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We consider the problem of finding ex (n; G),. defined as the maximal number of edges an
r-graph on n vertices can have that contains no subgraph isomorphic to ¢. We construct certain
r-graphs G for which we find the coefficient 7(G) of the asymptotic expansion ex (n; G)=

= @+o) ] as n>e.

1. Basic definitions and notation

Let V be a finite set and E be a family of its r-tuples (r=2). The pair (V, E)
is said to be an r-graph with vertex set V and edge set E. Let %" denote the class of
all r-graphs. We will write ¥ (G) and E(G), respectively, for the set of vertices and
edges of the graph G. Set further v»(G)=|V(G)| and e(G)=|E(G)|.

Let G, Hc¢%'. The r-graph G is a subgraph of the r-graph H if V(G)C
SV (H) and E(G)SE(H). If, in addition, E(G)={acE(H)|a&EW} and ¥V (G)=W,
then G is a subgraph of H spanned by the subset W of the vertices.

Let G,He%. Amap ¢: V(G)-V(H) is a homomorphism from G to H
if {vy,...,v }GE(G) implies {¢(vy), ..., @(v,)}€ E(H). The map ¢ is called a mono-
morphzsm if it is injective. If ¢ is b1_|ect1ve and its inverse is a homomorphism, then
it is an isomorphism. In this case the r-graphs G and H are isomorphic (or, one of
them is an isomorphic copy of the other). In what follows we will not make distinc-
tion between isomorphic copies of an r-graph provided this would not cause any
confusion.

We consider two binary relations on gr. G~< H means that there is a ho-
momorphism from G to H, and G=H means that there is a monomorphism from
G to H. It is easy to see that both of these relations are transitive.

The notions “subgraph” and ‘“monomorphism of r-graphs” are closely
related: G=H if and only if G 1s isomorphic to a subgraph of the r-graph H. The
notion of ‘“homomorphism of r-graphs” is less traditional: G<H if and only if
identifying certain vertices of G one can obtain an r-graph, isomorphic to a sub-
graph of H. In fact, one can identify only those vertices that are incident to distinct
edges, for otherwise loops will turn up.

Let G be an r-graph with vertices v, ..., v, and edge set E. We denote by
G(my, ..., m;) the r-graph obtained from G by repeating every vertex v; (i=1, ...,n)
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m; times. More precisely, G(my, ..., m,) is the r-graph with vertex set X;U...UX,
where X7, ..., X, are paiwise disjoint sets, |X;| =m;, and the set of edges is

{v,-l, . vir}EE i3y wesir?
where A . . ={{x1, .., x}Ix€X;, ..., x,€X; }. It is easy to sce that H<G if
and only if there are numbers my, ..., m, such that H=G(my, ..., m,). It is also
clear that G(my, ..., m)<G for all m,, ..., m,.

An r-graph is complete if every r-tuple of its vertices is an edge. K} will de-
note the complete r-graph on k vertices. An r-graph G is nonempty if E(G) is
nonempty.

A pair of vertices of an r-graph is called covered if it has an edge containing
these two vertices, it is called uncovered otherwise. An r-graph is covering if any
pair of its vertices is covered. Observe that if G is a covering r-graph, then every
homomorphism from G to H is a monomorphism.

The extension H of an r-graph H is the r-graph obtained from H by adding
r—2 new vertices and a new edge for each uncovered pair: the new edge is formed
by the new vertices plus the pair. In this way, (r—2)! new vertices and / new edges
are added to H if there were / uncovered pairs in it. Clearly, for a covering r-graph
G one has A< G if and only if H=G.

A class of r-graphs # S 9" is called hereditary (strongly hereditary) if
G=H (G<H, respectively) and HeEH# imply GE#°. Let &/ S ¥ and set

Z(o) = {GeY'\VHe s/ : H % G}
2(o#) = (Ge¥'\yHe oL : HXG}.

It is easy to see that Z(s#) is hereditary and Z(s#) is strongly hereditary. On the
other hand, all hereditary (strongly hereditary) classes are of this form. Indeed, it
follows from the transitivity of the relations = and ~< that for every hereditary
(strongly hereditary) class of r-graphs & one has # =Z(9™\#) (# =2 (CAN N
respectively). Observe that if every r-graph in & is covering, then Z(=/) and Z(/)
coincide. Moreover, it can be shown that any strongly hereditary class ## of r-graphs
can be represented in the form #=Z(&/) where & consists of covering
r-graphs only.

