N Fraxco  On the Algebraization
ONTACYA  of a Feferman’s Predicate

(The algebraization of theories which erpress Theor; X)

Summary. This paper is devoted to the algebraization of an arithmetical pre-
dicate introduced by 8. Feferman. To this purpose we investigate the equational class
of Boolean algebras enriched with an operation g, which translates such predicate,

14

and an operation 7, which translates the usual predicate Theor. We deduce from the
identities of this cquational class some properties of p and some ties between g and
7; among these properties, let us point out a fixed-point theorem for a sufficiently
large class of g-r polynomials. The last part of this paper coneerns the duality theory
for p-r algebras.

Introduction

Recently, R. Magari and other authors have studied how some meta-
theorems of Peano arithmetic 2 (and in general of theories satisfying
some derivability conditions) can be expressed in algebraic terms. It has
been emphasized that many results depend only on three propertics of
the predicate Theor, which ean be written as identities of the Lindenbaum
algebra of 2 enriched with a unary operation t expressing Theor. Among
these results, let us point out the two Godel’s Theorems, Lob’s condition, !
the existence and nniquencess (up to provable equivalence) of the fixed-point
for formulas built (in a reasonable sense) from variables, Theor, and Boolean
connectives, also in the intuitionistic logic. The above-mentioned papers
provide us with relatively simple techniques in the part of the proof-theory
which is related to the Goédel’s theorems.

In this paper, we study, with the same techniques, the algebraization
of a predicate which has been introduced by 8. Feferman in [3], and is
similar, in a sense, to Rosser’s predicate. Namely, we define, in the Lin-
denbaum sentence algebra of 2, a unary operation g, which can be regar-
ded as an algebraic translation of Feferman’s predicate. Then, in paragraph
2, we study the equational class of Boolean algebras enriched with such
an operator p (the algebras of this class will be ecalled p-algebras); that
allows us to obtain an algebraic counterpart of Rosser’s theorem. In para-
graph 3 we consider the relations expressed by identities between the ope-
rations ¢ and 7 in the Lindenbaum sentence algebra of 2; these identities
define the equational class of p-v algebras. In paragraph 4 we discuss
both the problem of introducing an operator with the property of o into
a diagonalizable algebra, and that of introducing an operation with the
propertics of v into a g-algebra. In this way we translate the logie problem

1 y'j’(ﬁ)—~.\,’21(j1(1_))) for every sentence p of 2.
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of building a “Theor predicate” starting from a “Rosser predicate” (see
the sequel for the definitions) and the inverse problem. Then (n. 5), we
prove a fixed-point theorem in every g-v algebra for a sufficiently large
class of g-v polynomials. Finally, we characterize the dual space of a Boolean
algebra enriched with the operations ¢ and 7. With regard to the last
problem, we recall that § = vov and ¢ =»7»? are hemimorphisms in the
sense of P. R. Halmos, [5], and hence they are associated with Boolean
relations defined in the dual space.

For the sake of simplicity, we always refer to Peano arithmetic 2,
although there exists a large class of theories for which the some results
can be obtained: for instance, all these theories in which £ is relatively
interpretable.

1. Preliminary notes

We say that a formula T (@) of 2, with just one frec variable x, is a Theor
predicate if the set {p: i-g.T (P)} is exactly the set of theorems of #, and
if, for every two propositions p, ¢ of 2, we have: a) t, [T(ﬁ)/\i’(p»q)]
T () and b) l-yT(T))—J"(T (p)). From a) and b), by diagonalization
Lemma, we obtain both Loéb’s theorem and its formalization: F,T(T (p)
—>p)—>T (p). Moreover, let us note that, as a particular case of Lob’s theo-
rem, we have the second theorem of Godel, that is: not +zCong, where
Cong is the sentence 2 Vz ] [T(@)A T} 2)].

On the other hand, we shall say that R(m) is a Rosser predicate, if the
set {p: I-Q.R(ﬁ)} is the set of theorems of 2, and FzCong. In order to obtain
an algebraization of Rosser’s theorem, we have to define in the Linden-
baum algebra of 2 an operation p associated with a Rosser predicate
R (w) as follows: o[p] = fi’(ﬁ)], where, for every sentence of 2, {p] deno-
tes the equivalence class of p with respect to provable equivalence. Since
the above definition is unambiguous, ¢[p] must depend only on [pJand

not on p. In other words, a necessary condition is: if Fzp<g, then FgzR(p)
—R(g). On the ground of this remark, it is useful to consider the Fefer-
man’s predicate F(x) (sce [3]3), which can be informally defined in the
following way: let II(x) be a formula which binumerates “in a natural
way” the set 4 of axioms of 2, and let IT*(2) be the formula IT(2)AVy(y

* We use terminology aud notations of R. Magari (7], [8]. In particular, +, -, »,
denote respectively the operations of join, meet, complementation. With regard to
the representation of recursive and recursively enumerable relations in a theory, we
sometime refer to S. Feferman, [3]. For the sake of simplicity, we consider as Godel-
numbering of the sct of propositions of # a primitive recursive bijection between this
sot and the set of natural numbers.

