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Quadratic programming, symmetry, positive (semi) definiteness and the linear comple- 
mentary problem were generalized by Morris and Todd to oriented matroids. Todd gave a con- 
structive solution for the quadratic programming problem of oriented matroids. Using I.as Vergnas' 
lexicographie extension and Bland's basic tableau construction Todd generalized Lemke's quadratic 
programming algorithm for this problem. 

Here some generalizations of Terlaky's finite eriss-cross method are presented for oriented 
matroid quadratic programming. These algorithms are based on the smallest subscript rule and on 
sign patterns, and do not preserve feasibility on any subsets. In fact two variants of the generalized 
criss-cross method are presented. Finally two special cases (oriented matroid linear programming 
and the definite case) are discussed. 

1. Introduction 

Linear and quadratic programming (LP and QP) were examined by hundreds 
of scientists in the past decades. Several algorithms, especially for QP were devel- 
oped. The most widely used algorithms for QP are based on the simplex method 
[2, 3, 8, 9, 10]. Most of the new results of  LP, e.g. least index resolution, were applied 
quickly in the theory o f  QP as well [7, 28]. 

Several combinatorial properties of  simplex methods were well known from 
the early time. The most significant step on this field was done by Bland [4, 5] by 
showing that oriented matroids (OM) can be considered as a combinatorial abstrac- 
tion of  LP. The theory of  OM was established by Bland [5], Folkman and Lav~- 
renee [6], and Las Vergnas [11]. They proved the generalized duality theorem of  
OM--LP, but Bland's proof  was the first constructive proof. Later Fukuda [12], 
Jensen [13], Terlaky [27], Todd [31] and Wang [36] gave different constructive proofs 
for this theorem. 

The theory of  oriented matroid programming was extended by Todd [30, 31] 
to OM- -Q P  and OMmLCP.  This theory was largely extended by Morris and 
Todd [21, 22]. By generalizing Lemke's [20] complementary pivoting algorithm Todd 
proved the duality theory of  OM---QP. Up to now, as far as we know this is the 
only algorithmic proof  for this theorem. 

Terlaky [26, 27] constructed a finite criss-cross method for LP and OM--LP.  
Recently Klafszky and Terlaky [16] generalized the criss-cross method for QP in 
real vector spaces. These results are generalized here for OMmQP.  The criss-cross 
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method is based on the least subscript rule introduced by Bland [4, 5] and on the 
sign properties of basic tableaux. In the first two chapters basic properties of OM, 
symmetry, positive definiteness, QP and LCP in OM are briefly summarized. 

In the third chapter the generalized eriss-eross method is presented and so a 
new constructive proof is given for the duality theorem of OM--LCP. Finally in 
the fourth chapter a modified algorithm and some special cases (OM--LP and 
positive definite OM) are discussed. 

It is assumed that the reader is familiar with the definition and fundamental 
properties of  matroids. Several basic text books exist on this area. All the necessary 
information can be found for example in Welsh [34]. 

Oriented Matroids, basic properties. The origins of OM can be found already in 
Rockafellar's [23] paper. Later Bland, Las Vergnas, Folkman, Lawrence, Fukuda, 
Morris, Todd and several scientists worked on this field to establish and extend the 
theory of OM. Without completeness all the necessary results, basic properties and 
algorithms can be found in [5, 6, 12, 13, 27, 31, 36]. 

The necessary definitions and basic properties of OMs are summarized 
as follows. 

Let E =  {e~ . . . .  , e~} be a finite set. An ordered pair X = ( X  +, X - )  is called 
a signed set of E, if X + O X - = O  and X +, X - c E .  The opposite of  a signed set 
X = ( X  +, X - )  is the signed set - X = ( X - ,  X +) and the underlying set is X = X  + O 
U X - .  A signed set Yis contained in the signed set X i f  Y.+cX + and Y - c X - .  

Definition 1.1. Let 0 and d)* be sets of signed sets of  E. M=(E, 0) and M * =  
=(E, d~*) are dual pairs of  oriented matroids if 
(a) M=(E,  0__) and M* =(E, O__*) are dual matroids with O_ and O_.* as the sets 

of circuits and cocircuits. 
(b) XEO=~-XEO and YEr162 
(c) x~, x ~ r  and X_a=_X~=~X~= + X .  

Y1, Y~EO* and ~ = .Yz=~Yx= 4-Y~. 
(d) XE• and YEO* implies 

(X + MY+)U(X - N Y - )  = 0 ,~  (X + N Y - ) U ( X -  NY +) = 0. 

