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Abstract. Continuing the analysis of a previous paper, the present work applies 
rigorous renormalization group methods to the hierarchical models to 
establish the existence of field theories with non-Gaussian ultraviolet re- 
normalization group fixed points in 4 - e  dimensions. 

1. Introduction 

In the first paper [4] (hereafter denoted I), the subject of quantum field-theory 
models on fractal spacetimes was introduced and briefly motivated. Results on the 
scalar-field models with a realistic, proper-time propagator using available 
techniques are unfortunately scanty, but the analysis of the models with a 
hierarchical propagator can be carried substantially further. We adopt here the 
same definitions and notations as were introduced in the companion paper. As 
discussed there, a much considered type of hierarchical field-theory model [5-7], 
with free covariance 

Go(n, m) = ~ L-  ~k~IL-(~ + ,),~, ~L- (k + l)m~A(nk)A(rnk). (1.1) 
k=O 

on a fractal lattice version *~:~(d, L, c~) of the Sierpinski carpet, [-4, 9, 8], leads 
under a block-spin RG operation, to a recursion formula for the spin weight 
function g(s) of the form: 

g'(s) = f g(L- =/2s + z) za /2g(L- =/2s- z)La/Zdl~(Z)/f g(z)La dl~(Z). (1.2) 

This is just the familiar Wilson approximate recursion formula, however, with the 
Euclidean dimension d replaced by the (generally non-integer) Hausdorff dimen- 
sion d of the (hyper)carpet. The mathematical discussion of the fractal-spacetime, 
hierarchical models therefore reduces to the analysis of this recursion, which we 
carry out below. Section 2 gives the complete proof of a technical result, the 
existence of a stable domain for the RG recursion. In Sect. 3, the existence of a 
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scale-invariant but non-Gaussian quantum field-theory is demonstrated on fractal 
spacetimes with Hausdorff dimension slightly less than four. In the final Sect. 4, it is 
proved that there are massive scalar theories on these same sets which have the non- 
Gaussian fixed point as their ultraviolet attractor. This last result, particularly, 
appears to be new. 

2. Stable Domain of the Renormalization Group 

This section is devoted to proof of the existence of a stable domain ~ of the 
hierarchical RG recursion (1.1). It is a somewhat refined version of Proposition I in 
the paper [5] of Gawedzki and Kupiainen. We define the domain of weight 
functions g to satisfy the following conditions (a), (b), (c): 

(a) For  [Ims[ < Iloge[, g(s) is an even analytic function, positive for real s and 
g ( o )  = 1. 

(b) For Isl < [log~[, g(s)= e -~(~) with w(s) analytic and 

~r.s2.1 1 ~.~t'l s 6 ~h: l  s s : + #(s), (2.1) w(s)=c+ + ~ . u : s ' :  + �9 + 

and di~(s)/dJl~ = 0 = 0, i -  0, 2, 4, 6, 8. Furthermore, with a the fixed-point coupling 
of 3 ~ order perturbation theory, 

u = ~ + f i ,  ft[<AeZL-alogZL, (2.2) 

r=r2~u2+~, [?l<B~3L-~logaL, (2.3) 

t = t2a u2  + ' t ,  ['t[ __<_ CI~3L -?I log3 L,  (2.4) 

(2.5) 

(2.6) 

[hi <- D~3L - a log3 L, 

sup [~(s)l < Eg41loge124L-dlog 4 L. 
Isl-< Ilog el 

(The constant c is fixed by the requirement that w(0)= 0.) 
(c) For Isl >_-Ilogel, Ilmsl < L-~/2llogel with ~7 = fl;  1(1 - L-~): 

Ig(s)[<=expI--~--~((Res)'+(Res)2)l. (2.7) 

Then, we have the following: 

Theorem 1. There are an integer L o and real number to(L ) > 0 such that for L > Lo, 
e < to(L ) the RG transform g' of g defined by (1.1) exists and also obeys the conditions 
(a), (b), (c) except possibly (4) of (b). However, for each g E 9 and each k < 0, there 
exists a compact N C(E (dependent upon g) such that ~k c= ~k + 1 and if ? ~ ~ ,  then 
each of the RG iterates gz, k < l < O, exists and belongs to 9 .  I f  ~ ~ ~ =- (~ Nk, then 
all RG iterates gk, k <= 0 exist and belong to 9 .  k <= o 

It is also demonstrated that r', u', t', h' obey the third-order RG iteration 
equations with rigorous bounds: 

[r,_L2[r_(c%uE+~lru+~4tu)+(og3u3)]l<B'e4[loge1241og4L , (2.8) 

lu' - U[u - (]~2 u2 -q- filru + fl4tu) + (fl~u3)] [ < A'e 4 loge124 log4 L, (2.9) 

It '--L- 2(1 --e)[t __ ((~ 2U2 _~_ 64tu ) + (6~u3)]1 ~ C,e4[loge124 log4L, (2.10) 