3 In [3], this predicate is denoted by Prdf (z).
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< #—Con ) where Conp, expresses the consistency of the theory having
the set {pe A: p <y} as axiom system. Then, by definition, I"(a:) is
the formula which numerates “in a natural way” the set of theorems of
the theory whose axiom system is the set binumerated by the formula
IT*(x)*. Since 2 is reflexive, F(m) numerates in £ the set of theorems of
2; moreover, we have also FzCong, (see S. Feferman [3]). Hence F(m)
is & Rosser’s predicate. Then, one can prove l-ga[ﬁ.’(i))/\l’?'(p»q)]eiﬂ(a)
(see S. Feferman, [3]), and hence, for every propositions p, ¢ of 2, if
tep g, then by ()P (7).
Let us note that for F(x) Godel’s second theorem and Lob’s theorem

do not hold. Hence, we can conclude that for some sentences p of 2, F (D)
T (F( )) is not a theorem of 2.

s

2. The equational classes of p-algebras and of diagonalized p-algebras.

Taking the remarks of the preceding paragraph into account, we can
define in the Lindenbaum sentence algebra of 2 a unary operation p
as follows: g[p] = [F )] (In the sequel we shall omit square brackets).
The operation ¢ has the following properties

o 1) ol=1
e 2) e0=0
e 3) e(p—q) < op—o4

Let us note that, assuming e 1), ¢ 3) is equivalent to the following iden-
tity :

e 4) e(p-q) = op-oq

(See G. Sambin, [13]). Now, we call p algebra every Boolean algebra with
a4 unary operation ¢ which satisfies ¢ 1), o 2), ¢ 3) or, equivalently,
o 1), o 2), o 4). Then, the p algebras constitute an equational class.
Let us note that, by diagonalization Lemma, for every polynomial ¥ {x)
in which « appears under the scope of g, there exists, in the p-algebra of
2, at least a p,; such that p, = Fp,. Hence, it is suitable to consider also
the equational class obtained from the one of g algebras by adding, for
every polynomial f(z) with x under the scope of g, a 0-adic operation
?s and the identity p, = I'p;. We call the algebras of this equational class
diagonalized p -algebras. Now, we have the following algebraization of

Rosser’s theorem:

4 The words “in a natural way” as well as many others informal definitions we
give, can be made precise (see for instance S. Feferman, [3]).
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THEOREM 1. In every non-trivial diagonalized o -algebra, there is
a p such that 0 < p < 1.

PrOOF. Let p be an element of a non-trivial ¢ -algebra such that
p = vop. Then, from p = 0 it follows that 0 = »p0 = »0 = 1, and from
p =1 it follows fhat 1 = »pl = »1 = 0; hence p #0,p # 1. Q.E.D.

Moreover, it can be of some interest to compare §,, the free diagona-
lizable algebra on the empty set, which can be regarded as the algebra
built from the (equivalence class of the) well-known Gddel formula, and
the p algebra £, freely generated by an element which represents the
undecidable formula suggested by Feferman, namely a p such that p =
= vop°. In the former algebra, the elements 0,70 ..... 7"0 ... and their
complements constitute two chains (ordered by <) with the order type
of w and — o respectively. In the latter algebra, the elements p, op .....
o"p ... and their complements constitute two chains with the order type
of Z. Namely, we have: ¢*"p < o™p < vo™ 'p < 9™ *'p, and hence
"l < o™ p < v p < v Pp for every natural number n  different
from 0. -In faet, from g 2) and p 4) it follows that o»r < vere, and hence
%p < vovep = vop, 1. e. ¢®p < vpp = p. Since p 18 a non-decreasing fun-
ction, by the last relation, we have ¢°"**p < o*'p < p, and ™ 'p < o™ 'p
< pp, hence the statement easily follows. Let us also note that, for every
natural number n different from 0, o ™p # ¢"p, o™ T'p # o**'p and
o"p # 0. Indeed, in the opposite case, the equality o***ip = o*"p (ve-
spectively o"*lp = o***!p or o"p = 0) would follow from the identities
of ¢ algebras and from the identity p = »pp; hence, it would hold in
cevery ¢ algebra containing a p such that p = »gp. But, in paragraph ¢,
we shall show this is not the case (see example b). Finally, let us note
that in §, every polynomial f(2) with 2 under the scope of 7 has a fixed
point, whereas in # there are polynomials f(x) with x under the scope
of ¢ which have no fixed point. To prove this, by the above argument,
it suffices to exhibit a g algebra ./ with a p such that p = »o p and a po-
Iynomial f(x) with & under the scope of g, which has no fixed point in 7.
To this purpose, let us consider the algebra « = < {0,1, p,vp}, +,
-y v, 0 where op = vp, ovp = p. It can casily be seen that ve’r admits
no fixed point in this algebra.

REMARK. One can also consider the cquational class obtained from
that of p-algebras by adding, for every polynomial f(z, y,...y) with &
under the scope of p, an n-ary operation x(y ... y) and the identity 2(y ... ¥)
= f(x(y ... ¥)y ... y). In this way, we should have a stronger algebraic
counterpart of diagonalization lemma.