The elements of 0 and 0* are called oriented circuits and oriented coclrcults 
respectively. Assumption (d) is called the orthogonality condition and in this case 
notation X_l. Y is used. It is known that the orthogonality condition is equivalent 
with the so called elimination property. The elimination property is often formulated 
in one of the following two ways. 
(el) Foral l  XI, X2EO suchthat  Xx~--X 2 and eE(X+NX~)U(X~NX~ +) there 

exists XsEO such that X + c ( X  + UX2+)\{e} and Xs" U(Xs UX~')\{e}. 
(e2) For all XI, X2E0 such that XI~--X~,  e 'E(X+NX~-)U(XzfqX +) and 

e"E(Xa + f) X+) U(Xa - OX~) there exist XaEr such that X + c ( X  + UX+)\{e'},  
and Xi 'c(Xi-UXi ' )N{e '}  and e"EXs. 

+ + The signed set Z=ZloZ~=(Z  ~ U(Za \ Z i - ) ,  Zi- U ( Z ~ \ Z + ) )  is called the 
composition of the signed sets Z1 and Z~. It is obvious that composition is not a 
symmetric operation. Denote .Ze'(d~) the set of signed sets obtained by repeated 
composition of oriented circuits of M The elements of ~(d~) and ~ ( 0 " )  are called 
oriented cycles and oriented cocycles respectively. Bland [5] proved that for all 
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K~g'(d0 and LEX(dT*) we have K• Furthermore the elimination property 
is valid for cycles as well. 
(e*) Fora l l  K1, KzE:/Y'(~) and eE(K+fqKi')U(Ks +) thereexist KaEX'(d~) 

such that e~.~3, K+cK+UK +, Kff" cK~UK~- and 
(K x LJ K2)\[(K + NK~) U(Kx- NK +)]CKa. 
The oriented matroid 

~/'e (0) = {[(K + \ F )  U (K-  A F), ( K - \ F )  U (K + N F)]IKE .Yd (O)} 

is obtained from X'(d)) by sign reversing on F. If G and H are disjoint subsets of  E, 
then M',,,G is the oriented matroid MN.G=(E\G, 0-) where ~ =  {XIXNG=O; XE$} 
and M]H is the oriented matroid M/H={E\H,O} where O={X\HIXE$ and 
X"xH is a minimal dependent set}. Operation " \ "  is called deletion and "/"  is 
called contraction. Combining these two operations we have oriented matroid 
M\G/H=(E\(GUH),  {X",.HIXOG=O, XE~ and X \ H  is a minimal depend- 
ent set}). 

Finally Bland's basic tableau construction is presented. Let ~ be the set of 
bases of  M, and let m be the rank of  M. For all B={ebl .... , eb=}6& and for all 
eb,EB there exists a unique coeircuit Y~-7~Ed~* of M* such that Y_~,fqB={eb,}. The 
set of circuits {Ybt . . . . .  Yb,~} is called fundamental set of cocircuits of the dual base 
E'NB if e~,EY~ for all eb, EB and Y_~,c(E\B)U {e~,}. Thenotation Yb,=C(B, eb,) 
is used as well, where B=E',,.B. 

Let T(B) be the matrix formulated by the signed incidence vectors of C(B, e~,). 
T(B) is called the basic tableau corresponding to the base B. As we did in our pre- 
vious papers [15, 16, 26, 27], we will refer as the b t row to the row corresponding 
the basic element eb,. 

2. Symmetry and positive definiteness 

Morris and Todd [21, 22, 30, 31] gave a combinatorial abstraction of  com- 
plementarity, symmetry and positive definiteness. This generalization made it pos- 
sible to formulate OM--QP and OM--LCP.  These results are briefly summa- 
rized here. 

The definitions are slightly modified, in order to make them a little more 
symmetric. All the results of  Morris and Todd remain valid, only some of the as- 
sumptions are modified. This can be checked easily following Morris' and Todd's 
proofs. 

Definition 2.1. Let M=(E ,  d)) be an OM, where E=SUT,  SNT=O, S={s l ,  ..., sn} 
and T={tl . . . .  , in}. A subset F e E  is called complementary if  [FO{s~, t~}[_~l 
for all i =  1, .... n, that is at most one of  the complementary dements is in the set. 

Definition 2.2. An OM M=(E, 0) is called a square OM (with respect to S and T) 
if E=SUT as above, r a n k ( M ) = n  and there is a complementary base of  M. 

