
On the Algebraization 
 I0 YTAGNA of a Feferman's Predicate 

(T/re algebraization of theories which e.r, press Theor; X) 

Summary.  This paper is devoted to the algebraization of an arithmetical  pre- 
dicate introduced by S. Feferma.a. To this purpose we investigate the equational  class 
of Boole'm algebras enriched with an operation ~o, which transh~tes such predicate, 
and an operation z, which translates the usual predicate Thcor. Wc deduce from the 
identit:ies of this equational  class some properties of 9 a.nd some tics between ~ and 
r; among these properties, let us point out a f ixcd-poiat  theorem for �9 sufficiently 
large class of o-r polynomials .  The last part of this paper cone(,rns the dual i ty  theory 
for ~-r algebras. 

I n t r o d u c t i o n  

Recent ly ,  :R.. ~Iagnri and other  authors  have studied how some mete-  
theorems of Peano  ar i thmet ic  ~ (and in general of theories satisfying 
some der ivabi l i ty  conditions) can be expressed in algebraic terms.  I t  ha.s 
been emphas ized  tha t  many  results depend only on throe propert ics  of 
~he prbdicate  Theor, which can be wr i t ten  as identit ies ~)f the  L indenbaum 
algebra of ~ enriched with a unary  olwrat ion v (~xprcssing Theor. Among 
these results,  let us poin t  out  the  two G6dcl's Theorems, L6b's  condition, ~ 
the  existence and uniqueness (up to prova.blc (,quivalencc) of the f ixed-point  
for fornmlas buil t  (in a reasonable sense) fronl variables,  Theor, and Boolean 
connectives,  also in the  intuit ionist ic loo'ic. The above-nwnt ioned  papers  
provide  ns with re la t ively  simple techniques in the  paxt of the  proof- theory  
which is re la ted to the  G6dcl 's theorems.  

In  this paper,  we s tudy,  with the  same techniques,  the  "flgebraization 
of a. predicate  which has been in t roduced by  S. Fcfer inan in [3], and is 
sim0a.r, in a sense, to R.osser's predicate.  Nanlely,  we dcfine, in the  Lin- 
denbamn  sentence algebra, of ~ ,  "~ unary  operat ion 9, which can be regar- 
ded as  an algebraic t ransla t ion of Fefcrman ' s  prcdicat.e. Then, in pa.ragraph 
2, we stud), the  equat ional  class of Booh, an algebras cm'iched with such 
an opera tor  tJ (the algebras of this class will be called 0-algebras); tha t  
allows us to obtain  an algebraic counterpar t  of Rosser 's  theorem. In I)ara.- 
~ 'aph  3 we consider the  relations expressed by identities b~,twcen the ope- 
rat ions ~ and r in tlm Lindenbaum sentence a lgel)ra of ~ ;  these identities 
define the  equat ional  class of Q-r algcbras. In  para.gn~ph 4 we discuss 
1)ot.h the  problem of introducing an opera tor  with the p roper ty  of 0 into 
a diagonalizable algebra, and tha t  of introducing an opera.tion with the 
propert ies  of r into a 0-'algebra. In this way we t ranslate  the logic problem 

1 2~'(~)--~:i'(T(~)) for evt-,'y sentence p of ,'2. 
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of building a "Theor  p red ica te"  s tar t ing f rom a "Rosser  p red ica te"  (see 
the  sequel for the  definitions) and the  inverse problem.  Then (n. 5), we 
prove  a f ixed-point  theorem in every  Q-r a lgebra  for  a suff iciently large 
class of ~-r polynomials .  Final ly,  we character ize the  dual  space of a Boolean 
algebra enriched wi th  the  operat ions  e and r. Wi th  regard  to the  last  
problem,  we recall t ha t  ~ ~ vQv and a =--vrv ~- are hemimolThisms in the  
sense of P. R. t Ia lmos,  [5], and hence t hey  are associa ted wi th  Boolean 
relat ions defined in the  dual  space. 

Fo r  the  sake of simplicity,  we a lways refer to Peano  ar i thmet ic  ~ ,  
a l though there  exists a large class of theories for which the  some resul ts  
can be ob ta ined :  for instance,  all these theories in which ~ is re la t ive ly  
interpretable..  

1. Preliminary notes 

We say tha t  a formula  T(x) of ~ ,  with  jus t  one frec var iable  x, is a Theor 

predicate if the  set {p: ~ 7 ( ~ ) }  is exac t ly  the  set of theorems of ~ ,  and 

if, for  every  two proposi t ions p, q of ~ ,  we h~ve:  a) F~[T(~)^  T(p-+q)]  

-+T(~) and b) ~T@)-+~'(T(p)). From a) and b), b y  diagonalizat ion 

Lemma,  we ob ta in  bo th  L6b 's  theorem and its formal izat ion:  ~ T ( T ( ~ )  

-+p)-+/~(~). ~o reove r ,  let us note  tha t ,  as a par t icular  case of LSb 's  theo-  
rem, we have  the  second theorem of GSdel, t ha t  is: not ~ConT,  where  

Con r is the  sentence x V x ~  IT(x )^  T ( - 1  x)]. 

On the  o ther  hand,  we shall say  t h a t / ~  (x) Ls a Rosser predicate, if t he  

set {p: ~ R ( ~ ) }  is the  set of theorems of ~ ,  and F-~Con R. Ill order  to ob ta in  
an algebraizat ion of Bosser 's  theorem,  we have  to define in the  Limlen- 
b a u m  algebra of ~ an opera t ion  e associa ted wi th  a Rosser  p red ica te  

R(x)  as follows: ~[p] = R(~)] ,  where,  for every  sentence of ~ ,  [p] deno- 
tes the  equivalence class of p with respect  to p rovab le  equivalence.  Since 
the  above  definition is unqmbiguous ,  ~[p]  mus t  depend  only on [p]and 

not  on p. In  other  words,  a necessary condit ion is: if ~p+-q,  then  F~,R(p) 

*-./~(q). On the  gTound of this remark,  it is useful to eon~sider the  Eefer- 
man's predicate F(x) (see [3]3), which can be informally defined in the  
following w a y :  let H(x) be a fol;nlul~ which b inumera tes  "in a na tu ra l  
w a y "  the set A of axioms of :~, and let H*(x) be the  formula H ( x ) A V y ( y  

~- We use terminology and notations of 1l. Magari [7], [8]. In particular, +, ", v, 
denote respectively the operations of join, meet, eomplementation. With regard to 
the representation of rceursive and recursively euumerablc relations in a theory, we 
sometime refer to S. Fcferman, [3]. For the sake of simplicity, we consider as GSdel- 
numbering of the set of propositions of ~ a primitive recursive bijeetion between this 
set and the set of m~tural numbers. 

3 In [3], this predicate is denoted by p.,.(M) ~' n* (x). 



On the algebraization of a Feferman's predicate 223 

<~ x~Conn/y)  where  Co'nu/v expresses the  consistency of the  theory  having 

the  set {p c A :  ~ <  y} as axiom system. Then, by  definition, # (x )  is 

t he  formula  which numet~ tes  "in a na tura l  w a y "  the  set of theorems of 
the  theory  whose axiom sys tem is the  set b inumel~ted  by  the  formula  

l l*(x)  4. Since ~ is reflexive, # ( x )  numera tes  in ~ the  set of theorems of 

~ ;  moreover,  we have  also FalCon r (see S. Fe fe rman  [3]). Hence  # ( x )  

is a Rosser 's predicate.  Then,  one can prove ~[F(~)A_~(p-->q)]-+~(~) 
(see S. Feferman,  [3]), and hence,  for every  propositions p, q of # ,  if 

Fa, P ~ q ,  t h e n  ~ _ ~ ( ~ ) ~ ( ~ ) .  