5 Strictly speaking, & is the frec algebra on the empty set in the equational class
which is obtained from the one of g-algebras by adding a new O-adic operation p and
the identity p = vop.
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3. The equational class of p-r algebras

Now, we study the identitics which emphasize ties between the opera-
tion g and 7 defined in the Lindenbaum sentence algebra of Peano arith-
metic. To this purpose, it is suitable to consider some relations between

the formulas T'(») and F(z). First, wo have the following preliminary
lemmas:

Levma 1 (Essentially due to S. Feferman). If p is probably equi-
valent to an RE- formula, then F;p—F (p).

Proof. Let ¢ be an RE-formula such that Fep«sq, and let Prg, ()
be the formula which numerates ”in a natural way?” the set of theoreins
of Robinson arithmetic. It is known that Faq—>Prig(q) (see S. Feferman,
[3]). Moreover, if n = max {i: ¢ is a Gidel number of an axiom of Robin-
SON. arithmet;&c}, we have tpCong,, and hence I-Q.Vuv_[g’rw] (x)—»F ()],
and  Faq—>F (7). But, since Fpq—p, we have FuF (P)F (7) and thus we
conclude i-g,p—J"(ﬁ). Q.E.D.

COROLLARY 1. I-;.T(ﬁ)»lﬁ(i'(ﬁ)), for every p € 2.

Proor. Obvious, since T (P) is provably equivalent to an RE — for-
mula.

LeMMmA 2. (Essentially due to S. Feferman). For every p 2, we
have:

(a)  Fa[ComgnT(P)]-F(B) and (b) FsF(p)—~T(P)

Proor. (a) From FzCong—Va Cong,,, it follows that
FpCongy—>Va [I1(x)—IT"(x)], whence we deduce
FpCony—>Va [T (a;)—>F(m)] from which the first part of the claim easily
follows

(b) We have successively FaVu[II*(2)—I1(z)], FoVa [F ()T (2)]
and }-gﬁl‘@)—>T(ﬁ) for every sentence p € . Q.E.D.

By the above lemmas, the operations ¢ and 7 defined in the Linden-
baum sentence algebra of 2 satisfy the following identities:

-t 1): 0T < T
o-T 2): 7470 < o

-7 3): ™ < pIx
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Moreover, p satisfies ¢ 1), ¢ 2), o 3) and t satisfies the identities

1) 1l =1
2) t(xy) = tw-TY
3) T(tv—>2) = ™

(See R. Magari, [8])°.

These remarks lead us to consider the equational class of Boolean
algebras enriched with two unary operations, ¢ and 7, satisfying the above
identities. We call these algebras p-v algebras.

THEOREM 2. In every g-t algebra the following properties hold:

a) @ = p+10’

b) If ¢ > 10, then o = o
c) o(tr—x) = px

d) e(vr0) =0

Proor. a). From gz < 7z and 10 < &, we have tx > px+ 70. More-
over, from p-7 2) it follows that tz-»10410 < px 4 »70, and hence =z
< gx+10. Then 7w = pr-+10.

b). Suppose x> 10. From p-73) we get 70 < 70, and consequently
ox > ¢70 > 70. Recalling "a), we conclude that =z = gz +70 = g.

¢). Obviously, o(rr—2) > eorx; it suffices to prove g(rz—2)< ox,
or, equivalently, vp(tz—a)+ox = 1. First, we have vo(rx—x)+ ox = vr (T
—x)+ o = vtx + px. Moreover, po(wx—2) << p@—pxr = v120+- ox. Thus,
vo{10—0) + 02 = T:w-vox+ o = 1iw, S0 Yo(WW—T)+ 0% = vrxr + o+ i
= 1.

d). The identity d) can be obtained from d) taking » = 0. Q.E.D.

REMARK. We note that from d) it follows that FzCon,. —Con
and hence one gets Theorem 5. 11 of S. Feferman’s [3]%.

COROLLARY 2. The p-v algebra R,, freely generated on the emptly set,
s the Boolean algebra generated by 10, v*0 ... 7"0 ..., where T is defined
as in &, (see R. Magari [8)), and ¢ 45 defined by: gz = 0 if x < v10; gz =
w if = 10.

ProoF. The clements of &, are the Boolean combinations of <0,
7°0...7"0 ... and, for every z € &,, # = 10, or # < »10 (Seec R. Magari,
[8]). Hence, the claim casily follows from Theorem 2. Q.E.D.

6§ We learn from a recent communication that #£. Soloway has shown that all
the identities which hold in the diagonalizable algebra of 2 are consequences of 71),
T 2), 13).

7 It can casily, be secn that the identity a) is equivalent to g- 1) and g- 2), (assu-
ming the others identities), and hence these two identities can be replaced by a).

8 I.t is also known that FuCongpy  CoONryiconyp Hence, there exist two for-
mulas T’ (z) and I’ (z) both of which binumerate in 22U {7] Cong} this theory, and
for which we have: }-gv{jconT}"] Con,, and I‘y’v{_l(jgnT}CO'nF'
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4. The problems of introducing an operation with the properties of o in
any diagonalizable algebra and, conversely, an operation with the pro-
perties of 7 in any o algebra.