Below we will consider only those hereditary classes 5# that contain, for all
n, at least one r-graph on » vertices. This is equivalent to saying that the set & in
the representation # =Z(&f) (or #=Z(«)) consists of nonempty r-graphs.

A lot of discrete extremal problems can be reduced to this question: Find
e,(=max {e(G)|Ge#, v(G)=n} where # is a hereditary class of r-graphs. Let
o be a set of r-graphs; the coefficient of saturation for this class is defined as the limit

o(f) = lime,(Z(4)) [;‘]_1

(it is well-known [8] that the expression after the lim sign does not increase as n— <o).

The case r=2 is that of the ordinary graphs. The usual terminology will

be used for them: e.g., tree, forest, path, connected component, degree of a ver-
tex, etc.

When r=2, the coefficient of saturation is given by a well-known theorem of

Erdss and Simonovits [6] (cf. Corollary 2.7 below). When r=3, there is only one
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complete result: Bollobas [1] found e, for the class of 3-graphs where no edge is
contained in the symmetric difference of two others. In this paper we are going to
find the coefficient of saturation t({H}) for a number of r-graphs H (r=3). We
will write T(H), Z(H) and Z(H) instead of t({H}), Z({H}), and Z({H}).

Notice that the number of edges of the r-graph G(my, ...,m,) is a homo-
geneous polynomial of degree r of the variables my, ..., m,. It will be convenient
to consider this polynomial as an ordinary function of » real variables. In this way
we assign to each r-graph G({vy, ..., v,}, E) its density function

Fo(xy, ey x)= 25 rlx,..x
{vil, ...,Uir}

(the convenience of the factor #! here will be clear later). The density of the r-graph
G is defined as

e(G) = x13§%=1 Fg(X15 s Xp)-
n=

This quantity has been considered in [6, 7, 9, 11]. The r-graph G is said to be dense
if all of its proper subgraphs G’=G satisfy the inequality ¢(G")< ¢(G).
We will need a number of results from [11]:

Theorem 1.1. [11] Let of and B be families of nonempty r-graphs satisfying the con-
dition YVHe® 3Ge s/ such that G<H. Then t(H)=1(%).

Corollary 1.2 [11]. For any nonempty set & of r-graphs

lim e,2a) (}) " = <), W

This shows that for a nondegenerate problem (i.c., when 7 () =0) e,(Z()) =
-1
=e,(Z(s/))(1+0(1)) as n-oo. The speed of the convergence of e,(Z()) [:,l]
to t(&f) is given in

Theorem 1.3 [11]. If o is a nonempty family of r-graphs and n=r, then the following
inequalities hold:

e(Z2()) rin" = t(f) = e,(Z()) [f]_l. ]

Theorem 1.4 [7, 11]. Every dense r-graph G is covering. ||

When r=2 the covering graph has to be complete so Theorem 1.4 implies
that the density of a graph equals the density of its largest complete subgraph.
Clearly o(KP)=(k—1)/k and we have

Corollary 1.5 [9]. For a 2-graph G with k=max {{|K}=G} one has ¢(G)=
=(k—1)/k. |
Consequently, every strongly hereditary class with »=2 is of the form

Z(KP) for some k, i.e., it is the class of graphs with chromatic number less than
k (k=2,3,...).

Theorem 1.6 [11]. If of is a family of nonempty r-graphs, then t(f)=sup ¢(G)
where the supremum is taken over all dense r-graphs G¢ VAC AN |
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The theorem of Erd8s and Simonovits follows from Theorem 1.6 and Corol-
lary 1.5:

Corollary 1.7 [6]. Let of be a set of nonempty 2-graphs and set k=max {t|K2€ Z()}.
Then ©()=k—D/k. §

For r=3 not all covering r-graphs are complete and this is why it is hard
to find =.

Let H be the extension of the r-graph H. Then a covering r-graph belongs
to Z(H) if and only if it belongs to Z(H). Thus Theorems 1.4 and 1.6 imply

Corollary 1.8. If the r-graph H is the extenszon of the r-graph H, then t(H)=sup o(G)
where the supremum is taken over all dense r-graphs from the class Z(H). |}

2. The conjecture of Erdds and Sés

ErdSs and Sés (see [5]) have the following conjecture:

Conjecture 2.1. If T is a tree or forest on k vertices (k=2), then for all GeZ(T)

e(G) = L (k—2)v(G).