The particular ordering of  the element st and tt is significant but we do not 
require that S is a base of  M as Morris and Todd did. 
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Definition 2.3. The switch of a signed set X is the signed set 

sw X = ({s, lhEX-}U {t, Is, EX+}, {stlt,EX+}U {6lsiEX-}) 

which is obtained by switching the signs on T and exchanging elements si and 6. 

The switch of a square OM M is the OM sw M if the circuits of sw M are 
the switches of the circuits of M. 

Definition 2.4. The OM M}r =sw M* is called the transpose of the squareOM M. 

Definition 2.5. Let M be a square OM. M is called bisymmetric (with respect to 
(5, T)) if M = M ~ r  =sw M*. If S or T is a base of M, then M is called symmetric. 

The following theorem describes the structure of  basic tableaus of com- 
plementary bases. 

Theorem 2.6. Let B be a complementary base o f  a bisymmetric OM M = ( S U T ,  0). 
Then 
(a) I f  s i, sjEB, then ssEC(B, q)+ ~ s~EC(B, tj) + and 

sjEC(B, h)- ~:~ siEC(B, tj)-. 
(b) I f  si, tjEB, then siEC(B, s t  + ~ sjEC(B, tt)- and 

s~EC(B, sj)- ~ t~EC(B, 6) +. 
(c) I f  h, tjEB, then qEC(B, sj)+ ~:~ tjEC(B, st) + and 

trEe(B, sj)- ,~ tIEC(B , s,)-. I 

Corollary. I f  S or T is a complementary base o f  M, then the corresponding basic 
tableau is symmetric. 

Definition 2.7. A square OM is called nonsingular if both of  S and T are bases of  M. 

Theorem 2.8. Let M be a bisymmetric OM. I f  there is a complementary base B with 
siE B and ti~ B for some index i, then M \ h [ s  t is a bisymmetric OM. 

It is bovious that the role of st and ti can be changed in Theorem 2.8, and 
it can be applied for arbitrary subset of S or T and the corresponding complemen- 
tary subset. 

Definition 2.9. A cycle of a square, bisymmetric OM is called sign reversing if 
{st, ti}~zK + and {si, h}dgK- for all l<=i~_n. Cycle K is called strictly sign re- 
versing if it is sign reversing and {si, 6 } c K  for an index i, that is either stEK +, 
h E K -  or s~EK- and 6EK +. 

Definition 2.10. A bisymmetric OM is called positive (semi) definite if it does not 
contain any sign reversing (strictly sign reversing) cycle. 

Properties of square, symmetric and bisymmetric matrices are preserved by 
this definition. 

Lemma 2.11. Let M be a bisymmetric, positive semidefinite OM. I f  B is a com- 
plementary base o f  M, then: 
(a) I f  st, sjEB, then s~C(B,  6)~sj~C(B,  h). 
(b) I f  6, tjEB, then 6r st)=*tjr s~). 
(c) I f  siEB, then si~C(B, 6)- and 6r sl) +. 
(d) IfMisnonsingularand stEB, then siEC(B, tO; andi f  qEB, then 6EC(B, sl). 

I 
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Lemma 2.12. I f  M is a positive (semi} definite, bisymmetric OM, then M\t~Is  t is 
positive (semi) definite bosymmetric i f  there is a complementary base B with slE B. 
Conversely i f  t, EB for a complementary base B then M'Nsdt~ is a positive (semi) 
definite bisymmetric OM. [ 

Teorem 2.13. A positive semidefinite OM is positive definite iff  it is nonsingular. [ 
Quadratic programming in OM. Let kT=(/~, d) be an OM with the following 
properties: 
(a) ~,={e}USUT, denote E = S U T .  
(b) M=)fI', , ,e=M(E, r is a bisymmetric positive semidefinite OM. 
A subset PcJ~ will be called complementary if F=ff',,,{e} is complementary in M. 
Problem OM--QP.  Find a nonnegative complementary oriented circuit g E (  of 
~rfor  which eEJ?. 

First Todd [31] gave a constructive proof for this problem. Todd general- 
ized Lemke's [20] complementary pivot algorithm, using Las Vergnas' [17] lexicog- 
raphic extension and he proved the following Main Theorem. 