In the first part of this paragraph we try to extend any diagonalizable
algebra to a g-v algebra, by defining a polynomial (or, eventually, an alge-
braic function) f(x), if it is pessible with z under the scope of 7, which has
the same properties as g. Let us observe that, if this were possible, then
we should be able to construct a Rosser predicate starting from a Theor
predicate in a very simple way. Unfortunately, we can not hope to satisfy
the requirement that » appear in f(x) under the scope of 7. In fact, such
a pol'ynomia.l (vespectively: algebraie function) f(x) must have at least
two fixed points, 0 and 1, in every diagonalizable algebra: but this is
in contradiction with the uniqueness theorem of C. Bernardi [2] and G.
Sambin [13]. Nevertheless, if we remove the requirement that x appear
in f(z) under the scope of z, the problem is solvable in every diagonali-
zable algebra, as is proved in the following theorem.

THEOREM 3. Let o be a diagonalizable algebra. Then < can be extended
to a o-t algebra if a new operation f(x) is defined as follows: f(x) = rw(x+
+v10). Moreover, if g(@) is another operation having the same properties as

0, we have f(x) = g(x) for every & = 10 and for every x < vr0.

Proor. It is easily seen that the identities p 1), o 2), ¢ 4) (and hence
g 3)), -1 1), o-t 2), ¢-t 3) are satisfied by f(x), whence we get the first
part of Theorem 3. Now, let g(z) be another operation which satisfies
the above identities. Then, by parts b) and d) of Theorem 2, if = 0, f(x)
=g(x) =, if e<v0 f(x) =¢g(x) =0 Q.E.D.

COROLLARY 3. For every m of R,, or = tr(rr0 -+ ).

ProoF. Obvious, since, for every x €‘R,, either &= 10 or & < »10.
Q.E.D.

REMARK 1. Let us observe that, taking F (&) = »fyf(2), we obtain
in R, (and hence also in §,) the characteristic function for the filter gene-
rated by 70. Namely, F(x) = 1 if @ > 0, F(2) = 0 if & < v10.

REMARK 2. In the p-t algebra of £, the polynomial f(a) is not iden-
tical to gx. In fact vo(x) has at least a fixed-point in the p-ralgebra of 2, where
vf(x) has no fixed-point in a non trivial diagonalizable algebra; indeed,
from p = »fp = vrp +vp-10, it would follow vp-70 = 0, whenee p = »v1p
and p = »10; but this would imply »10 = v20-+70-70 = 1, which is
u contradiction because, by the second theorem of Godel, in every non tri-
vial diagonalizable algebra, »10 3 1.

Now, we investigate the opposite problem of extending any algebra
to a g-t algebra by defining in it an algebraic function f(#), if it is possible
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with » under the scope of o, with the same properties as those of 7, In
this way, we translate the logic problem of constructing a Theor predicate
starting from a predicate analogous to Feferman’s predicate. Let us start
with the following definitions: '

DurinrTION 1. Let f(r) be an algebraie function with » under the
scope of p in a p algebra . We say that f(x) numerates in of the set {p € o :
f(p) =1} .

In the p algehra of 2, such an algebraic function f(x) is asgociated
with a predicate F(r) with exactly one free variable, and f(x) numecrates
the set of the equivalence classes of propositions p such that F,F (p)

DEFINITION 2. Every p algebra o such that, for every n-tuple p, ...
... p, of elements of &/, we have pp,+ ... +op, = 1 iff there exists a.
least an i <<n such that p, =1 is called w — consistent (+). Alsot-
every o-t algebra £ such that, for every n-tuple ¢, ... ¢, of clements of 4,
we have rqq+ ... +1q, = 1 iff there exists at least an ¢ << » such that,
g, = 1 is called &» — consistent (+ +). :

Let us note that, sinece ga < 2, condition ( + +) implies condition ( 4-)
in every p-t algebra. Morcover, if 2 is w-consistent, then both the o-alge-
bra and the g-t algebra of 2 are w-consistent. ,

Because of the eonnections with the above logical problem, we require,s
for m-consistent p-algebras, that the algebraie funection f(r) with the pro-
perties of 7 satisfy also the following condition: 74) f(r) numerates {1}.

With regard to the p algebra of 2, condition 7 4) corresponds to the
requirement that the predicate F(x) associated with f(z) numerate the
set of theorems of 2. Moreover, in the o algebra of 2, the problem is sol-
ved on taking fe = or - 10. This fact leads to scarch in every p-algebra o,

for some element p such that the algebraic function ox+ p satisfies iden-
tities v 1), v 2), 7 3), p-T 1), 0-7 2), o-7 3) and eventually condition t 4).
Let us note that, on taking p = 1, pw+p satisfies the above identities,
but not condition 7 4); on the other hand, there are ¢ algebras in which the
only p such that px 4 p verifics the above identities is 1. Clearly, this case
ix not of interest for our purposes.

The properties of the set of all such clements p are described in the
following theorem:

THREOREM 6. Let o/ be a o algebra, and let P = {p e o: pr+p sa-
tisfies 71), 72), 3), o-1l), 0-12), 0-13)}. Then, P is closed under the opera-
tion -. Moreover, if F s the filter gencrated by P, oF < P. Finally, if o
is om-consistent and p e P, p # 1, or+p satisfies also condition ti).