Let  us note  t ha t  for /~(x) Godel's s e c o n d  theorem and ~6b's theorem 

do not hold. Hence,  we can conclude t h a t  for sonle sentences p of ~ ,  _~(~) 

-~.F(F(~)) is not  a t heo rem of ~ .  

2. The equational classes of q-algebras and of dlagonali~d ~-algebras. 

T~king the  remarks  of the  preceding paragTaph into account ,  we can 
define in the  Lindenbaun~ sentence algebra of ~ a una ry  operation Q 

;is follows: e [p]  = [_~@)] (In the  sequel we shall omit  square brackets) .  
The operat ion Q has the  following propert ies  

Q].) e z = ] -  
e 2 )  q o = o  

Let  us note tha t ,  assunling e 1), ~ 3) is equivalent  to the  following iden- 
t i ty  : 

e 4) Q(p.q) = ep.Qq 

(See G. Sambin,  [13]). Now, we call 0 algebr~ every  Boolean algebra with 
~ una ry  operat ion q which satisfies ~o 1), ~ 2), q 3) or, equivalent ly ,  
q 1), ~ 2), Q 4). Then,  the  ~ algebras const i tute  an  equat ional  class. 

Le t  us note  tha t ,  by  diagonalizat ion Lemma,  for every polynomial  F(x)  
in which x appears under  the  scope of Q, there  exists, in the  e-algebra of 
~ ,  a t  least a Pl such t h a t  p! = -~PF" Hence,  it is suitable to consider also 
the  equat ional  class obtained f rom the  one of e algebras by adding, fo r  
every  pol3~omial f ( x )  with x lmder  the  scope of e, a 0-adic operat ion 
Pl and the  ident i ty  Pt =/~PI"  We call the  algebras of this equational  class 
diagonalized e -a lgebras .  :Now, we have the  following algebraization of 
Rosser's theorem : 

4 The words "in a natural way" as well as many others informal definitions we 
give, can be made precise (see for instance S. Feferman, [3]). 
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T~_EOREM 1. In" every non-trivial diagonalized o~ -algebra, there is 
a p such that O < p < l .  

P ~ o o F .  L e t  p be  a.n e l e m e n t  of ~ non-trivia.1 e -a.lgebra. such t h a t  
p ----~Qp. The n ,  f r o m  p = 0  i t  fo l lows tha.t  0 ----v~0 = ~ 0  ----1, a n d  f r o m  
p = 1  i t  fol lows t h a t  1 ----v~l = v l  = 0 ;  hen ce  p va0 ,  p r e 1 .  Q .E .D .  

Moreove r ,  i t  ba.n be  of some  i n t e r e s t  to  c o m p a r e  ~o, t h e  f ree  d i~gona-  
liza.ble a l ge b ra  on  t h e  e m p t y  set ,  wh ich  ca.n be  r e g a r d e d  as t h e  a.lgebra 
bu i l t  f r o m  t h e  (equiva, lence  class of t he )  w e l l - k n o w n  Gddel  formula. ,  a n d  
t h e  ~ a.lgebra. ~ ,  f r ee ly  g e n e r a t e d  b y  a,n e l e m e n t  which  r e p r e s e n t s  t h e  
undecida .b le  formula,  sugges t ed  b y  Feferma.n ,  na.mely a p such t h a t  p ---- 
= ~QpS. I n  t h e  f o r m e r  algebra., t h e  e l emen t s  0,  ~0 . . . .  . v~0 . . .  a.nd t h e i r  

c o m p l e m e n t s  c o n s t i t u t e  t w o  cha ins  (o rde red  b y  < )  w i th  t h e  o rde r  t y p e  
of w a.nd --(o r e spec t ive ly .  I n  t h e  la.t ter a.lgebra, t h e  e l em en t s  p ,  eP . . . . .  
~ p  . . .  a.nd t h e i r  c o m p l e m e n t s  c o n s t i t u t e  t w o  cha.ins w i th  t h e  o rd e r  t y p e  
of Z. N a m e l y ,  we ha . re :  e2,~+*.p ~ e._~p ~ vp~.,~-~p <~ ~,~..,,+~p, a.nd hence  
92n+~p <~ ~*.,~-lp <~ vQ..,~p <~ ~,~*.,~+._p fo r  e v e r y  ha.turn.1 n u m b e r  n d i f f e r en t  
f r o m  0 . . I n  fac t ,  f r o m  Q 2) a n d  ~ 4) it. fol lows t h a t  ~ox ~ v o~x, a n d  hence  
e"p  ~< v~v~p = v~p, i . e .  ~ p  ~< ~,~p = p.  Since  ~ is a. non-decrea .s ing fun-  
c t ion ,  b y  t he  la.st r e l a t i on , .wc  ha.re  o~*"~+*-p ~ ~2,p ~ p,  a n d  ~"-"+~p .~ 9:"-~p 
~< ep, he nc e  t h e  s ta . t ement  ea.sily fol lows.  L e t  us a.lso n o t e  t h a t ,  fo r  e v e r y  
na.tura.1 n u m b e r  q~, d i f f e ren t  f r o m  0, ~ " + " p  ve ~ " p ,  ~'-'"+~p va ~*-~'-~p a n d  
~ ' p  r 0. I n d e e d ,  in t he  oppos i t e  case, t h e  e q u a l i t y  ~-'~+~p ---- ~-'~p (re- 
spec t ive ly  ~o~n+lp = ~'-'n+~p or ~np __ O) wou ld  fo l low f ro m  t h e  idcntiti(,,~ 

of ~ a lgebras  a n d  f r o m  t h e  i d e n t i t y  p = ~,Op; hence ,  it, wou ld  hold  in 
e v e r y  0 a.lgebra, c o n t a i n i n g  ~ p such  t h a t  p = ~'OP. B u t ,  in l )aragTaph 6, 
we shal l  show th is  is n o t  t he  ca.se (se~ e x a m p l e  b). Fina.lly, le t  us not,(; 
E~a.t in ~o e v e r y  p o l y n o m i a l  f ( x )  w i th  x u n d e r  t h e  scope of v has  a f i xed  
po in t ,  whereas  in M t h e r e  a.re p o l y n o m i a l s  f ( x )  w i t h  x u n d e r  t h e  scot)e 
of ~ which  ha.ve no  f ixed  po in t .  To  p r o v e  th is ,  b y  t h e  a b o v e  a r g u m e n t ,  
i t  suffices to  e xh ib i t  a. ~o a.lgebra, o~/with  a. p such  tha.t  p = ,,o p a n d  a. po-  

l y n o m i a l  f ( x )  with  x u n d e r  t h e  scope  of e, wh ich  has  no  f ixed  p o i n t  in z / .  
To  th is  pu r pose ,  le t  us cons ider  t h e  a lgeb ra  .~/ = < {0, 1, p ,  ~,p}, + ,  
�9 , ~,, ~o} where  ~op = ~,p, ~,,p = p.  I t  can  ea.sily be seen t h a t  v~o'-'x a.dmit.~ 
no  f ixed  p o i n t  in th is  a lgebra .  

