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We consider the problem of finding ex (n; G), defined as the maximal number of edges an 
r-graph on n vertices can have that contains no subgraph isomorphic to G. We construct certain 
r-graphs G for which we find the coefficient z(G) of the asymptotic expansion ex(n; G)= 
=(~(G)+o(1))(n) as n--**. 

1. Basic definitions and notation 

Let V be a finite set and E be a family of  its r-tuples (r_~2). The pair (V, E)  
is said to be an r-graph with vertex set V and edge set E. Let if" denote the class o f  
all r-graphs. We will write V(G) and E(G), respectively, for the set of  vertices and 
edges o f  the graph G. Set further v(G)=IV(G)I and e(G)=IE(G)I. 

Let G, HE f#r. The r-graph G is a subgraph of  the r-graph H if  V(G)c= 
c= v ( n )  and E(G)c=g(H). If, in addition, E(G)= {aE E(n)la c= W} and V(G)= W, 
then G is a subgraph of  H spanned by the subset W of  the vertices. 

Let G, HEr#'. A map ~p: V(G)-*V(H) is a homomorphism from G to H 
if {vx, ..., v,}EE(G) implies {r . . . . .  <p(v,)}EE(H). The map q~ is called a mono- 
morphism i f  it is injective. I f  ~p is bijective and its inverse is a homomorphism, then 
it is an isomorphism. In this ease the r-graphs G and H are isomorphic (or, one of  
them is an isomorphic copy of  the other). In what follows we will not  make distinc- 
tion between isomorphic copies o f  an r-graph, provided this would not cause any 
confusion. 

We consider two binary relations on ~r: G-<H means that there is a ho- 
momorphism from G to H, and G ~ I t  means that there is a monomorphism from 
G to H. It  is easy to see that both of  these relations are transitive. 

The notions "subgraph" and "monomorphism of  r-graphs" are closely 
related: G<=H i f  and only if  G is isomorphic to a subgraph of  the r-graph H. The 
notion o f  "homomorphism of  r-graphs" is less traditional: G-<H i f  and only if  
identifying certain vertices of  G one can obtain an r-graph, isomorphic to a sub- 
graph of  H. In fact, one can identify only those vertices that are incident to distinct 
edges, for otherwise loops will turn up. 

Let  G be an r-graph with vertices v~ . . . . .  o n and edge set E. We denote by 
G(mx .. . . .  mn) the r-graph obtained from G by repeating every vertex v~ ( i=  1 . . . . .  n) 
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m, times. More precisely, G(mi . . . . .  m,) is the r-graph with vertex set X1U ... U X .  

where X1, ..., X, are paiwise disjoint sets, IXll =ml, and the set of edges is 

U Ail . . . . .  t,, 
{vix . . . . .  v i .  } s 1~ 

where A, . . . . .  , ={{xl . . . .  , x,}lxxEX,1 . . . . .  x, EX~.}. It is easy to see that H-<G if 
and only if there are numbers m~, ..., m, such that H<=G(m~ .. . . .  m,). It is also 
clear that G(ml . . . . .  m,)-<G for all m~ . . . . .  m,. 

An r-graph is complete if every r-tuple of its vertices is an edge. Kf, will de- 
note the complete r-graph on k vertices. An r-graph G is nonempty if E(G) is 
nonempty. 

A pair of  vertices of an r-graph is called covered if it has an edge containing 
these two vertices, it is called uncovered otherwise. An r-graph is covering if any 
pair of  its vertices is covered. Observe that if G is a covering r-graph, then every 
homomorphism from t7 to H is a monomorphism. 

The extension 17 of an r-graph H is the r-graph obtained from H by adding 
r - 2  new vertices and a new edge for each uncovered pair: the new edge is formed 
by the new vertices plus the pair. In this way, ( r - 2 ) l  new vertices and l new edges 
are added to H if there were l uncovered pairs in it. Clearly, for a covering r-graph 
17 one has /-7-< G if and only if H ~  17. 