[h,_ L -4 + 3,[h _ (TdU) + (7;u3)]1 < D'e4lloge124 log4 L. (2.11) 
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Moreover, the domain N is shown to be nonempty: if g(s)=-e -w(s) for 

1 
W ( S )  = - -  l r : s 2 :  + ~.y U : S 4 :  4 - c  (2.12) 

with r and u obeying (3) and (4) of (b), then g obeys all of the conditions (a), (b), (c). 
Define the set Jog ____ @ to be those g ~ ~ for which ~ ~ ~(g). Then, ~ is also non- 
empty: if g E 9 ,  there exists an R=R(g) such that 

gO(s) = g(s)e- �89 ~ g ( .  (2.13) 

Proof Define 

so that 

1 6 8~ 1 2 1 :S 4 ~.t:s  : h:s8: Wo(S)=c+~r:s : + ~ u  "+  + (2.14) 

w(s) = Wo(S ) + #(s) . (2.15) 

Following the notation in (4.10), define also 

1 
qo(S, z) = ~ [wo(L- ~/2s + z) + wo(L- "/2s- z)], (2.16) 

~(s, z) = 1 [k(L-'/Zs + z) + ~(C- ~/2s-- z)]. (2.17) 

4 
Expanding qo as qo(S,Z)= F~ g z i ( S ) : Z 2 i :  1 with 

i = 0  

~2i=r ~r 2i L-(1-i)"s2-2i: + 4! \2iJ 

1 / ' 6 '  "3 1 (8)L_(4_i)~.sS_2i. ' (2.18) +~.t~2i)L-~-i)~:S6-2i '~- h 2i 

note that for i>  0 

sup [g2i(S)[ = O(elloge] 2 L -a logL). 
Is[ < ]log el 

Set 

and 

so that 

qo(s, z ) -  ~(s) + 4o(S, z) 

4(s, z ) -  4o(S, z) + 4(s, z), 

q(s, z ) :  go(S) + ~(s, z). 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

g'(s) - g'z(s)g~(s) (2.23) 

We now show (a'), (b'), (c') follow from (a), (b), (c). 
(a') This is essentially direct since convergence of the integral in (5.1) is uniform 

in the strip IImsl < floge[ by (b), (c). 
(b') Denote g(L-'/Zs+_ z) by g+. Observe that 
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with 

and 

, __ La)2 L,~/2 L a gz(s)=Ig+ g_ )~d#/~g zd# (2.24) 

g ~ = [ l  + t js+ (f "La/2'~La/Z"• L t~/J6+"La/Z"La/2~'d6- L m3'a3' [1 + (~ gLaz• gL~zd#)], (2.25) 

where )~ is the characteristic function for the set {s: Is[ < 6[loge]}, 0 < 6 < 1 chosen 
small enough that Le/2(1--~)>1. We see that for [s[<[loge[, g'z(s)=l 
+O(e[loge[41ogL) and g~(s )=l+O(e  -cll~ so that g'(s)=e -w(~) with w'(s) 
analytic. 

Consider the contribution w~ = - loggy.  Clearly, w'z(s ) =y'z(s)-y~(0) with 

y'z(s) = - log ~ e-  LeqO, z))~(z)d#(z) = La~o(S)_ log ~ e-  La ~(s,z))~(z)d#(z)" (2.26) 

We write the second piece as 

1 
-log~d#)~e -Lq~~ - l o g ~ d # z e - L ~ ~  a ~ dt(gl)~o,t, (2.27) 

0 

where (.  )~o,, = ~ (.)e- c a(~~ + tq)Zd#/~ e-  L a(~~ +'~)zd#. Set y~ = Y~o + Y'z with Y'zo - 13 go(S) 
1 

- l o g S d # z e  -L"~~ and y'z=La ~ dt(F~)%,,. The main contribution comes from Yzo" 
0 

1 2a 2 T )_~L3a(C]30)T y~o=La(qo) x -  ~L (Cjo) ~ + 

L4a 
+ 3T. ! d t ( t -  1)3(~)r,t  (2.28) 

with self-explanatory notations. Denote the quartic remainder by R'~o and separate 
it into terms contributing to y; and to ~': 

RL(s)= L . m = 0 (-~m)!" " + Rz~ (2.29) 

An easy error analysis employing Cauchy estimates gives 

/~zo(s ) =< L(a- s~). const e4llog e[ 24 L- a log~ L, (2.30) 

and for the couplings fm in (2.29): 

f m =  O( e4 L~- ~mI~ log4 L) �9 (2.31) 

The remainder term )~ is handled similarly. Clearly, by (b) and the )~ in the 
expectation (')~o,t we have 

(q)vo,  t ~--- O(e4ll~ 8[ 24 L -  ~ loggL). (2.32) 

Write 
1 

~'z(s) = L  a ~ dt(F~o,t(L-~/2s) 
0 

= const + ~2.w: (L- "/Zs)2 :+~(:~4 (L- ~/2s)* : + ~.b6 : (L- ~/2S)6 : 