REMARK. One can  also cons ide r  t h e  e q u a t i o n a l  class o b t a i n e d  f , 'om 
tha.t  of ~-algebra.s b y  add ing ,  fo r  e v e r y  p o l y n o m i a l  f ( x ,  y ,  . . .  y) wi th  x 
u n d e r  t h e  scope  of e, an  n-a.ry o p e r a t i o n  x (y  . . .  y) a.nd t h e  i d e n t i t y  x ( y  . . .  y) 
----f(x(y . . .  y )y  . . .  y). I n  th is  wa.y, we shou ld  ha.re  a. s t r o n g e r  a.lgebra.ic 
c o u n t e r p a r t  of dia gona l i za t i on  lemma.. 

Strictly speaking, ~ is the. free algebr~L on tile empty set ia the equational class 
which is obtained from the one of e-algebras by ~dding a new 0-a.dic operation p ;~Hd 
the identity ~v = vep. 
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3. The equational class of O-r algebras 

Now, we s tudy  the  identities which emphasize ties between the  opera- 
t ion ~o and  r defined in the  L indenbaum sentence algebra of Peano arith- 
metic.  To this purpose, it is suita.ble to consider some relations be tween  

the  formulas T(x)  and /~(x). First ,  we h~ve the  following pre l iminary  
lemmas : 

LEM~fA 1 (Essentially due to S. Feferman) .  I f  p is probably equi- 

valent to a~ RE-formula,  then b~p-->F(~). 

P r o o f .  Let  q be an BE-formula  such tha t  k~p*-*q, and let Pr[QI(X ) 
be the  formula  which numera tes  "in a natm'al  w a y "  the  set of theoreins 
of Robinson ar i thmetic .  I t  is known tha t  b~q---~P'r[Ql(~) (see S. Fe fe rman ,  
[3]). 5'[oreover, if-n = max  {i: i is a G6del number of an axiom of Robin- 

son arithmetic}, we have k~,Conm,,, and hence [-~Vx.[~r[Ol(x)-->_~(x)], 

and k~q-~/~(~). But,  since k~q*-,p, we have k~F(~)+-,~'(~) a.nd thus- we 

conclude k~p ~ /~  (~). Q.E.D. 

COBOLLABu 1. k~T(~)- , /~ (T(~)), for every p e ~ .  

PROOF. Obvious, since /~(~) is prow~bly equivalent  to an RE  -- for- 
mula.  

LESI~IA 2. (Essentially due to S. Feferman) .  _~or every p ~ .~, we 
h ave : 

('a) k~,[ConznT(~)]--->F(~) and (b) k~F(~)~/4(~) .  

PBOOF. (a) F r o m  k ~ C o n ~ V x  Conmx , it follows t h a t  
k~Con~,~Vx[II(x)-->FI*(x)], whence we deduce 

k ~ C o ~ % ~ V x [ T ( x ) ~ F ( x ) ]  from which the  first par t  of the  cluim ea.sily 
follows 

(b) We have successively k~,Vx[FI*(x)-->FI(x)], k~,Vx[~'(x)~T(x)]  

and k ~ ( ~ ) ~ / ~ ( ~ )  for every sentence p e ~ .  Q.E.D. 

By the  above lemmas,  the  operations 0 and ~ defined in the  Linden- 
baum sentence algebra of ~ satisfy the  following identit ies:  

O- r 1) : O.v ~< ~x 
~-~ ,,): z.v 

O-T 3) : ~x ~ Orx 
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M oreove r ,  ~ sat isf ies ~ 1), O 2), ~ 3) a.nd v sat isf ies t h e  iden t i t i e s  

1) T1 = 1 
2) ~(x .y )  = Tx.~y 
3) ~(~x-~x) = ~x 

(See  R.  Magar i ,  [8]) 6. 
These  r e m a r k s  lead  us to  cons ide r  t h e  e q u a t i o n a l  class of B o o l e a n  

a lgebras  em' iched  w i th  t w o  u n a r y  ope ra t i ons ,  Q a n d  ~, s a t i s fy ing  t h e  a b o v e  
iden t i t i es .  W e  cull t hese  a lgeb ras  ~-v a lgebras .  

T~:EOREM 2. I n  every Q-~ algebra the following properties hold: 

~) Tx ---- ~x § ~0 7 

b) I f  x >~ ~0, t h e n  ~x = vx 
c) e(~x->x) ---- ex 
d )  Q(v~0) ---- 0 

PROOF. a). F r o m  e x ~ z x  a n d  ~ 0 ~ x ~  we h a v e  ~ x ~ Q x §  More-  
ove r ,  f r o m  ~-~ 2) i t  fo l lows t h a t  v x . v v 0 ~ - T 0 ~  ~ x §  a n d  h en ce  vx 

~ x §  T h e n  ~x = ~ x + ~ 0 .  
b).  S uppose  x ~ z0. F r o m  ~-~3) we ge t  ~0 ~ ~ 0 ,  a n d  c o n s e q u e n t l y  

~x ~ ~v0 ~ v0. Reca l l i ng  ' a ) ,  we  c o n c l u d e  t h a t  vx = ~x + v0 = ~x. 
c). Obv ious ly ,  O ( v x - + x ) ~  ex; i t  suff ices to  p r o v e  ~(vx->x) 4 ex ,  

or ,  e q u i v a l e n t l y ,  v~(~x -~x )§  = 1. F i r s t ,  we h a v e  ~,~(vx-~x)+ ~x ~ v v ( ~ x  
-->x)+ ~x = v v x §  ~x. Moreove r ,  ~(vx-~x) ~ ~vx-~qx = v~ :x+  ~x. Thus ,  
�9 ~ ( ~ x ~ x ) + ~ x > ~  ~ 2 x . v q x + q x  = ~2x, so ~(~x -~ -x )§  v ~ x + q x + z ~ x  

d). T h e  i d e n t i t y  d) can  be  o b t a i n e d  f r o m  d) t a k i n g  x = 0. Q . E . D .  

REMARK. W e  n o t e  t h a t  f r o m  d) i t  fol lows t h a t  ~r T 
a n d  hence  one  gets  T h e o r e m  5. 11 of S. F e f e r m a n ' s  [3] ~ 

COROLLABY 2. The ~-v algebra ~ ,  freely generated on the empty set, 
is the Boolean algebra generated by -tO, v=O... ~'~0.. . ,  where T is defined 
as in ~o (see 1~. 1Vfaga.ri [8]),  and ~ is defined by: ~x = 0 i f  x <~ vvO; ~x = 
zx  i f  x ~ ~0. 

PROOf. The  e l emen t s  of ~o a re  t h e  B o o l e a n  c o m b i n a t i o n s  of z0, 
�9 :0  . . .  v'~0 . . .  and ,  fo r  e v e r y  x e ~0, x ~  v0, or  x ~  ~ 0  (See R.  M:~gari, 
[8]). H e n c e ,  t h e  el,~im easi ly  fol lows f r o m  T h e o r e m  2. Q .E .D .  

6 We loarn from a recent communication that  .'#. Soloway has shown that all 
the identities which hold in the diagonalizable algebra of ~ arc, consequences of zl), 

2), 33). 
I t  can easily, be seen that the identity a) is equivalent to o- 1) and Q- 2), (assu- 

ming the others identities), and hence these two identities can be replaced by a). 
s I t  is also known that ~.(-lCouT} COttTTTCon T. Hence, there exist two for- 

mulas T' (x) and E' (x) both of which binumerate in ~t3 { 7  CoaT} this theory, ,~nd 
for which we have: k ~,,~{-NconT}'-] Co~,T, a n d  [- ~v{'TC, onT}CO?t F, 
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4. The problems of introducing an operation with the properties of 0 in 
any  diagonalizable algebra and, conversely, an operation with the pro- 
perties of 3 in any o algebra. 