Proor. Let p, and p, be clements of . It is casily seen that the alge-
braic function g(x) = o2 + p,p, satisties t1), 72), p-7l), g-72). Let us prove
that g(x) satisfies p-13), that s g(x) < og(#), or cquivalently, oz +p,p,
o(ox 4+ p,p.). By our hypothesis, or+p; < o(or+p;) (¢ =1, 2), and henee
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(0w +p,) (0B +p2) < o(0x+p,)-0(02 +p,), from which the claim easily
follows. Let us prove v 3), that is g(g(x)—=x) = g(x). This equality is
equivalent to the following conditions: a) g(z) < gg(x) and b) if x> g(»),
then 2 = 1 (See R. Magari, [9]). Condition a) is an obvious consequence
of p-13); now, let x be an element of & such that » = oz 4 p,p,. We have
@ 2= (px+ 1) (0@ + pg), and hence ¥+ vox-vp, = px+p,. From this, by
property e¢) of theorem 2), we deduce pr = g(v(ox+p, +x) = o(vox-vp,
+) > o(or+py), Whence o+, > 00 +p,) + s, and oz +p, = 1, since
2. € P and condition b) holds for gx +p,. So, ox = vp,, and © = o+ p,p.
= o+ 1Py + PP, = 0B +¥Py+p, = pr+p,. Therefore, x =1, because
p, eP.

Now, let ¢ be an clement of F. Then, therc exists a p € P such that
g = p, and hence pg = pp. Since gx+p satisfies p-t3), we have g0+ p
< o(00+p), that is p < pp, whenee gg = op = p. Let us set g(z) = g2+
+ oq. Then, it is easily seen that g(=) satisfies 71), 72), ¢-71), 0-72). Moreo-
ver, from the formalization of Lob’s theorem, for ox -+ p, it follows that
o(vow-vp +a)+p = pr+p, whence o(vow-voq+2)+ oq < e(vor-vp+)+
+p+0g = o+ pg, that is 13). So, we have oz + g < o054+ 0q) + 0g
(that is condition a) for px + pgq). Moreover, from p-73) for oz + p, it follows
that pg < 0g+p < o(eg+p) = 0*¢ (since p<pg), whence pg< o*¢
< o(eq+w). Therefore, ox+ oq < o(or+ 09)+ 09 = e(eq+ om).

Finally, let us note that if & is w-consistent, p € P, p # 1, then gz -+
+p < or+ op. Thus, if px+p =1, then or+ep = 1, and hence, since
&7 18 w-comnsistent and p # 1, z = 1. Q.E.D.

5. The fixed point problem in -7 algebras.

We recall that, in the equational class of diagonalizable algebras,
the following fixed-point theorem holds: every polynomial f(z) with »
under the scope of v admits a fixed point in every diagonalizable algebra.
Furthermore, this fixed-point is unique. We can formulate the first part
of this statement for p-v algebras as follows: every polynomial f(x)with
a under the scope of p or of v admits a fixed-point in every p-t algebra.
Nevertheless this statement can be strongly disproved, in the sense that
it fails not only in the equational class of g-7 algebras, but also in every
cquational class contained in it. Indeed, let us consider the algebra & =
= ({0,1}, +,-,v, 0, 7> where obviously 00 =0, ¢l =120 =71 =1.
& is not only a p-t algebra, but it belongs to every equational class con-
tained in it °.

% To prove this, let ¥* be such an equational class, and o/* be a non trivial algebra
in ¥*. Then, denote by I the filter generated by t0, and by ~ the relation defined
as follows: x ~ y iff x>y € F. It is easily scen that this relation is a congruence rela-
tion. Moreover, since 70 = 0 by Gidel's second theorem, I is a proper subset of &*,
whenee &/*/~ is a non trivial algebra of 7* where g0 = 0, 70 = pl =71 = 1; we
oan conclude that & is a subalgcbra of &%/~ and consequently an algebra of V*.



230 Franco Monlagna

It is casily seen that in this algebra the polynomial »px has no fixed-
-point, whence the statement immediately follows.

In this paragraph we shall investigate some classes which admit a fi-
xed-point in every p-t algebra. First, let us note that a large class of poly-
nomials admits 0 (respectively: 1) as a fixed-point. We denote these classes
by 0 and 1, respectively. The following facts are casily proved:

(1) The identical polynomial and px are both in 0 and in 1.

(2) o is in 1.

3) If gx is an arbitrary polynomial and f(x) is tn O (respectively: in 1)
then f{x)-g(x) is in O (respectively: f(a;)—}-g( ) is in 1)

) If f(= and g(x) are in 0 (respectively: in 1), then f(x)+g(x) is in
0 (1espectively f(@)-g(z) 18 in 1).

(8) If f(x) and g(x) are in O (respectively: in 1), then f(g(x)) is in O (res-

pectwely wmn 1).

6) For every polynomial g(x), g(x) s in O iff vgvx is in 1.
) If f(z) is in 0N1, then vf(x) has no fived-point in the algebra of =

={{0,1}, +, 7,0, 7).