If a graph T satisfies Conjecture 2.1, then all of its subgraphs 7”7 with ¥V(T")=
=V(T) satisfy it. It is known (see )] that for a path on k vertices Conjecture 2.1
is true. In this section we will prove Conjecture 2.1 for trees having a vertex adjacent
to many leaves of the tree. Then we will get an equivalent form of the conjecture
in terms of the density function of the graph. These results will be used in Section 3.
Theorem 2.2. If a vertex of a tree T with v(T)=k is adjacent to 1 é—;— (k—2) leaves,
then T satisfies Conjecture 2.1.

Proof by induction on I (with k fixed). The first step /=k—1 of the induction is
trivial because e(G)> 1 (k—2)v(G) implies that some vertex of G has degree k—1

at least. We use backward induction from [+1 to /! (I<k—1). Consider a tree T
with a vertex x adjacent to / leaves. As I<k—1, there is a leaf not adjacent to x.
Let y be a vertex, different from x and adjacent to the leaf z. Delete edge zy and
add edge zx. The tree obtained this way is 7”. Consider the graph G critical with

respect to condition e(G)>% (k—2)v(G). (This means that no subgraph G'#=G
satisfies this condition.) Then all vertices of G have degree at least l%(k—Z)] +1=

=l—;— kJ . We prove that G contains 7. According to the induction hypothesis
G contains 7”. Let W denote the set of vertices of the subgraph 7’ except y and
the leaves adjacent to x. Now |W|=k—I]-2< l—;— kl because l%%(k-&). But



FORBIDDEN r-GRAFPHS 211

the degree of y is at least [—;— kJ and so there is a vertex in G adjacent to y and not

in W. This means that G contains T as a subgraph.

We proved at the same time that Conjecture 2.1 is true for all subgraphs
T’ of a tree T with v(T")=v(T) if T satisfies the conditions of Theorem 2.2. The
following theorem enlarges the list of forests for which the conjecture holds. [

Theorem 2.3. Assume T’ satisfies Conjecture 2.1. Then any graph T obtained from
T’ by adding a few isolated edges satisfies Conjecture 2.1, too.

Proof. It is enough to consider the case when T is obtained from 7" by adding one
isolated edge. Let G¢Z(T). We are going to show that e(G)'él ((T)—2)(G).

We may assume (without loss of generality) that G has no isolated vertex. We pick
a vertex x from G with degree at most 2e(G)/v(G). We pick another vertex y adja-
cent to x. Let G” denote the graph obtained from G by deleting x and y and all edges

incident to one of them. Then G'€ Z(T"), v(G)=v(G)—2, e(G)=e(G)— 2?(GG))
—(v(G)—2). T satisfies Conjecture 2.1, consequently

e(@) = —;—(v(T’)—2)v(G’) = %(v(T)——4)(v(G)—2),

which implies that e(G)—2§((g)) —(v(G)—2)§—;— (»(T)—4)(v(®)—-2), and
2%‘;_2 e(6) =5 ((N)-D (@) -2, (@) =5 () ~2)2(G),

which proves the claim. |

For a graph G on n vertices we define the quantity

Fe(xy, ooy ;)
1 * _ G\l ==y g .
) ¢'(G)=  max Xit .o,

max {Xyg, ..., ¥} =1

Theorem 2.4. For every graph G

= a2
where the maximum is taken over all subgraphs G’ of G.
Proof. Let V(G)={v,, ..., v,} and denote by G, the subgraph of G for which

the ratio 2e(G,)/v(G,) attains its maximal value. Set x;=1 if v,€¥V(G,) and x,=0
otherwise. Then

N Fo(xyy -ous X,) 2e(G")
@)= X +...+x, = »(G)
Suppose, on the other hand, that 2e(G’)/v(G")=y for all subgraphs G". We will

prove that ¢*(G)=y. Without loss of generality we may assume that G is critical
with respect to g%, i.e., ¢*(G")<g*(G) for every proper subgraph G’ of G. Let
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=1, ..., ¥») be the vector giving the maximum in (1). If this vector is not unique,
then we choose the one with the largest number of components y;=1. To have
simpler notation we assume that O<y =y,=..=y<y =... —y,,_.l @if D= 0,
then vertex v; can be deleted from G without changing ¢*). If t=0, then @*(G)=
=Fs(1, ..., 1)/n=2e(G)/v(G). So we assume ¢=1. Then for i=1,...,1:

O Fe)——Le®__
: 0=[3%[£:Gc%fﬁ:,—")])@)—(ax 31+m+y"...+yn ,
ie.,
[—% FG) G) =...= (.5%7 FG] ) = 0*(G).