In  the  first  pa r t  of thi~ paragraph  we t ry  to ex tend  any diagonal izable  
a.lgebra to a Q-v algebra,  b y  defining a polynomial  (or, eventual ly ,  an alge- 
bra ic  funct ion)  f (x) ,  if it  is possible wi th  x under  the  scope of 3, which has 
the  same proper t ies  as e. Le t  us observe  tha t ,  if this were possible, then  
we should be able to cons t ruc t  a Rosser  predica te  s tar t ing f rom a Theor  
p red ica te  in a ve ry  simple way.  Unfor tuna te ly ,  we can no t  hope to sat isfy 
the  r equ i rement  t h a t  x appear  in f ( x )  under  the  scope of 3. In  fact ,  such 
a. po lynomia l  {respectively: algebraic funct ion)  f ( x )  must  have  a t  least  
two  f ixed points ,  0 a.nd 1, in every  diagonalizable a.lgebra: b u t  this is 
in contradic t ion with the  uniqueness  theorem of C. Bernardi  [2] and G. 
S a m b i n  [13]. Neverpheless, if we remove  the  requ i rement  t h a t  x appear  
in f ( x )  under  the  scope of 3, the  problem is solvable in every  di~gonali- 
zable algebra,  as is p roved  in the  following theorem. 

TKEOREM 3. Let  ~r be a diagonalizable algebra. The,~ ~/ ca+~ be exte~ded 
to a o~-3 algebra i f  a new operation f ( x )  is defi~red as follows: f ( x )  = z x ( x +  
+v30). Moreover, i f  g(x,) is a~wther operation havi~g the same properties as 

�9 +, we have f ( x )  = g(x) for every x ~ 30 and fo~" every x ~ vvO. 

PROOF. I t  is easily seen t h a t  the  identi t ies ~ 1), ~ 2), ~o 4) (and hence 
'2 e 3)), ~-~ 1), Q-3 ~), ~-3 3) are satisfied 1)y f(x) ,  whence we o'er the  first 

pa r t  of Theorem 3. Now, let g ( x ) b e  another  operat ion which satisfies 
the  above  identities. Then, b y  par ts  b) and d) of Theorem 2, if x ~ vO, f ( x )  
---- g(x) ---- 3x, if x ~ v30 f (x)  ---- g(,v) = 0 Q.E.D. 

COROLLARY 3. For every x of ~o, o x ~ - - ~ x ( w O §  

PRoof .  Obvious,  since, for every  x. � 9  either x ~ 30 or x ~ v30. 
Q.E.D. 

t~E~A~K 1. Le t  us observe that ,  t ak ing  F ( x )  = vfvf(x), we obtain  
in ~o (and hence also in ~0) the  character is t ic  funct ion  for the  filter gene- 
ra.ted by  30. Namely ,  F(,v) = i if x ~ 30, F ( x )  ---- 0 if x ~ vv0. 

REMARK 2. In  the  Q-3 algebra of ~ ,  the  polynomial  f(x) is no t  iden- 
t ical to qx. In fact  ve (x) has at  least a. f ixed-point  in the  ~o-3algebra of ~ ,  where 
v f (x )  has no f ixed-point  in a non trivial diagonalizable n lgebra;  indeed, 
f rom p ---- vfp = v3p § vp. 30, it would follow vp. 30 = 0, whence p = v3p 
and p - ~  vz0; bu t  this wouhl imply vT0 = v30 + 30 . 30 ----1, which is 
:~ contradic t ion because,  by  the second theorem of G6del, in every non tri- 
vial diagonalizable algebra, v30 r 1. 

:Now, we invest igate  the  opposite  problenl  of extending any algebr~ 
to  a Q-3 algebra b y  defining in it q n algebraic funct ion f(x) ,  if it  is possible 
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with x under  the  scope of (J, with the same properties as those of r. In  
this  w~ry, we t rans la te  the  logic problem of construct ing a Theor predicate  
s ta r t ing  fl'om a predicate  analogous to Fefe rman ' s  predicate.  Let  us s tar t  
wi th  the  following definit ions:  

DEFINITION 1. Let  f (x)  t)e an algebraic funct ion with x lmder the  
scope of ,~> in a ~o algebra d .  We say t h a t  f (x)  numerates i,t~, ~ the set {p ~ ~ :  

f ( p )  = 1}. 

In the  ~ algebra of ~ ,  such an algebraic func.tion f ( x )  is ~ssociated 
with :l predicate F(x)  with exa.ctly one free variable,  and f(x)  numera tes  
the  set of the equivalence classes of proposi t ions  p such t h a t  F~2~(~) 

])EFINITIOI~" 2. Ever)" ~o algebra d such tha t ,  for every n-tuple p~ . . .  
. . .  p ,  of elements of ~',  we have Qp~§ . . .  + ~p,, = 1 iff there exists a .  
least an i ~  ~, such t h a t  p/ = 1 is called o~ -- cottsiste+~,t ( §  :~lsot  
every 9-r algebra ~ such tha t ,  for every n-tuple q, . . .  q,~ of elements of ~ ,  
we ha.ve ~ q ~ + . . .  + r q ,  = 1  iff tlmre exists a t  least an i ~ < ~  such tha t ,  
qi = I is called c,~ - -  consistetTt ( §  §  

Let us note tha t ,  since ~x ~ tx, condition ( § §  implies condit ion ( §  
in eve13" 0-~ algebra. 5Ioreover, if ~ is <o-consistent, then  both the 0-alge- 
bra 'lnd the ~o-v {dgebr~l of .~ are o)-consistent. 

Because of the connections with the above logical problem, we require , ,  
for o,-consistent ~o-algebras, t h a t  the  algebraic funct ion f(x)  with the pro- 
perties of r satisfy also the following condit ion:  ~4) f(x.) numera tes  {1}. 

With  regard to the ~o algebra of ~ ,  condit ion r 4) corresponds to the  
requirement  th;i t  the predicate F ( x )  associated with f ( x ) n u m e r a t e  the  
set of theorems of ~.  5[oreovcr, in the ~ algebra of ~ ,  the  problem is sol- 
ved on taking./~v = o.r § r0. This fact  leads to search in every 0-algebra ~ ,  

for some element p such t h a t  the algebraic funct ion 9 x + p  satisfies iden- 
tities t ]), ~ 2), ~ 3), ~o-~ 1), ~o-v 2), 0-r 3) and eventual ly  condit ion r 4). 
Let  us note tha t ,  on t~tldng p = 1~ ~ x + p  satisfies the above identit ies,  
but  not  condit ion v 4) ; on the  other  hand,  there arc ~ algebras in which the  
only p such t h a t  9x §  verifies the  above identities is 1. Clearly, this case 
is not of interest for our purposes. 