(8) If f(z) is a p polynomial, then f(x) or vf(x) is in 0 and f(x) or vf(x)
s m 1.

B
(

Moreover, we have:

THEOREM 7. The following classes of polynomials have a wunique fi-
xed-point in every o-tv algebra:

a) The class of o-t polynomials f(x) with © under the scope of o
or of =, such that f(x) = g(x)+ 10 for some g(x).

b) The class of o-T polynomials f(x) with « under the scope of o
or of T, such that f(x) = g(x)-vz0 for some g( )-

Further, this fixed-point is an element of R,.

Proor. First, let us prove the existence of such a fixed-point. Assume
f(x) is in the class a). Let p be a fixed-point of f(x) in the p-v algebra of
Peano arithmetic (which ecxists by diagonalization lemma). Clearly,
p = fp = 70 in this algebra. Now let » be the number of occurrences
of ¢ in f and let gk, (x) be a subpolynomial of f(x) such that ¢ does not occur
in h,(x). By induction on the structure of A, (z), 1t is casily seen that either
hi(p) =10 or hy(p) < »10; in the case, ¢ hyp = 7h;p, in the other one,
oh,p = 0. By replacing ghlm with zh,x (respectively: with 0) in (fx),
we obtain a polynomial f,(#) with n —1 occurrences of g, such that p = f,p
= fp. By repeating this procedure » times, we obtain a polynomial f*(z)
with 2 under the scope of v and without an occurrence of g, such that
p = f*p = fp. By the theorems about existence and uniqueness of a fi-
xed-point in diagonalizable algebras (see C. Bernardi, [1], [2] and G. Sam-
bin, [13]) p is in R, and hence in cvery g-t algebra. Moreover, let us note
that p and fp are elements of Ry, and R, is a subalgebra of the o-7 alge-
bra of 2. So, since in such algebra p = fp, this identity holds also in
R,, and hence in every p-z algebra.
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Assume that f(x) belongs to the class b). Let p the fixed-point of f(x)
in the g-v algebra of 2. We have p = f(p) < »z0, hence, proceeding as
above, we find a polynomial f*(z) with z under the scope of r such that
p = f*p = fp. Then, an argument analogous to the one above allows
us to conclude that p is in every g-v algebra and p = fp in every g-v al-
gebra.

Finally, we must prove that the fixed-point is unique. Let us observe
that the construction of f*(x) does not depend on p but only on f(z). Moreover,
if p is a fixed-point for f( ) then, by the above arguments, p = f*p = fp,
so p is also a fixed-point for f*(z). Therefore p is unique, by the uniqueness
theorems of fixed-point in diagonalizable algebras (see C. Bernardi,
[2]; and G. Sambin, [13]). Q.E.D.

COROLLARY 4. If f(x) is a polynomial with x under the scope of T
then f(x) admits a unique fwed-pomt in every o-t algebra.

Proor. By theorem 7 it sufficies to show that either for every x, f(x)

> 70 (whence f(x) = f(x)+ 10) or, for every », f(x) < »70, (that is, f(x)
= f(x)-v»70). Since x appears in f(xr) under the scope of 7, there exist
a pol) nomial k(x, ... 2,) and » polynomials f,(x), ... f,(z) which begin
with a 7, such that f(z) = h(f,(®) ... f(®)).

Now, let us prove the claim by induction on the structure of k. Obvio-
usly, f;(®) =10 (¢« =1...n). If hy(2) and hy(») arc both > 70, then also
hi(z) -hy(x) = 70; if hl( )<m—0 or hy(x) < »10, then h,(z)- h 2 (@) < v70;
further, if k(x) > 70 (respectively: k(x) < »70), then »k(2) < »10 (respec-
tively vk(x) > v0). Finally, if k(x) = 10, ok(x) = vhe > 70, and, if k(x)
< »70, then ok(z) = 0<»10. Q.E.D.

6. Duality theory for o-7 algebras

We recall that, if o is a g-v algebra, then § = vpv and ¢ = yv are
hemimorphisms from & to &, in the sense of P. R. Halmos, [5], that is,
¢ and ¢ arc mappings from & to o such that g0 =0, g(z+y) = 5(»)+
+5(y); 60 =0, 0(x+y) =oc(@)+0o(y) (,y € «.) Hence, they are asso-
ciated with binary relations, >, and >,, in the dual space AN of of (see
P. R. Halmos, [5]). In order to simplify our notation, let us, consider
the inverse relations, <, and <,; they are defined by xz <,y iff oz <y
and x < y iff gv < y'! for every z,y € o. Moreover, we have, for every
clopen subset X of o X ={re Z:AyeX:y <, %} and oX = {we
o dy € X:y <, #}. In the sequel, by “relation associated with o” (res-
pectively: with 7), we shall mean the above defined relation <, (respecti-

10 The dual space of « is the pair (.m:, 7%, where T is a suitable topology on /.
However, we shall often identify such dual space with the set o/,

11 Here, o is the set of all ultrafilters of «; hence x,y denote ultrafilters of
<, and gx, ox are the sets {gp : p e z} and {op: p € x} respectively.
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vely: <,). Con\"ersely, by ”operation associated with <, (respectively:
<,)7, we shall mean the operation ¢ = »gv (respectively: v = vov), where
g and o are defined as above. Finally, we recall that the relation <, is
trangitive and relatively founded (see R. Magari, [9]). In the following
- theorem, we characterize the properties of <, and the ties between <, and

<-

THEOREM 8. Let of be a Boolean algebra with two wunary operations,
o and v, such that § = vov and o == vty are hemimorphisms. Then < is
a o-t algebra iff all the followmg conditions are satisfied:

(1) <, 18 ltransitive and relatively founded

(2) <, 18 not founded, and, fm every ¥ e .d there is a y ¢ o such
that y <,

- (3) <, € <,y and <Q—<,'§10xw, that s, if © <,y but x L.y,

then x,y €10.