A class of  r-graphs ~ r  is called hereditary (strongly hereditary) if 
G~_H (G-<H, respective/y) and H E ~  imply 17Eg. Let ~r and set 

Z ( d )  = {GE~'IVHE~r H ~ 17} 

= {17C IVHC r H-KS}. 

It is easy to see that Z(M) is hereditary and 2 (M)  is strongly hereditary. On the 
other hand, all hereditary (strongly hereditary) classes are of  this form. Indeed, it 
follows from the transitivity of the relations <= and -< that for every hereditary 
(strongly hereditary)class of r-graphs ~ '  one has ~ = Z ( f ~ , , g e f ) ( J f = 2 ( ~ x . g ) ,  
respectively). Observe that if every r-graph in .~r is covering, then Z(~r and 2 ( .~ )  
coincide. Moreover, it can be shown that any strongly hereditary class g of  r-graphs 
can be represented in the form g = Z ( M )  where ~r consists of covering 
r-graphs only. 

Below we will consider only those hereditary classes .z/f that contain, for all 
n, at least one r-graph on n vertices. This is equivalent to saying that the set ~r in 
the representation ~ = Z ( ~ r  (or . r162 consists of  nonempty r-graphs. 

A lot of discrete extremal problems can be reduced to this question: Find 
e,(G)=max {e(G)IGE.~, v(G)=n} where ~ is a hereditary class of  r-graphs. Let 
~r be a set of  r-graphs; the coe~cient of  saturation for this class is defined as the limit 

�9 = jime.(Z( ) r 

(it is well-known [8] that the expression after the lim sign does not increase as n-* ~). 
The case r = 2  is that of  the ordinary graphs. The usual terminology will 

be used for them: e.g., tree, forest, path, connected component, degree of a ver- 
tex, etc. 

When r=2 ,  the coefficient of saturation is given by a well-known theorem of 
Erd6s and Simonovits [6] (cf. Corollary 2.7 below). When r->3, there is only one 
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complete result: Bollob~s [1] found e, for the class of 3-graphs where no edge is 
contained in the symmetric difference of two others. In this paper we are going to 
find the coefficient of  saturation z((H}) for a number of r-graphs H (rg3).  We 
will write z(H),  Z ( H )  and ~(H) instead of z({H}), Z({H}), and ~({H}). 

Notice that the number of edges of the r-graph G(ml . . . .  , m,) is a homo- 
geneous polynomial of  degree r of  the variables ml, ..., mn. It will be convenient 
to consider this polynomial as an ordinary function of n real variables. In this way 
we assign to each r-graph G({vj . . . . .  v,}, E) its density function 

Fo(x~ ,  . . . ,  x . )  = z ~  r ! x ~ . . .  x~. 
~% ..... v 0 

(the convenience of the factor r! here will be clear later). The density of the r-graph 
G is defined as 

e(G) = max Fo(xx, ..., x,). 
xt+ ...xn=l 

This quantity has been considered in [6, 7, 9, 11]. The r-graph G is said to be dense 
if all of  its proper subgraphs G ' # G  satisfy the inequality 0(G')< e(G). 

We will need a number of results from [11]: 

Theorem 1.1. [11] Let d and ~ be families o f  nonempty r-graphs satisfying the con- 
dition VH6g~ 3G~M such that G-<H. Then z(M)<=z(~). 1 

Corollary 1.2 [11]. For any nonempty set d of  r-graphs 

(;) 2il'n en(~('~r = ~('~r I 

This shows that for a nondegenerate problem (i.e., when z (~r =0) e.(2(~')) = 
=e~(Z(~))(1 +o(1)) as n--* co. The speed of the convergence of e~(2(s4)) r 

to �9 ( ~ )  is given in 

Theorem 1.3 [111. I f  ,~ is a nonempty family of  r-graphs and n~r ,  then the following 
inequalities hold: 

e , ( 2 ( ~ ) ) r ! n - "  ~ ,(.~') ~ e . ( 2 ( ~  r ' I 

Theorem 1.4 [7, 11]. Every dense r-graph (7 is covering. | 

When r = 2  the covering graph has to be complete so Theorem 1.4 implies 
that the density of a graph equals the density of its largest complete subgraph. 
Clearly q(K~)=(k-1)/k and we have 

Corollary 1.5 [91. For a 2-graph G with k = m a x  {tIK~<=G} one has 0(G)= 
=(k-1) /k .  l 

Consequently, every strongly hereditary class with r = 2  is of  the form 
~(K~) for some k, i.e., it is the class of graphs with chromatic number less than 
k (k=2, 3, ...). 