The prol)erties of the set of ;~11 such elements p are described in the  
follo~ving theorem : 

TKEOICE~t 6. Let ~/ be a ~ algebra~ a tt, d let P = {p e ~ :  ~x §  s~t- 
tisfies ~ ) ,  v2)~ ~3), ~-r]), ~-~2), ~-r3)}. Then, P is closed under the opera- 
tiott .. Moreover, .(f .g is the f i l ter  get~,erated by P, o~F ~_ P.  Fitt, ally, i f  ~r 
is o,consiste~t.t a~td p e P~ p r 1, o~x + p  sati,~:fies also co~,ditio~, r4). 

1'1r Let  p~ and p., be elements of P. I t  is e~sily seen t h a t  ttae alge- 
braic funct ion g(x) =- e x + p ~ p 2  satisfi(,s r l ) ,  z2), 5,z[), ~o-z2). Le t  us prov(, 
i:hat g(x) satisfies O-r3), tha t  in g(.,:)< ~)g(x), or equivalent ly ,  e x + p ~ p . ,  
~(~.~, +p~p.,).  By our hypothesis ,  9.~, + p; ~ O (~.~' -~-P,) (i = 1 ,2) ,  and hence 
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(ox § §  ~ e ( q x §  ~(ex  §  o), f r o m  which  t h e  c la im eas i ly  
follows. L e t  us p r o v e  ~ 3), t h a t  is g(g(x)-->x) = g(x). This  e q u a l i t y  is 
e q u i v a l e n t  to  t h e  fo l lowing  cond i t i ons :  a) g ( x ) ~  gg(x) a n d  b) if x ~ g(x), 
t h e n  x = i (See ]~. ~Ia.gari, [9]). Cond i t i on  a) is an  obv ious  co n seq u en ce  
of e-v3);  now,  le t  x be an  e l e m e n t  of ~ such  t h a t  x >~ ~ x §  W e  h a v e  
x ~ ( ~ x § 2 4 7  a n d  hence  x §  ~x+po.  From th is ,  b y  
p r o p e r t y  c) of t h e o r e m  2), we d e d u c e  ~x = e ( v ( e x + p , + x )  = e ( v e x . ~  
§ x) ~ o~ (~x§ w h e n c e  ~ox§ >1 O(~x§247  a n d  o~x§ = 1, s ince 

p.~ c P  a.nd c ond i t i on  b) holds  fo r  o~.x§ So, ~x>~ vp2, a n d  x ~  Ox+p~p2 
= ex§ = e x § 2 4 7  ~ e x + p ~ .  There fo re ,  x = 1, because  

p~ e P .  
�9 le t  q be  an  e l e m e n t  of F .  T h e n ,  t h e r e  exis ts  ~ p e P such t h a t  

q>~p, a nd  he nc e  ~ q ~  ~p. Since  e x §  satisfies ~-z3), we h a v e  e 0 + p  
~< e(~O§ t h a t  is p ~< ~p, 
§ ~oq. The n ,  i t  is eas i ly  seen 
ver ,  f r o m  t h e  f o r m a l i z a t i o n  

w h e n c e  ~q~> ep >~p. L e t  us set  g(x) = ~ x §  
t h a t  g(x) sat isf ies  vl) ,  ~2), q-v1), q-v2). ~Ioreo- 
of L 6 b ' s  t h e o r e m ,  for  ~ x §  i t  fol lows t h a t  

e(vox.vp § 2 4 7  = e x + p ,  w h e n c e  e ( vOx . vQ q§247  Qq ~ e ( v e x . v p + x ) +  
+ p + e q  = e x §  t h a t  is ~3). So, we h a v e  e x § 2 4 7  
( t h a t  is c ond i t i on  a.) for  ex § Qq). Moreove r ,  f r o m  ~-~3) for  Qx §  i t  fol lows 
t h a t  Qq~ ~ q §  ~ ~(Qq§ = ~ q  (since p ~ Qq), w h e n c e  ~ q ~  e2q 

o(Qq § x). The re fo r e ,  ex + eq ~ Q(ex § o~q) + eq = e(~q § ex). 
F i n a l l y ,  le t  us n o t e  t h a t  if z~r is to-consis tent ,  p e _P, p ~ 1, t h e n  ~x § 

§  ~ ~ox§ Thus ,  if ~ x §  = 1, t h e n  o x §  = 1, a n d  hence ,  s ince 
is ~o-consistent a n d  p # 1, x = 1. Q .E .D .  

5. The fixed point problem in ~-v algebras. 

We  recal l  Chat, in t he  e q u a t i o n a l  class of diagona. l izable a lgebras ,  
t he  fo l lowing  f i x e d - p o i n t  t h e o r e m  ho lds :  e v e r y  p o l y n o m i a l  f ( x )  w i th  x 
u n d e r  t he  scope of �9 a d m i t s  a f ixed  p o i n t  in e v e r y  d iagona l izab le  a lgebra .  
F t u ' t h e r m o r e ,  th i s  f i x e d - p o i n t  is un ique .  W e  c~n f o r m u l a t e  t h e  f i r s t  p a r t  
of  th i s  s t a t e m e n t  fo r  q-v a lgehras  as fo l lows:  e v e r y  p o l y n o m i a l  f ( x ) w i t h  
x u n d e r  the  scope of ~o or of ~ a d m i t s  a f i x e d - p o i n t  in e v e r y  ~-v a lgebra .  
_Nevertheless th i s  s t ~ t e m e n t  can  be s t r o n g l y  d i sp roved ,  in t h e  sense t h a t  
it fails no t  on ly  in t h e  e q u a t i o n a l  class of ~-v a lgebras ,  b u t  also in e v e r y  
e q u a t i o n a l  class c o n t a i n e d  in it. I n d e e d ,  le t  us cons ider  t h e  a lgeb ra  ~1 = 
= ( { 0 ,  1}, §  v, Q, v:,: whe re  o b v i o u s l y  Q0 = 0, e l  = , 0  = ~1 = 1. 
~r is no t  on ly  a ~-z a lgebra ,  b u t  i t  be longs  to  e v e r y  e q u a t i o n a l  class con-  
r a ined  in i t  9 

9 To prove this, let V* be such an equatiohal class, and zr b ca  non trivial algebra 
in V*. Then, denote by F the filter generated by TO, and by ~ the relation defined 
as follows: x -~ y iff x ~ y  e F. I t  is easily sccn that this relation is a congruence rela- 
tion. Moreover, since z0 r 0 by GSdel's second theorem, F is a proper subset of ~r 
whence ~ t , / ~  is a non trivial algebra of V* where O0 : O, vO = 91 = r l  = 1; we 
oan conclude that ~t is a subalgcbra of d * / ~  and consequently an algebra of V*. 
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(1) 

(3) 

(5) 

(6) 
(7) 

_= ( {0 ,  1} 
(8) / f  f ( x )  i s  

i s  i n  1.  

Moreover, we 

I t  is easily seen t h a t  in this algebr,~ the  polynomial  ~ x  has no fixed- 
-point,  whence the  s t a t emen t  immedia te ly  follows. 