Assume now that there is a pair of nonadjacent vertices v;, v; with 1=i<j=t.
Then increasing y; and decreasing y; with the same amount does not change
Fo(y15 - ¥n) and y1+...+y,. If yi+y,=1, then we may set y;=y,+y;, y;=0
and this contradicts the fact that G is critical. Now if ¥yi+y;>1, then we may set
yi=1 and y;=y,+y;—1 and this contradicts the minimality of z. Consequently,
1=i<j=¢t implies {v;, v;}€E(G). This shows that the functions

1{ 9 1( 4 ]

differ only in additive terms of the type x, where -k=¢-+1. Then

r= 3 ) 0-) -3 (2 ) 9=

is an integer and so y;=y;. Consequently, y,;=...=y,. Let a be the number of
edges of the form {y,y.} with 1=i=y, t+1<k<n, and let b be the number
of edges of the form {y, y,} with t+1=k, m=n. Let G’ denote the subgraph
spanned by the vertices .4, ..., v,. Then 2b=2e(G")=yv(G")=y(n—t). Set

f(z) — FG(x19 seey xn)

3

Xi+...+x,
where x;=...=x,=z, x,.;=...=x,=1. Then f(y)=0"(G),
_ t(t—1)z*4-2az+-2b
f2) = tz+(n—1) ’

@) = t—-Dz2+2(n—)t(@—1)z+2(n—a— 2bt

(tz+(n—9)
The function f'takes its maximal value at z=y, so f’(y;) =0. Hence 2(n—¢) «(t — 1)y, +
+2a(n—1t)—2tb=0 and 2t(t—1)y,+2a=¢(2b/(n—1))=#y. So indeed

@)= 2[5 Fo) ) = T @e-D3s 20 = v =v.

i=1
By Theorem 2.4, Conjecture 2.1 is equivalent to this:
VGEZ(T): p*(G) = k-2,
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3. Construction of r-graphs G with given lim [ex(n, G) / (:l)]

For every tree of forest satisfying the ErdGs—Sd&s conjecture we are going
to construct a series of r-graphs G, (r=2, 3, ...) and find the exact value of z(G,).
The basic result is contained in Theorem 3.2.

Set

(2) ye(e) = max{Fs(x1, ..o, X)X1+...+%, = 1, ;= 0, max {x;, ..., X,} = a}.
so that

©) 2(G) = max y(e),
@ 0*(6) = max = 76(6).

The enlargement of the (r—1)-graph F is the r-graph F” which is obtained
from F by adding a new vertex to V' (F) and by adding this new vertex to every edge
of F. Consider now an r-graph G and one of its vertices, v. Delete v from G together
with all edges not containing v and delete v from all edges containing it. The (r—1)-
graph obtained this way is the star (r—1)-graph of G at vertex v.

Theorem 3.1. For every r-graph G (r=3) there exists a star (r—1)-graph, G’, of
G with

) v6(e) = (1—ey =" max v5-(9).

Proof, Let y=(y,,...,¥,) be the point where (2) attaines its maximal value. Set

A= ( aa FG) (¥). Observe that FG——I- Z X; [ aa ) consequently, y,(e)=
Xy

:FG(.V)='52.V; i If yi<8’ then A‘i—'j'j for a.ll j='1, ooy Mo ThuS

1 . 1
— max {Alie{l, ....n}, y;=¢} = 72 Vihi = P6(€).