Theorem 1.6 [11]. I f  d is a family of  nonempty r-graphs, then ~(~r o(G) 
where the supremum is taken over all dense r-graphs GC ~ ( ~ ) .  I 
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The theorem of ErdSs and Simonovits follows from Theorem 1.6 and Corol- 
lary 1.5 : 

Corollary 1.7 [6]. Let ~ be a set o f  nonempty 2-graphs and set k =max {t IKt~E ~(~r 
Then ~ ( ~ ) = ( k - 1 ) / k .  l 

For r ~ 3  not all covering r-graphs are complete and this is why it is hard 
to find z. 

L e t / 7  be the extension of the r-graph H. Then a covering r-graph belongs 
to 2(/7) if and only if it belongs to Z(H) .  Thus Theorems 1.4 and 1.6 imply 

Corollary 1.8. I f  the r-graph/7 is the extension of  the r-graph 1t, then z(/-7)=sup Q(G) 
where the supremum is taken over all dense r-graphs from the class Z(H) .  i 

2. The conjecture of Erd6s and S6s 

ErdSs and S6s (see [5]) have the following conjecture: 

Conjecture 2.1. I f  T is a tree or forest on k vertices (k=>2), then for all GEZ(T)  

e(G) < l ( k - 2 ) v ( G )  

If a graph T satisfies Conjecture 2.1, then all of its subgraphs T" with V(T' )  = 
= V(T) satisfy it. It is known (see [9J) that for a path on k vertices Conjecture 2.1 
is true. In this section we will prove Conjecture 2.1 for trees having a vertex adjacent 
to many leaves of the tree. Then we will get an equivalent form of the conjecture 
in terms of the density function of  the graph. These results will be used in Section 3. 

I f  a vertex of  a tree T with v ( T ) = k  is adjacent to l_->21--(k-2) leaves, Theorem 2.2. 

then T satisfies Conjecture 2.1. 

Proof by induction on 1 (with k fixed). The first step l = k - 1  of the induction is 
" 1  

because e(G)> 2 ( k -2 ) v (G)  implies that some vertex of G has degree k - 1  trivial 

at least. We use backward induction from l+1 to l ( / < k - l ) .  Consider a tree T 
with a vertex x adjacent to l leaves. As l < k - 1 ,  there is a leaf not adjacent to x. 
Let y be a vertex, different from x and adjacent to the leaf z. Delete edge zy and 
add edge zx. The tree obtained this way is T'. Consider the graph G critical with 

respect to condition e(G)> 2 (k -2)v (G) .  (This means that no subgraph G ' ~ G  
i 

satisfies this condition.)Then all vertices of G have degree at least [ 91---(k-2)[ + 1= 

w o  provo O  o , ins to hypothesis 
L ~  . ,a  

G contains T'. Let W denote the set of vertices of the subgraph T' except y and 
i r  "11 | " 1  

the leaves But 
L ~  ] 
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the degree of y is at least [ 1  k I and so there is a vertex in G adjacent to y and not 

in IV. This means that G contains T as a subgraph. 
We proved at the same time that Conjecture 2.1 is true for all subgraphs 

T" of a tree T with v(T')=v(T) if T satisfies the conditions of Theorem 2.2. The 
following theorem enlarges the list of forests for which the conjecture holds. II 

Theorem 2.3. Assume T" satisfies Conjecture 2.1. Then any graph T obtained from 
T' by adding a few isolated edges satisfies Conjecture 2.1, too. 