Main Theorem. Given an OM--QP one and only one of  the following alternatives 
holds: ' 
(a) There is a nonnegative complementary oriented circuit which solves problem 

OM--QP, that is eE gE ( .  
(b) There is a nonnegative cocircuit eE IT'Ed * for which either s n  2 = 0  or 

TnZ=o. 
In the third chapter a new constructive proof is presented for the Main 

Theorem, which is the main result of  this paper. Our algorithms are generaliza- 
tions of Terlaky's [27] finite criss-cross method and the QP criss-cross methods 
presented in [16]. 

Before doing so, let us prove that cases (a) and (b) cannot hold simulta- 
neously. 

Lemma 2.14. At most one of  alternatives (a) and (b) of  the Main Theorem hold. 

Proof. Suppose to the contrary that both hold, then we have an oriented circuit 
eE ~Ed3 and an oriented cocircuit eE IT'Ed~ * with both of them nonnegative. By 
orthogonality ~ •  ]7, but eE~+N 1 ~+ while ( ~ + N / 9 - ) U ( 3 ~ - N  I7"+)=0 which 
is a contradiction. I 

Note that condition # A S = 0  or I~NT=0 was not used in this proof, that 
is eases (a) and (b) exelu~ each other without this condition. This property will 
follow automatically from the algorithm presented in the next chapter. 

3. A generalized criss-cross method 

The generalized criss-cross method is a simple algorithm. We do not need 
the extension of matroid _~r as it was necessary using a lexicographie extension to 
guarantee finiteness of the generalized Lemke method (Todd [31]). We do not need 
to preserve feasibility of any part of the base. Our algorithm is based only on least 
index selection and on sign properties of circuits (cocircuits). 
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Algorithm I. (a generalised criss-cross method) 

Initialization: An OM M is given as in the Main Theorem. Let us order the elements 
of E as follows: ( s~ , h , s2, t 2 . . . .  , s~, t i . . . .  , sn, tn, e). Let an arbitrary, comple- 
mentary base B and the corresponding basic tableau T(B) be given, where e~B. 
Output: An oriented circuit a ~ satisfying alternative (a) or an oriented cocircuit )~ 
satisfying alternative (b) of the Main Theorem. 
Pivot rule: 
(1) Let r=min  {ils, Ef(;- or t, Ek ;} ,  where ,~=C(B,  e) the oriented circuit 

associated to the nonbasic dement e. If  there is no r, then return ~=Are, 
alternative (a) holds. 

(2a) If  there is an r (we may assume that s,E,~-) and t,E#__,=CC_(B, s,) (the ori- 
ented cocircuit associated to arEB ), then (diagonal pivot) sr is replaced by 
t, in the base. 

(2b) If  there is an r and t,~ ~_~., then let p =min {ils, E ~7,-}. If  there is no p, then 
return 12= I?,, alternative (b) holds. 

(2c) If  there is an element sp then (exchange pivot) basic elements s, and tp are 
replaced by t, and sp. 
Remark, that in case (2a) t,E I 9- since M = 3 7 I \ e  is a positive semidefinite 

OM (Lemma2.11) and in case (2b) ~__,f-lS=0 or ~_jqT=0 (Lemma2.11) de- 
pending on a,E -~e" or t~E "(re--" The last property holds in case (2c) as well. 

The above remarks show that Algorithm I. is consistent and the comple- 
mentarity property of the base is preserved through the algorithm, so the sign pat- 
terns of the basic tableaux are described by Theorem 2.6 and Lemma 2.11. 

To prove the Main Theorem one has only to show that Algorithm I. is finite. 

Theorem 3.1. The generalized criss-cross method is finite. 

Proof. Since there is only a finite number of different bases one only has to show 
that cycling cannot occur. Suppose to the contrary that cycling occurs, that is start- 
ing from a base B, after a finite number of pivots base B returns. Denote I*=  
= {il st entered the base through the cycle}. Then obviously st left the base in some 
step, and the same holds for ti since all the bases are complementary. 

Let q=max {iliEI* }. So by the above remarks and by the ordering of the 
elements, dement t~ is the largest indexed variable which entered and left the base 
through the cycle. Depending on, whether t~(s~) or some other element was the 
lowest infeasible (negative) element in oriented circuit ~e when ta(s~) left or entered 
the base, one have to consider the following cases. 
tg leaves the base (sg enters) 
A: tg is the lowest indexed infeasible element of -~e. 
B: s, (for some r<q) is the lowest indexed infeasible dement of ~e. 
t~ enters the base (sq leaves) 
C: sa is the lowest indexed infeasible element of  ~e. 
D: tp (for some p<q)  is the lowest indexed infeasible dement of ,~ .  