In  this pa ragraph  we shall invest igate  some classes which ~dmit  ,~ fi- 
xed-poin t  in every  ~-3 algebra. Firs t ,  let us note  t ha t  a large class of poly-  
nomials admi ts  0 ( respect ively:  1) as a f ixed-point .  We denote  these  classes 
b y  0 ~nd 1, respect ively.  The following facts  are easily p roved :  

The identical polynomial  and ~x are both in  0 a:~d in 1. 
"~x is in  1. 
I f  gx is an arbitrary polynomial  and f (x )  is in  0 (respectively: in  1) 
then f ( x ) .g (x )  is in  0 (respectively: f ( x ) 4 - g ( x )  is in  1) 
I f  f (x )  and g(x) are in  0 (respectively: in  1)~ the~ f ( x ) 4 - g ( x )  is i,~, 
0 (respectively: f ( x ) . g ( x )  is in 1). 
I f  f (x)  and g(x) are in 0 (respectively: in  1), the~ f (g(x))  is in  0 (res- 
pectively: in  1). 
~or every polynomial  g(x) ,  g(x) is in  0 i f f  ~,g~,x is in  1. 
I f  f (x )  is in  0(~1, then vf(x)  has no f ixed-point  in  the algebra ~ - -  

, + ,  ", v, ~, 3 ) .  

a e polynomial,  then, f (x)  or vf(x) is in  0 and f (x )  or ~,f(x) 

have: 

T~I:EOREM 7. The following classes of poly~wmials have a unique f i-  
xed-point in  every ~-3 algebra: 

a) The class of o~-3 poly,~wmials f (x )  with x under the scope of 
vr of 3, such that f (x)  ~- g(x) + vO for some g(x). 

b)  The class of o~-3 polynomials f (x )  with x ~l, nder ~,he scope of 
or of 3, such that f (x )  -~ g(x).~,vO for some g(x). 

.Further, this f ixed-point  is an element of ~o. 

PROOF. :First, let us p rove  the  existence of such a f ixed-point .  Assume 
f ( x )  is in the  class a). Le t  p be a f ixed-point  of f (x )  in the  Q-3 ulgebr~ of 
Peano  ar i thmet ic  (which exists by  diagonalizat ion lemma).  Clearly, 
p : f p  ~ ~0 in this algebra.  Now let n be the  number  of occm'rences 
of ~ i n f  and let oh~(x) be a subpolynonfial  of f (x )  such t ha t  ~ does not  occur 
in h~(x). B y  induct ion on the  s t ruc ture  of h~(x), it is easily seen t ha t  ei ther 
h~(p) ~ -tO or h~(p) <~ vT0; in the  case, q h~p = 3h~p, in the  other  one, 
~h~p = O. B y  replacing ~h~x with vh~x (respect ively:  wi th  0) in (fx), 
we obta in  a polynomial  f~ (x) with n - - 1  occurrences of ~, such t ha t  p --- f~p 
= fp .  B y  repeat ing  this procedure  ,~b t imes,  we obta in  a po lynomia l  f*(x)  

with x under  the  scope of v a.nd wi thout  a.n occm'rence of ~, such t ha t  
p = f * p  = fp .  By the  theorems abou t  existence and uniqueness  of ~ fi- 
xed-point  in diagonalizable algebras (see C. Be~nardi, [1], [2] and G. Sam- 
bin, [13]) p is in ~0 and hence in every ~-3 algebra. )1oreover,  let us note  
t ha t  p ~nd f-p axe elements of ~0, and ~o is a subalgebra of the  ~-~ alge- 
bra  of ~ .  So, since in such algebra p = f p ,  this ident i ty  holds also ill 
~o ,  and hence in every  Q-3 algebra.  
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Assume tha t  f (x )  belongs to the  class b). Let  p the  f ixed-point  of f (x )  
in the  e-v algebra of ~ .  We  have  p -= f (p )  <~ vvO, hence, proceeding as 
above ,  we find a polynomiM f* (x )  with x under  the  scope of v sl~ch t ha t  
p =- f*p  = fp .  Then, an a~rgument a.nalogous to the  one above  allows 
us to conclude t ha t  p is in every  Q-v algebra and p = f p  in every  ~o-v al- 
gebra .  

Final ly,  we mus t  p rove  t ha t  the  f ixed-point  is unique.  Le t  us observe 
~,ha.t the  const ruct ion  o f f*  (x) does uot  depend  o n p  b u t  only on f (x) .  Moreover,  
if p is a f ixed-point  for f (x) ,  then,  b y  the  above  arguments ,  p = f * p  = fp ,  
so p is also a f ixed-point  for f* (x). Therefore p is unique,  b y  the  uniqueness 
t heo rems  of f ixed-point  in diagonalizable Mgebras (see C. Bernardi ,  
~2]; a n d G .  Sambin,  [13]). Q.E.D.  

COROLLArCY 4. I f  f (x )  is a polynomial with x under the scope of 
.the~ f (x )  admits a unique f ixed-point  in every ~-v algebra. 

PI~OOF. B y  theorem 7 it  sufficies to show tha t  ei ther for every  x ,  f ( x )  
>~ v0 (whence f ( x )  -= f ( x ) + v 0 )  or, for every  x ,  f (x )  <~ vvO, ( that  is, f (x )  
= f(a~).vzO). Since x appears  in f (x )  under  the  scope of ~, there  exist  

a e polynonl ia l  h(Xl . . .  xn) and q~ polynomiMs f~ (x ) , . . . f ,~ (x )  which begin 
with a v, such tha t  f ( x )  = h( f~(x) . . . f ,~(x)) .  

:Now, l~t us prove  the  claim b y  induct ion on the  s t ructm'e  of h. Obxdo- 
usly, f i (x)  >~ z0 (i = 1 ...  n). If  h~(x) and h~(x) are both  >~ ~0, then  also 
hl (x ) .h2(x )  >~ v0; if hi(x) <~ ~,vO, or h~(x) ~ vvO, then  h~(x).h~(x) <~ vv0; 
fur ther ,  if k(x) >~ "~0 ( respect ively:  k(x) <~ w:O), then  vk(x) <~ vvO (respec- 
t ive ly  vk(x) >~ v0). Final ly,  if k(x) ~ ~0, o~k(x) = vkx >~ ~0, and, if k(x) 
~< vz0, then  ok(x) -= 0 <~ vvO.  Q.E.D. 

6. Duality theory for ~o-v algebras 

~:Ve recall that ,  if d is a ~-z algebra., then  ~ ~ vQv and a ~ vvv are 
hemimorphisms  lh'om d to d ,  in the  sense of P. R. HMmos,  [5], t ha t  is, 

and  a are mappings  from d to d such tha t  50 = 0, ~ ( x + y )  = ~(x )+ 
+ ~(y); aO = O, a ( x + y )  = a(x)+(~(y) (x, y e ~r Hence,  t hey  are asso- 

c ia ted  with b inary  relations, >~ and >3,  in the  dua.1 space j l 0  of d (see 
_P. 1~. Hahnos ,  [5]). In  order  to simplify our notat ion,  let us. consider 
t h e  inverse relations, <o an d < , ;  t hey  are defined b y  :v <qy  iff ~ox ~< y 

and  x < y iff a,~ _ yU for every  x,  y e ~ Moreover,  we have,  for every  

c lopen subset  X of ~ :  5X = { x e ~ : 3 y e X :  y < q  x} and a X  = { x e  

~ :  3y e X :  y <~ ,r,}. In  the  sequel, by  "relat ion associated with e" (res- 
pec t ive ly :  with v), we shall mean the above  defined relat ion <o (respecti- 

lo The dual space of ~4 is the pair  < ~ ,  T>, where T is a sui table topology on .-~. 