Proof. It is enough to consider the case when T is obtained from T' by adding one 

isolated edge. Let G6Z(T). We are going to show that e(G)<- 2 (v(T)-2)v(G). 
, i  

We may assume (without loss of generality) that G has no isolated vertex. We pick 
a vertex x from G with degree at most 2e(G)]v(G). We pick another vertex y adja- 
cent to x. Let G" denote the graph obtained from G by deleting x and y and all edges 

incident to one of them. Then G'EZ(T'), v(G')=v(G)-2, e(G')~_e(G) 2e(G) 
v(G) 

- (v(G)-2) .  T' satisfies Conjecture 2.1, consequently 

1 
(v ( r  ") - 2) ,, (G') = -}  (v ( r )  - 4) (,, (G) - 2), e(G') ~_ -~ 

implies that e(G) 2e(G) _ ( v ( G ) _ 2 ) < l  (v(T)-4)(v(G)-2),  and which 
v(G) 

v(G) e(G) <= v(T)--2)(v(G)-2), e(G) ~_ (T)--2)v(G), 

which proves the claim. I 

For a graph G on n vertices we define the quantity 

F~(x~ . . . .  , x.)  
(1) O*(G) = max 

x~_o xl + ... + xn 
m a x  {xx, . . . ,  xn} = 1  

Theorem 2.4. For every graph G 
2e(G') 

p*(G) = max 
~' v ( G ' ) "  

where the maximum is taken over all subgraphs G" o f  G. 

Proof. Let V(G)={vl . . . .  , v,} and denote by Gx the subgraph of G for which 
the rado 2e(G~)/v(G1) attains its maximal value. Set x~=l if v~EV(Gx) and x~=0 
otherwise. Then 

~(G') e*(G) ~- Fa(xl, . . . ,x,) ~ 
xx+. . .+x~ - v(G') 

Suppose, on the other hand, that 2e(G')/v(G')~_7 for all subgraphs G'. We will 
prove that 0*(G)<-7. Without loss of generality we may assume that G is critical 
with respect to 0", i.e., #*(G')<q*(G) for every proper subgraph G' of G. Let 
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Y=(Yl . . . . .  y,) be the vector giving the maximum in (1). If  this vector is not unique, 
then we choose the one with the largest number of components y~= 1. To have 
simpler notation we assume that O<y~<=y~<-...~_yt<yt+l . . . .  = y , = l ,  (if yi=O, 
then vertex v i can be deleted from G without changing Q*). If  t=0,  then Q*(G)= 
=F~(1 . . . . .  1)/n=2e(G)/v(G). So we assume t=>l. Then for i=1 . . . . .  t: 

. . . .  , 1 + . . . , .  
XI-[-"" + Xn ( Y )  = Yl + . . .  + Y, ' 

i.e., 

( o )  (o / 
Assume now that there is a pair of nonadjacent vertices vl, v l with l~--i<j~-t. 
Then increasing y~ and decreasing yj with the same amount does not change 
F~(y~ . . . . .  y.) and y~+ . . .+y , .  If  y t + y l = l ,  then we may set Y~=Yi+Yj, Y.i =0 
and this contradicts the fact that G is critical. Now if y~+y j~ l ,  then we may set 
y~ = 1 and y~ = y i + y j - 1  and this contradicts the minimality of t. Consequently, 
1 <=i<j~t  implies {vi, vj}EE(G). This shows that the functions 

1 1 0 

differ only in additive terms of the type Xk where k~=t+ 1. Then 

is an integer and so y i=y j .  Consequently, y~ . . . . .  Yr. Let a be the number of 
edges of the form {Y~,Yk} with l<-i<=t, t+l<=k<-n, and let b be the number 
of edges of the form {Yk, Y,,} with t+ l<-k ,  m<-n. Let G' denote the subgraph 
spanned by the vertices vt+x . . . . .  v~. Then 2b =2e(G' )<=yv(G' )=r(n- t ) .  Set 

f ( z )  F~ (xl . . . . .  x~) , 
xl  +. . .  + x,, 

where xl . . . . .  x t=z ,  xt+ 1 . . . . .  x , = l .  Then f(ya)=o*(G), 

t( t--  1)z~+ 2az + 2b 
f ( z )  = tz A- (n--  t) ' 

f ' ( z )  = t2(t-- t)z2 + 2 (n - - t ) t ( t - -  1)z + 2 ( n - t ) a - 2 b t  
(tz  +(n- - t ) )  z 

