibility that 
the reported CPU times might be biased against AMPL, because of the overhead 
involved when AMPL calls the MINOS solver, we have also included another com- 
parative criterion: the average number of LPs solved by each method. We make the 
following additional observations. 

(i) Testing set correctness: 
HMM highest in 5 out of 10 cases 
RLP highest in 3 out of 10 cases 
PMM highest in 2 out of 10 cases 

(ii) Training set correctness: 
PMM highest in all 10 cases (as expected, since PMM maximizes this quantity) 
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Table 1 
Comparison of Hybrid Misclassification Minimization (HMM) with Parametric Misclassification 
Minimization (PMM) [8,1] and Robust Linear Programming (RLP) [2]. 

Date set 
m 

k 
n 

Training set correctness 
Testing set correctness 
Time seconds SPARCstation 20 
Average LPs solved 

HMM PMM 
28 89.12 95.92 

WBC prognosis 119 72.24 71.33 
32 0.71 10.65 

2.1 13.8 
239 97.87 98.57 

WBCD 443 97.36 96.47 
9 0.64 24.65 

2 15.6 
216 87.50 91.43 

Cleveland Heart 81 82.84 82.16 
14 0.41 17.67 

2 26 
225 96.56 98.42 

Ionosphere 126 88.36 87.52 
34 1.46 27.26 

2.1 14 
145 72.21 74.85 

Liver Disorders 200 66.64 68.37 
6 0.43 18.51 

2.1 28.8 
268 78.42 80.55 

Pima Diabetes 500 75.89 76.67 
8 1.51 51.40 

4.4 40.4 
2082 95.98 96.52 

Star/Galaxy(Dim) 2110 95.63 95.42 
14 19.73 1122.70 

2.1 37.4 
1505 99.68 99.89 

Star/Galaxy(Bright) 957 99.23 99.19 
14 4.95 266.13 

2 8.1 
626 68.93 69.12 

Tic Tac Toe 332 66.16 64.50 
9 2.11 46.45 

2.2 26.9 
168 98.03 98.82 

Votes 267 95.62 94.01 
16 0.59 14.76 

2.2 12 

RLP 
84.343 
66.048 

0.501 
1 

97.73 
97.21 

0.21 
1 

84.47 
83.51 

0.22 
I 

94.90 
86.09 

0.98 
I 

68.99 
66.93 

0.28 
1 

76.77 
76.00 

0.75 
1 

95.64 
95.51 
6.89 
1 

99.62 
99.39 

0.87 
1 

62.75 
60.23 

1.16 
1 

97.45 
95.63 

0.22 
1 
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H M M  second highest in all 10 cases 
RLP lowest in all 10 cases 

(iii) Computing time: 
RLP fastest all 10 cases. Total time 12.08 seconds (as expected, since it solves a 
single LP) 
H M M  same order of  time as RLP. Total time 32.54 seconds 
P M M  slowest in all 10 cases. Total time 1600.18 seconds 

(iv) Average number of LPs solved: 
RLP constant of  1 
H M M  average of  2.32 
P M M  average of  22.3 

4. Conclusion 

We have introduced a fast hybrid misclassification minimization algori thm for 
minimizing the number  of  misclassified points by a plane attempting to separate 
two given sets in R". The algorithm essentially solves two to five linear programs 
to determine the orientation of  the separating plane and translates the plane to 
minimize the number  of  misclassified points. The algorithm is simple and robust 
and appears to be a very promising tool for machine learning. 
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