However ,  wc shall  often ident i fy  such dual space with the set ..~. 
^ 

11 tIcre, ~ '  is the set of all ul trafi l ters of zr hence x, y denote ultrafil tcrs of 
d ,  and ~x, ax are the sets {~p : p  e x} ,~nd {ap:p e x} respectively.  
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v e l y :  <7)- Com~ersely,  by  " o p e r a t i o n  associa.ted w i th  < ,  ( r e s p e c t i v e l y :  
< ~ ) ' ,  we shall m e a n  t h e  o p e r a t i o n  9 -=-vSv ( r e sp ec t i v e ly :  r ~ - ray) ,  w h e r e  

a.nd a are  de f ined  as ~bove.  F inMly ,  we reca.ll t h a t  t h e  rela. t ion <~ is 
t r a n s i t i v e  a nd  r e l a t i v e l y  f o u n d e d  (see Ir 5.I~g~ri~ [9]). I n  t h e  f o l l o w i n g  

�9 t l w o r e m ,  we ehara.cter ize  t h e  p rope r t i e s  of <q a n d  t h e  t ies  b e t w e e n  <0 a, n d  

~r" 

T~EORE.~[ 8. .Let ~r be a Boolea,~, algebra with two .a,~,ary operations~ 
o~ and ~, such that ~ ~-vgv  and  a ~ v~v are h, emimorphi.~ms. Th, en ~,r i~ 

a ~-"r algebra i f f  all tl~e fo l lowing conditions, are satisf ied: 
(1) <~ is tran,sitive a~,d relatively f o u n d e d ^  

(2) <o is qwt founded,  and, for every x e s t ,  there is a y e ~ such 

that y <~,x 
(3) <~ c_ <e,  and < e - - < ~  ~ r 0  • ~0, that is, ,if x <Q,y but x 42~y, 

the?~ x.~ y E ~0. 

PIr L e t  ~/  be a ~-r a. lgebra;  t h e n  (1) has  been  p r o v e d  b y  I~. Ma.- 
gar i  in [9]. Moreover~ f r o m  o0 = 0 it  fol lows t h a t  51 = 1, t h a t  is {x: : ]y :  

y <o.r,} = ~ ,  a nd  hence  cond i t i on  (2). Now,  suppose  x < ~ y ;  t h e n  ax _~ y, 
and  hence ,  for  e v e r y  X e ,v~ a X E  yr , .  B u t ,  f r o m  ~oX ~< ~X it  fol lows t h a t  
a X  ~ 5 X ,  and  we obta.in 5X e y ,~ince y is a f i l ter .  T h e r e f o r e  ~5x c y ,  

and  we can  conc lude  theft x < o y .  I n  o rde r  to  p r o v e  the  second  p a r t  of 
(3) it is useful  to  es tab l i sh  t he  fo l lowing  r e su l t :  

LI.;.~IM:A :3. 1,'or every x ,  y ,  z s ~ ,  i f  x < , y ,  y <oz ,  the~ x <~ z. I~  

partic~dar, i f  x e ~0, y e vr0,  then y ~.ox. 

P]~ooF oI~ LE.~[A 3. I f  x < . y , y < o z  , t h e n ,  b y  the  de f in i t ion  of  
<e "rod <7 ,  we ht~ve ax c y and  ~y _~ z. T h e n ,  i t  suff ices to  show ax ~ z~ 
t h a t  is, fo r  e v e r y  X e ,r,, a X e  z. N o w  let  X be  an  e l e m e n t  of x ; since ax _~ y ,  
a X  e y ,  a nd  since 5!! c_ z, ~aX  e z .  B u t  ~ X  ~ a r X  impl ies  5r <~ aX ,  
and  t h e n  a X e  z; because  z is a f i l ter ,  h Io reover ,  if x �9 r0 = ~,al, an d  y �9 vr0 

- - a l ,  t h e n ,  fo r  e v e r y  z �9 s/~, z ~:,x,, whereas  t h e r e  exis ts  a z such t h a t  
z <~y. The n ,  y < o x  would  imp ly ,  by  t he  f i rs t  pt~rt of L v m m a  3), z < . x ,  

a c o n t r a d i c t i o n .  This  comple t e s  t he  p r o o f  of Lemmt~ 3). �9 

L e t  us r e t u r n  to  t he  p roo f  of t h e o r e m  8. Sul)pose x <oY,  x. ~:~11. T h e n ,  
t he r e  is a n  X �9 x such t h a t  5X e y, b u t  a X r  y. B u t  f r o m  vX = ~X-t- r0 
it fol lows t h a t  a X  = 522.a l ,  and  hence  a l r  y ( imleed,  if th i s  is no t  t h e  
case, a X  = ~ X . a l  �9 y, since y is a f i l ter .  So, val  = rO �9 y, because  y is 
an  u l t ra f i l te r ,  a nd  y �9 r0 ;  since x <oy ,  we also hav'e x �9 r0, b y  t h e  second  
p a r t  of Lemm:~ 3). 

Converse ly ,  le t  us a s sume  t h a t  t he  r e l a t ions  <o an d  <~,  "~ssocia.ted 
wi th  o a nd  �9 respect ively~ sa t i s fy  (1), (2), (3). I t  is k n o w n  t h a t  r sa.tisfies 

r, I n  the sequel we identify every element p �9 ..~ with the set X of all x �9 ~r  
such that p �9 x. In this sense, We shall say indifferently x �9 X or X �9 x. 
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r l ) ,  v2), v3) (see R. Ma.gari, [9]). Moreover,  Q1) and e3) direct ly follow 

f rom the  f ac t  t ha t  ~.~o~ is a hemimorphism.  We have also 51 ---- {x: 3y  �9 ~ ,  

! / < e  x} = ~ (by (2)), t ha t  i sS1  = 1 ,  and hence O0 = 0 .  Fur the rmore ,  
~ X = { x :  :ty e X : y <~x} ~_. {x: ] y  e X : y <~x} , since <Q_r  and 
hence ~ X  >1 aX,  which implies ~X K rX.  :Now, let us prove  r t h a t  
is a X + v a J _ ~  ~X; this is equivalent  to 5 X . v a X ~  val. Assmne x � 9  
x it a X ;  then,  there  is a. y �9 X such thu t  y <~x  and y Zg,x. But ,  b y  (3), 
it follows x, y �9 ~0 = val. Thus, we have  ~ 'X .vaX  ~ val. 

Finally,  let us p rove  r t ha t  .is ~ a X ~  a X .  I f  x �9 5aX  ~ {u: =ly 
c a X :  y <:~u} ---- {u: ~y]z :  z �9 X ,  z < , y  < , y  and y <~u},  then  there  exists 
a z �9 X and a y such t ha t  z <:,y and y <qx. Now, we have also y < , x ,  
because  otherwise,  b y  (3), x, y �9 v0, which is in contradict ion with z < , y .  
Since < ,  is t ransi t ive,  z < , x ,  and x �9 aX.  Q.E .D. '  

REMARK. Generally, rela.tions <q and <:, which induce the  operat ions 
~o and ~ are not  unique.  The condit ions (1) and (3) of theorem 8 are neces- 
sary  only in the  case when the rel,~tions <Q and <~ are defined in the  stan- 
da rd  way  ~a. As known there  are relutions <Q and <~ defined in the  dual 

space ~r of ~r which induce the  operat ions Q and ~, b u t  do not  satisfy 
(1) a.nd (3). In  [9], R. Maga,ri presents  a counterexample  to (1). 