The functionftakes its maximal value at z=y~ sof ' (yj)  =0. Hence 2 ( n -  t) t ( t -  1)yl + 
+ 2 a ( n - t ) - 2 t b < = O  and 2 t ( t - l ) y l + 2 a < - t ( 2 b / ( n - t ) ) ~ _ t ? .  So indeed 

) 1 
Q*(G) = ~- F~ (y)  = 2 t ( t - -1 ) y l+2a)  ~_ --i-t? = 7. II 

i = l  

By Theorem 2.4, Conjecture 2.1 is equivalent to this: 

V G q Z ( T ) :  p*(G) ~_ k - 2 .  
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For every tree of  forest satisfying the ErdSs--S6s conjecture we are going 
to construct a series of  r-graphs G, ( r=2,  3 . . . .  ) and find the exact value of  z(G,). 
The basic result is contained in Theorem 3.2. 

Set 

(2) ?G(s) = max{FG(x~ . . . .  , x,)lx~+.. .  + x ,  = 1, xt ~ 0, max {x~ . . . .  , x,} = ~}. 

so that 

(3) o(G) = max y~(s), 
0 < ~ 1  

1 
(4) o*(G) = max - -  Vo(s). 

The enlargement of the ( r -1)-graph F is the r-graph F" which is obtained 
from F by adding a new vertex to V(F) and by adding this new vertex to every edge 
of F. Consider now an r-graph G and one of  its vertices, v. Delete v from G together 
with all edges not containing v and delete v from all edges containing it. The ( r - 1 ) -  
graph obtained this way is the star ( r -  1)-graph of G at vertex v. 

Theorem 3.1. For every r-graph G (r_->3) there exists a star (r-1)-graph, G', o f  
G with 

(5) y~(e) <- ( 1 - s )  "-~ max ?a,(6). 

Proof. Let Y=(Yl . . . .  , y,) be the point where (2) attaines its maximal value. Set 

x 0 _ 1 ~  ,(_b_~F~) ' consequently, 7a(O-- ;~z=(-b-~FG)(y). Observe that F~- - - r ,= ,  

1 
= F , ( ~ ) = ~ - ~ y i 2  ~. I f  yi<s, then 2~_2j for all j----l, .... n. Thus 

1 
max {,hlic {1 . . . . .  n}, y, -- e} ~ r Z  y,2, = 7~(e). 

Assume (for the sake of  simpler notation) that the maximum in the left hand side 
of the above inequality is attained for i=n. Let G" be the star ( r -1)-graph of  G at  

1 8 
the corresponding vertex v,. Set z~=T-Z-~_ ~ y~; then zi_~ 1 - 8  for i=1 ,  ..., n - l ,  

zl +... ~-z,_l=l,  and 

-~ - ~ F~ (y~ . . . . .  y , )  = F ~ ( y ~ ,  . . . ,  Y o - O  = 
~ ( ~ )  = r Ox~ 

Set now 

= (1 - s ) ' - IFo , ( z l ,  z.-1) ~ (1 -e ) ' - 1  max ~,~,(~). II 
�9 " ' ~  ~ - ( r - O  

r--1 

f , ( x )  = ( x + r - 3 ) - "  I I  (x+i-2). 
5=1 
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Let us denote by Mr the last (i.e., the rightmos0 maximum of the function f,  on 
the interval [2, oo). Now M,>-_M,_x because 

f x + r - 4 ~  "-1 
f ,(x) =f,_x(x) ~ x + r - 3  ) 

x + r - 4  
and the function x + r - 3  is monoton increasing. In particular, M2=M3=2, 

M4=2+I/3.. We define 11//1=2. 

T h e o r e m  3.2. Let T be a graph satisfying Conjecture 2.1. Assume it has k>-M, 
vertices. Then z ( T ) = ( k - 2 ) f , ( k )  where • is the extension of  the (r-2)-fold enlarge- 
ment o f  7". 

For the proof of this theorem we need the following lemma. 