Before considering the different cases note that in cases A and C both diag- 
onal and exchange pivots are possible, but in cases B and D only exchange pivots 
may occur. 

Since pairs (&, t~) did not influence the algorithm if i>q  so basic ele- 
ments of the set {st, till>q} can be contracted and nonbasic elements of this set 
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can be deleted. Basic tableaux in cases A, B, C, D have the following sign properties 
demonstrated on Figure 1. 

To prove the theorem we have to show that eases A--C,  A--D,  B - -C  and 
B - D  cannot hold. 
Case A--C: Using elimination property (e) presented in the first section (with 
KI=-~' ,  Kz=- - s  e=e)  we have a cycle K with sign properties: eCK, t~EK +, 
s~EK-, si(tl)EK + ~=,ti(si)f[K + and ti(si)EK- ~:>sl(t~)~K-. Considering sign prop- 
erties of ,~e and , ~  these properties of cycle K can be verified easily. Since eCK, 
K is a cycle of M = M \ e  and it is strictly sign reversing (Definition 2.9) implying 
(Definition 2.10) that M is not positive semidefinite contradicting our assumptions. 
Case A--D: Reversing signs of elements tq and sq, -~=-~e satisfies case (a) and 
1~= 8~ satisfies case (b) of the Main Theorem, which is impossible by Lemma 2.14. 
Case B---C: The same way as above Ar=Ar~ and 9 =  l?, provides a contradiction. 
Case B---D: In this case circuit 8 ;  is orthogonal to cocircuit ~,, for considering sign 
properties we have s~E(2; + N I~ -)  U(~s NY, +) but (2s N I?+)U(2~- N Z,")=O 
since I7",--= {sq} and X~,4= {s~} which is a contradiction. 
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All of  the possible four eases led to a contradiction, so Algorithm I. 
is finite. II 

Notice that in case B--D orthogonality of  ~ and l?~ could have been 
�9 r,. used the same way as we used the orthogonality of  " " 

4. Modification 

Diagonal pivots were preferred in Algorithm I. as the y assured in step 
(2a). This was necessary to guarantee the desired oriented cocircuit 1" in case (b) of 
the Main Theorem if  case (a) does not  hold. 

A modification is possible where diagonal pivots are even more prefered 
than in the original algorithm. It is easy to see that this new Algorithm M is finite 
again. The proof  is the same as in case of  Algorithm I. 

Algorithm M 

Initialization: As in Algorithm I. 
Output: Either case (a) or case (b) of  the Main Theorem. 
Pivot rule. 
Steps (1), (2), (2a), (2b) are the same as in Algorithm I. 
(2c) I f  p<r and SpE~p, then (diagonalpivot) tp leaves and sp enters the base. 
(2d) I f  p>r or sp~'~__p, then (exchange pivot) s, and tp leaves, and t, and sp enters 
the base. 

4.2. Special eases 

Positive definite OM 
I f  the OM M = ~ e  is positive definite, then Algorithm I. and Algorithm 

M give a very simple algorithm. 
As case (d) of  Lemma2.11 sfiows, diagonal elements never vanish in the 

case of  a positive definite OM, that is t,~C(B, s,) and s,~C(B, t,) for all funda- 
mental circuits. So in the above mentioned two algorithms (since diagonal pivots 
are prefered) only diagonal pivots are performed. Steps (2b), (2c) and (2d) of  the 
algorithms are never used and so it is shown that in case of  positive definite OMs 
the OM - -Q P  always has a solution. 

The proof  of  finiteness also significantly simplifies since only cases A and C, 
that is case A - C  may occur. 

Linear programming in OM 
It is well known, that  LP can be formulated as an LCP (i.e. Ax<=b, x_->0, 

yA>=c, y>-_O, (yA-c)x=O, y(Ax-b)=O). This idea was generalized for OM by 
Todd [31], when an O M - - L P  was transformed into an O M - - L C P  (OM--QP).  
In this case we have a specially structured positive semidefinite bisymmetric OM, 
where symmetric diagonal blocks of  any complementary basic tableau are identically 
zero matrices. 
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In  this case in bo th  o f  the two a lgor i thms only  exchange pivots are per rormed 
and Ter laky 's  [27] criss-cross m e t h o d  is obta ined  as a special case (the same way as 
in real spaces [16]). The  same pivots are per formed,  only  basic tableau is doubled  
by construct ion.  The  p r o o f  o f  finiteness does no t  specialize, all the four  possible 
cases occur.  
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