Proor. Let o be a p-t algebra; then (1) has been proved by R. Ma-
gari in [9]. Morcover, from 00 = 0 it follows that §1 = 1, that is {z:Jy:
Y < r} = ,o/, and hence condition (2). Now, suppose ¢ <,y; then ox < ¥,
and hence, for every X e, X € y'2 But, from pX < tX it follows that
cX < g4, and we obtain gX ey since y is a filter. Therefore gr < y,
and we can conclude that x <,y. In order to prove the second part of
(3) it is usetul to establish the following result:

LeyyA 3. For every x,y,ze o, if x<,y,¥y<,2, then &<, 3. In
particular, if x €0,y € v10, then y £, 2.

Proor or Levmma 3. If 2 <.y,y <,z, then, by the definition of
<, and <,, we have or < y and gy = z. Then, it suffices to show ox < 2,
that is, for every X e x, X € 2. Now let X be an clement of #; since o € ¥,
cX ey, and since gy < z, p0X €2 But 7X < orX implies joX < oX,
and then ¢X € z; because 2 is a filter. Moreover, if x € 70 = vol, and y € »70
= ¢l, then, for every z e .sz/, z 4,2, whereas there exists a z such that
z <2, y. Then, y <, would imply, by the first part of Lomma 3), 2 <.z,
a contradiction. This completes the proof of Lemma 3).

Let us return to the proof of theorem 8. Suppose © <,y, x «,y. Then,
there is an X e such that X ey, but oX ¢ y. But from 7.¥ = pX + 70
it follows that ¢X = gX 01, and hence o1 ¢ y (indeed, if this is not the
case, 0X = X -0l €y, since y is a filter. So, vol = 70 € y, because y is
an ultrafilter, and ¥ € v0; since & <,y, we also have x € 70, by the second
part of Lemma 3).

Conversely, let us assume that the relations <, and <,, associated
with p and 7 respectively, satisfy (1), (2), (3). It is known that r satisfies

<

12 In the sequel we identify every element p € .o/ with the set X of all xe P
such that p € . In this sense, we shall say indifferently v € X or X e .
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1), 12), 13) (see R. Magari, [9]). Moreover, pl) and p3) directly follow
from the fact that »gv is @ hemimorphism. We have also g1 = {#: Iy € .sa?,
y <,o} = A (by (2)), that is 1 = 1, and hence p0 = 0. Furthermore,
80X ={z: yeX: y<, o} 2 {o: IyeX: y <.w}, since <, < <,, and
hence ¢X > oX, which implies ¢X < vX. Now, let us prove p-72), that
is 06X +wvol > §X; this is equivalent to §X-voX < vol. Assume z eglX,
@ ¢ 0X; then, there is a y € X such that y <,z and y «,x. But, by (3),
it follows z, ¥y € ¥0 = vol. Thus, we have X -voX < vol.

Finally, let us prove ¢-v3), that is goX < oX. If v € goX = {u: 3y
€oX: y<,u} ={u: Jydz: € X, 2 <,y <,y and y <,u}, then there exists
a z€ X and a y such that 2z <,y and y <,#. Now, we have also y <.z,
because otherwise, by (3), #, ¥ € 70, which is in contradiction with z <, .
Since <, is transitive, 2 <.z, and v e s X. Q.E.D.-

REMARK. Generally, relations <, and <, which induce the operations
o and 7 arc not unique. The conditions (1) and (3) of theorem 8 are neces-
sary only in the case when the relations <, and <, are defined in the stan-
dard way!3. As known there are relations <, and <, defined in the dual

space o of &, which induce the operations g and 7, but do not satisfy
(1) and (3). In [9], R. Magari presents a counterexample to (1).