Lemma 3.3. Assume T satisfies Conjecture 2.1 and has k ~_Mr_ 1 vertices. I f  the 
r-graph G contains no (r-2)-fold enlargement of  T as a subgraph, then ~(~)<= 
<=(k--2)f,(x) where x = m a x  {(1/~)-r+3, k}. 

The proof of the lemma is by induction on r. Let r=2 ,  i.e., )~(x)=- 1 x - 1  and 
k - 2  

G(Z(T) .  One gets from (3) and from Corollaryi.5 that ya(e) <- k -  1 " Then (4), 

Theorem 2.4 and the fact that T satisfies Conjecture 2.1 imply that y~(~)=<(k-2)~. 
The first step of the induction is proved. Now we prove the induction step from 
r -  1 to r (r~3).  According to Theorem 3.1, (7 has a star ( r -  1)-graph G' satisfying 
inequality (5). Now k~-Mr-z because M,_I~_M,_z. Thus G' satisfies the induc- 
tion hypothesis for r - 1 .  Then 7~(~)<=(k-2)f,_j (y) where y = m a x  {(1/5)-r+4,  k}. 
Set x = m a x { ( l / 8 ) - r + 3 ,  k}. If 5_-<e/(1-e), then 1/b~-(1/~)-1 and y>-x. The 
function f , - l ( z )  decreases when z>=M,_x hence f,_~(y)~_f,_~(x). So we get 

y~(e) ~ (l--e) "-1 max ?a , (6)~  (1 1 ),-1 
- max ( k -  2)f,_1 (Y) <- 

a~--(r - e  ) X-l-  r - -  3 d;~(r--r - -  

( I_~(x) 1 ~_ 1 x + r - 3 "  = (k - 2) f ,  (x) . | 

In Section 2 we proved that the statement of Conjecture 2.1 holds for a 
number of graphs T. 

The condition k~_M, is automatically fulfilled when r=3 .  Then we have 

Corollary 3.4. Assume the graph T satisfies Conjecture 2.1. If, moreover, the 3-graph 
is an enlargement o f  an extension of  T, then z ( ~ ) = ( k - 1 ) ( k - 2 ) / k  2 where 

k=v(T). | 

Now we will show that the last statement holds not only for trees and forests. 

T h e o r e m  3.$. Let T be a graph with 4 vertices and 3 edges and suchthat one of  its 
connected components is a triangle and the other one is an isolated vertex. Let T be 
a 3-graph which is the extension of  an enlargement of  T. Then z(~)=3/8. 
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Proof. Let  T '  denote the enlargement o f  T. Let  T "  denote the enlargement of  the 
graph Kg. I f  v(G)_-->5, then G E Z ( T " ) = ~ ( T " )  and by Theorem 1.6, o(G)_~ 
~ _ v ( T " ) ~ l / 3  (the last inequality is proved in [10], see [3] as well). I f  v(G)~_4, 
then G_~K~ and consequently Q(G)<--Q(K~)=3/8. Thus Q(G)~_3/8 for every 
G E Z ( T  ). By Corollary 1.8 we have ~(~)-<3/8. But K~E~(T)  and Theorem 1.6 
implies z(~V)_~0(K~)=3/8. Ii 

It  follows f rom the results of[10] that  for r = 4  the condition k = > M r = 2 + I / 3  
in Theorem 3.2 is not  significant. 

We mention that  our results yield not  only the coefficients o f  saturation 
�9 (H)  but  the exact values of  e , ( ~ ( H ) )  as well. Indeed, i f  K ~ , ~ ( ~ r  and Q(K~)= 
=~(~/ ) ,  then by Theorem 1.3, emt(Z(~))<-Q(K~)(mt)' /r!.  On t h e  other hand 
K~(t . . . . .  t ) ~ ( ~ r  Thus e~ t (2 (~) )>-e (K~( t  . . . . .  t ) )=a(K~) (mt ) / r t .  This shows 
that i f  H is the extension of  an ( r - 2 ) - f o l d  enlargement of  a graph T on k vertices, 
then under the conditions of  Theorem 3.2, 3.5 and Corollary 3.4 we get that  for all n 
which is divisible by ( k + r - 3 )  
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