Assume (for the sake of simpler notation) that the maximum in the left hand side
of the above inequality is attained for i=n. Let G’ be the star (r—1)-graph of G at
the corresponding vertex v,. Set z,-=11T.g y;; then zz=—— for i=l1,..,n—1,

'_1

Zl+...+z,,__]=l, alld
12
’},G(e)z_r' axn

= (=& Fe (2, - Z-0) = (1-0) ™" max 9 (3). 1

)(ylr s Yu) = Fg(V1s s Yuot) =

Set now

£:0) = =3 Tl (x+i=2)
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Let us denote by M, the last (i.e., the rightmost) maximum of the function £, on
the interval [2, ). Now M,=M,_, because

_ x+r—4 ]’-1
5 =29 (5
. x+r—4 . . . .
and the function *Fr_3 monoton increasing. In particular, M,=M,=2,

My=2+Y3. We define M, =2

Theorem 3.2. Let T be a graph satisfying Conjecture 2.1. Assume it has k=M,
vertices. Then (D)=(k—2)f.(k) where T is the extension of the (r—2)-fold enlarge-
ment of T.

For the proof of this theorem we need the following lemma.

Lemma 3.3. Assume T satisfies Conjecture 2.1 and has k=M,_, vertices. If the
r-graph G contains no (r—2)-fold enlargement of T as a subgraph, then y;(e)=
=(k—2)f,(x) where x=max {(1/e)—r+3, k}.

and

The proof of the lemma is by induction on r. Let r=2, ie, f(x)=

x—1
GEZ(T). One gets from (3) and from Corollary 1.5 that yg(s)= ’]: 21 . Then (4),
Theorem 2.4 and the fact that 7 satisfies Conjecture 2.1 imply that yg(e)=(k—2)e.
The first step of the induction is proved. Now we prove the induction step from
r—1 tor (r=3). According to Theorem 3.1, G has a star (— 1)-graph G’ satisfying
inequality (5). Now k=M,._, because M,_,=M, ,. Thus G’ satisfies the induc-
tion hypothesis for r—1. Then yg(8)=(k—2)f,_,(y) where y=max {(1/6)—r+4, k}.
Set x=max {(1/e)—r+3,k}. If d=e/(1—e), then 1/6=(1/e)—1 and y=x. The
function f,_,(z) decreases when z=M,_, hence f,_,(¥)=f._,(x). So we get

1 ]l‘—].
—_py-~1 . - —— e — =
yo(@ = (1=~ max 70 = (1= max k-2 =

1 )r—l
= (l*m Je-1(x) = k=2 £,(x). 11
In Section 2 we proved that the statement of Conjecture 2.1 holds for a
number of graphs T. ,
The condition k=M, is automatically fulfilled when r=3. Then we have

Corollary 3.4. Assume the graph T satisfies' Conjecture 2.1. If, moreover, the 3-graph
T is an enlargement of an extension of T, then ©(T)=(k—1)(k—2)/k® where
k=v(T). } »

Now we will show that the last statement holds not only for trees and forests.

Theorem 3.5. Let T be a graph with 4 vertices and 3 edges and such that one of its
connected components is a triangle and the other one is an isolated vertex. Let T be
a 3-graph which is the extension of an enlargement of T. Then 1(T)=3/8.
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Proof. Let 7T” denote the enlargement of T. Let T” denote the enlargement of the
graph K2 If o(G)=S5, then GEZ(T”)=Z(T”) and by Theorem 1.6, ¢(G)=
=¢(T”)=1/3 (the last inequality is proved in [10], see [3] as well). If v(G)=4,
then G=K} and consequently @¢(G)=0(K3)=3/8. Thus ¢(G)=3/8 for every
GEZ(T"). By Corollary 1.8 we have 7(T)=3/8. But K3¢Z(T) and Theorem 1.6
implies t(7)=p(K3=3/8. §

It follows from the results of [10] that for #=4 the condition k=M,=2+}3
in Theorem 3.2 is not significant.

We mention that our results yield not only the coefficients of saturation
7(H) but the exact values of e,,(Z (H)) as well. Indeed, if K5, Z(s/) and o(K™)=
=7(sf), then by Theorem 1.3, e, (Z())=¢(KL)(mt)"/r!. On the other hand
Ko (t, ..., )€ Z(£). Thus e, (Z(H))z=e(KL (1, ..., 1))=0(K})(mt)[r!. This shows
that if H is the extension of an (r—2)-fold enlargement of a graph T on k vertices,
then under the conditions of Theorem 3.2, 3.5 and Corollary 3.4 we get that for all n
which is divisible by (k+r—3)

w260 = (7)) (=]
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