To give a counterexample to (3), let us consider the set w +1 in which
2t topology 1s defined by taking as clopen sets all finite subsets of w and their
complements in w41. Define » <ly iff s <y or ¢ =¥ = {0} and @ <}y
iff s<yore =y =0,(r,ycw+l). It is easily seen that the dual
algebra of this space is R,; in fact, the dual space of R, is the topolo-
gical space defined above, <, = <}, and <} < <,and <,— < = {{}, {0}).
Thus, for every clopen set X, we have pX < o*X (where p* and ¢ are the
operations associated with < and <, respectively), and "X —oX <
< {{o}}. Since {{w}} is not clopen, whereas ¢*X — X is, we conclude
0" X = oX; moreover, vX = *X. Hence, the dual algebra is the -7
algebra R,, but <} and <} do not satisfy (2), because ({w}, {w}> €
<i— <j. If, however, in the dual space of &, every point is a clo-
pen set, then every pair of relations <,, <, which induce the ope-
rations g and =, satisfy (1), (2), (3). The part of the statement concerning
(1) has been proved by R. Magari, [9]; (2) can be obtained exactly as in
Theorem 8. Now, let us prove (3); suppose ¢ <,y. Then y € o{z}, but
ofr} < g{zr}, whence yegfr} = {u: Iz e {&}: z <, u} = {u: v <,u}. So
we have x <,y and <, = <,. Now, let us assume z <,y and « <«,y. From
this it follows that y e 5{a}, v ¢ o{x}. But from oX = gX -0l we obtuin
o{r} = g{x}-0l, whence y ¢ o1, and, consequently, y € 0. Now, supposc,
contrary to our claim, # € vv0 = ol. Then, there exists o #z such that 2z <, 2,

13 That is, they ere defined by @ <,y iff oz = y, and « <,y iff 5x < y.
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whence x € o{2} and y € go{e}. But go{e} < o{e}; it would follow that
y € {2}, 2 <.y and y €»10, which is a contradiction.

We conclude this paragraph by giving two examples of p-7 algebras,
defined by their dual spaces:

~a) Let Z be the set of integers, and Z* be the topological space < Z,
P(Z)). Let o be the set of natural numbers, — w the set of negative inte-
gers, < the usual ordering on Z.

Let us define two relations <, and <, as follows:
s<,yiff xre —w and yew or v,yecw and y< y
w<,yiff <,y ora,ye—-—w,y=2+1
Since <, and <, satisfy conditions (1), (2), (3) of theorem 8, the dual alge-
bra is a g-tv algebra. Moreover, we have
—wif X —ow
vre<puy: y¢eXy if Xo —o
Xif X2 —o
oX = :
—on{z+l: 2eX}if X —o

ox - |

It is easily seen that the sets P = wu{—2n: n € w} and P’ = wu{—
—2n—1: n ew} are such that P = »pP, P’ = voP’. Moreover, the sets
P, =owul{&: —(2m+2)n < v <~—(2m+1)n}are such that »o"P, = P,,.

mew
b) Let Z* be the topological space of example a). Define <, as in
a) and <, as follows:

z<,yiffwx <,yorx,ye —wandy =x+4+lorx =y = —2"forsomen > 0.

Since <, and <, satisfy conditions (1), (2), (3) of theorem 8, the dual
algebra is a g-7 algebra. Moreover, v is defined as in &) and

X X> ~w
- enfo+l: e X}]—{—2" —2"¢X,n>0} if X —ow

It P, = {&: # < —2"} for some » > 0, we have oP, = P,. Hence, the
polynomial pX has infinitely many fixed-points in the algebra. Moreover,
if P =wu{—2n: new}, we have P = »oP, and ¢**P < ¢™P, o' P
<™ 'P, N ™P = () ™ 'P =0, o"P #0. Thus, the elements

new-—-0 new—¢
o"P and their complements constitute two chains ordered by <, both
isomorphic to Z (sec paragraph 2)).

oX

Open Problems

1. In the p-v algebra 2* of 2, is there a unique p such that p = vop?
In other words, is it true that if Fyp e FF(P) Feqo  F(Q) then bup —q?
Let us note that in the algebra a) of paragraph 6) there are at least two
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clements P and P’ such that P = »pP and P’ = »oP’; hence an eventual
uniqueness theorem cannot be obtained from the identities of -7 algebras.

2. Is it truc-that in the o-v algebra #* of 2, if pp — p, then either

P =0 or p = 1% In other words, is it true that if F,p oF (p) then either

Fop or ;7 p? Also this property does not follow from the identities

of p-7 algebras since in the algebra b) of paragraph 5 the polynomial gz

admits infinitely many fixed-points. Moreover, an analogous of Léb’s

theorem, that is: if gp < p, then either p = 0 or p = 1, does not hold
in the g-7 algebra of 2. Indeed, pv10 = 0 < »70, but 0 < 70 < 1.

3. Find new identities (or prove that it is not possible) which hold
in the g-v algebra #* of 2, but do not follow from the identities of o-v
algebras.

4. Find minimal conditions for a g-v algebra to have at least a fixed-po-
int for every polynomial f(x) with # under the scope of ¢ or of 7. As it
has been shown, such conditions can not be completely expressed by iden-
tities.

5. Is the set of identities of g-tv algebras decidable?

6. Study the properties of the set P of elements of #* such that,
assuming 7,(2) = ox+p, ¢ and 7, satisfy the identities of o-v algebras.
By the results of paragraph 4, if p > 70, then gp € P. Hence 70, 7°0 ... "0
... are in P. One may expect that in P there are elements p < 70 and that
P does not have a least (with respect to <) element. Since P is closed with
respect to -, if this is the case there would be a decreasing chain ... p, .,
< P, < ... < 10 of elements of P, and hence a decreasing chain ... Tp, +1(az;)

< 15, (®) < ... < 7(w) of operations which are associated with arithmetical

predicate of theor. type.
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