To give a counte rexample  to (3), let us consider the  set oJ + 1  in which 
a topology is defined by  tak ing  as clopen sets all finite subsets  of o) and their  
complements  in ~ + 1 .  Define x < , y  iff x < y or x = y = {co} and x < * y  
iff x < y o r  x = y  - O,(x ,  y c c o + l ) .  I t  is easily seen t ha t  the  dual 
a lgebra  of this space is ~o; in fact,  the  dual space of !R0 is the  topolo- 
gical space defined above,  <~ = <*, and <~ ___ <~ and <~ -- <~ ({~o}, {(o}). 
Thus,  for every  clopen set X,  we have  QX ~ e*X (where e* and Q are the  
opera t ions  associated with <* and <~ respectively) ,  a n d  Q * X - - ~ X  ~_ 
G {{,o}}. Since {{,o}} is not  clopen, whereas r 1 6 2  is, we conclude 
9*X = CX; moreover,  r X  = z*X.  Hence,  the  dual  algebra is the  ~o-v 
alo'ebra ~0, bu t  <* and < :  do not  sat isfy (2), because ({w}, {co})e 
< , - - < Q .  If, however ,  in the  dual  space of ~ ,  every  point  is a clo- 
pen set, then every  pah' of rel,~tions <o,  <~ which induce the ope- 
xations r and r, sat isfy (1), (2), (3). The pa r t  of the  s ta tement  concerning 
(1) has been proved b y  R. Magari, [9]; (2) can be obta ined  exac t ly  as in 
Theorem 8. ~ o w ,  let us prove  (3); suppose x < ~ y .  Then y e a{x}, bu t  

< w h e n c e  y = {u: 3 z  = {u: So 

we have  x <eY and <~ G <q.  Now, let us assume x <Qy and x zg,y. F rom 
this  it follows tha t  y eS{x},  y it a{x}.  But  from a X  ~ - -5X.a l  we obt:dn 
(~{x} = ~{x}.al ,  whence y it r and, consequent ly ,  y ~ ~0. :Now, suppose, 
v, on t ra ry  to our claim, x �9 vr0 ---- al .  Then, there  exists a z such tha t  z <,.v, 

is That is, they ore defined by x <r iff ~x ~_ y, and x < ,y  iff sx ___ y. 
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whence x �9 a{z} and  y �9 ~a{z}. B u t  5a{z}_ a{z}; i t  would follow t h a t  
y �9 a{z}, z <3Y and y �9 vr0, which is a contradict ion.  

~u conclude this  paragTaph by  giving two examples of Q-r algebrasr 
defined by  their  dual  spaces: 

�9 a) Le t  Z be the  set of integers, and  Z* be the  topological space < Z~ 
~ ( Z ) ) .  Le t  w be the  set of n a t m ~ l  numbers ,  -- w the  set of negat ive inte- 
gers, < the  usual ordering on Z. 

Let  us define two relations <3 and  <~ as follows: 

x <3y  i f f  x �9 - - w  and y e w  or x ,  y �9 w and y < y 

x <Qy iff  x <3y  or x ,  y z - - w ,  y = x + l  

Since <o and  <3 sat isfy conditions (1), (2), (3) of theorem 8, the  dual  alge- 
bra is a. e-r a lgebl~. Moreover, we h a w  

I - - w  if X ~ - - w  
T X  I 

| x : x < ~ l a y :  y r  if X ~ _  - - w  

r X  if X_~ --o~ 

~X = - w n { x + l :  x � 9  if X ;~ - o 

I t  is easily seen t h a t  the  s e t s / )  = w w { - - 2 n :  ~ �9 o} and  P '  = ~ w { - -  
- - 2 n - - l :  n e--~} are such t h a t  ~P = vo_P,_P '=  voP' .  Moreover, the  sets 
/~n = w w U {x: -- (2m + 2 ) n  ~< x ~< -- (2m + l ) n }  are such t h a t  ~OnP,t = P , .  

Tf t E~  

b) Let  Z* be the  topological space of example  a). Define <3 as in 
a) and  <Q as follows: 

x < Q y i f f x  < 3 y o r x ,  y �9 - - w a n d y  = x + l  o r x  = y = -- 2= for some n > 0. 

Since <Q and < ,  sat isfy conditions (1), (2), (3) of theorem 8, the  dual  
algebra is a O-z algebra. Moreover, r is defined as in a) and  

= [ z if X >~ = w 

ox if x , - w  

I f  P~ = {x: x < :-2 ~} for some n > 0, we have  eP,, = P,, .  Hence,  t he  
polynomial  oX has infini tely m a n y  fixed-points in the  algebra. Moreover, 
if P = w w { - - 2 n :  n �9 w}, .we have  P = v~P, and  O~+2P < e2nP, 02~+IP 
< O2~-~P, A O 2,~P = (-~ O2"-~P = O, O'~P # O .  Thus, the  elements 

~tEa~--0 ~eoJ-- 0 

OnP and their  complements  const i tu te  two chains ordered by < ,  bo th  
isomorphic to Z (see paragTaph 2)). 

Open P r o b l e m s  

1. In  the  Q-z algebra ~* of # ,  is there  a unique p such that p = v~p ? 

In other words, is it true that ff b~p~+ ~'E(~) k~q~-*7~(~) then F~p~q? 
Let us note that in the algebra a) of paragraph 6) there are at least two 
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elements  P and  P '  such t h a t  P = ~ P  and  P '  = v~P';  hence an eventual  
uniqueness theorem cannot  be obtained f rom the  identi t ies of ~-v algebras. 

2. Is it  t r u e . t h a t  in the  ~-v algebra ~* of ~ ,  if Qp = p, t hen  ei ther  

p = 0 or p = 17 In  other  words, is it t rue  t h a t  if F~p~/~(~)  then  either 
~ p  or F~-7 p?  Also this p roper ty  does not  follow from the  identit ies 

of ~-v algebras since in the  algebra b) of paragraph  5 the  polynomial  ~x 
admi ts  inf ini te ly  m a n y  fixed-points.  Moreover, an analogous of LSb's 
theorem,  t h a t  is: if Qp ~< p ,  t hen  either p = 0 or p = 1, does not  hold 
in the  ~-~ algebra of ~ .  Indeed,  Qvv0 ---- 0 ~< v~0, bu t  0 < vv0 < l .  

3. :Find new identi t ies (or prove t h a t  it  is no t  possible) which hold 
in the  ~-v algebra ~* of ~ ,  bu t  do not  follow from the identit ies of @-v 
algebras. 

4. F ind  minimal  conditions for a Q-v algebra to have  at  least a fixed-po- 
in t  for every polynomial  f(x) with x under  the  scope of ~ or of ~. As i t  
has been shown, such condltmns c~n not  be completely expressed by  iden- 
tities. 

5. Is the  set of identi t ies of Q-v algebras decidable? 

6. S tudy  the  properties of the  set P of elements of ~* such that~ 
assuming T~(x) = ~ x + p ,  ~ and  % satisfy the  identities of ~-~ algebras. 
B y  the  results  of paragraph  4, if p ~ ~0, then  @p e zo. Hence v0, v~0 . . .  ~'0 
. . .  are in _P. One m a y  expect  t h a t  in P there are elements :p < ~0 and  t h a t  
I ) does not  h~ve a least (with respect to <)  element.  Since P is closed with 
respect to -, if this  is the  case there would be a decreasing chain . . .  p~+~ 
< p~ < . . .  < v0 of elements of P,  and  hence a decreasing chain . . .  ~ .+~(x)  
< %,(x) < . . .  < ~(x) of operations which are associated with ar i thmet ical  
predicate  of theor,  type.  
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