~8 a'2 8 + ( L -  / s) : + (2.33) 
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The constants/~2 ... . .  b's are all O(e41log~] z4 log4L) by a Cauchy estimate. Thus 
w'z makes contributions ?x, uz, 7z, ~"z to r', u', t', h' of orders O(e4lloge] 24 L -p~ log4Z), 
p =  1, 2, 3, 4 respectively. Its contribution ~'z to if' is 

~' r? ! dt Dl~176 ) W ) [  ~ _ _  

= L a- 5~O(e*rlog El 24 L- ~ log4L) (2.34) 

by (b) and a Cauchy estimate. This is the same order as in (2.30). 
All that is left to examine of the contributions from Y'z are the first three terms of 

(2.28), which give the main contribution y~: 

y~ =La(qo)z-- ~ L (qo)z + _. (qo3)~ 

1 2~ 2 T 1 =I~(qo ) -  ~ . L  (qo) + 3~.L3~(ft3)r +O(e~Cll~ (2.35) 

the formal third-order perturbative contribution plus terms of O(e -cll~ which 
may be absorbed to fourth order. The pcrturbative contributions to the couplings 
r', u', t', h' are of the form 

r~=L2[r-(~2uZ +~lru+~4tu)+(c%u3)+O(~4L-dlog4L)], (2.36) 

u~ = L ' [ u -  (f12 u2 + fllru + fl4tu) + (fl'su 3) + O(E4L -d log~L)3, (2.37) 
t~ = L- 2 ,  -~)l-t- (32 u2 + 64tu ) + (6'3u 3) + O(e4L - a logaL)], (2.38) 

h~t = L- 4 + 3,[h _ (74tu) + (7;u 3) + o(egL- a log4L)], (2.39) 

where the coefficients of the quadratic terms are O(L ~) and the coefficients of the 
cubic terms are O(L2a). The contribution #~  to w' is of the form 

lo g2i .szi:. 
k~(S)= ,=sZ (~.T" (2.40) 

The largest of the induced couplings is 

g l  0 = L -  6 + 4~[qst2 + tl6u h + rl,4tu 2 +...3 =_ O(e4L- s, log4L), (2.41) 

while the smallest arises from a single contribution: g'2o=L-16+9~h 3 
= O(g9L - l~ Thus, at least g~i = O(e4L-5~log 4L) for all i, so that 

sup [~t(s)t = O(e4[logeI2~ - 5~log4L). (2.42) 
Is] < loge]  

t If we now assemble all of the contributions from Yx, we find 

6 = r~ + ~ + L = L~[r- (~u~ + ~ru + ~,t~) + (~u~)] 

+ O(e*]logel24 L- ~ log4L), (2.43) 

u~ = u~, + u~ + L = I2 [u- ( f l~u 2 + fl~ru + fi,tu) +(fl'3u~)3 
+ O(g4]logg]24 L- 2~ log4L), (2.44) 

t~ = t~t +7~ + f6 = L- m -~)Et-(~2 u2 + 64tu) + (~suS)] 

+ O(e,lloge124 L- 2, logaL), (2.45) 

hx = h'M + ~x + f8 = L- 4 + 3eEh _ (T4tu) + (7gu3)3 

+ O(e4110ge[ 24L-4~ log4L), (2.46) 
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and 

#'x=#'~+~'x+R'x=L-6+4~O(e411oge[24L-alog4L ) for Isl<]loge[. (2.47) 

We lastly consider the contribution w'l(s) =-- -logg'~ (s). However, since g~(s) = 1 
+ O(e-CfI~ w't(s)= O(e-Cll~ which may be absorbed to fourth order. Thus, 
we conclude that Eqs. (2.8-11), (2.6) give the correct results for the total 
contributions, using the negative powers of L to select constants E, B', A', C', D'. 

It remains only to verify the bounds (2.2, 4-5). This is easy for 7, h using the 
irrelevancy of these variables, as appears from (2.10), (2.11). Note  here that t2, is 
defined by the requirement that t be close to its asymptotic form: 

tas(U) = t2a u2 +7, (2.48) 

where 

tza = - - ( L  2 - -  1 ) -  13 = O(L a- 2). (2.49) 

From (2.9-10) one sees that 

7' = L- 2(1 -~)[7+ (~3 u3 q- O(g4[logg124 log4  L) ]  (2.50) 

with 
63 = 0(L2a). (2.51) 

With Eq. (2.50) the bound (2.4) clearly iterates by choosing L > L o so that L-2o  -,) 
is sufficiently small. The same argument applies to the bound (2.5) for h, using 
directly Eq. (2.11). 

To iterate the bound (2.4), we now note from (2.9), (2.3-4) that 

u' = U[u-  f12 u2 q- fi3 u3 -~ O(g4llog el 24 l o g 4 L ) ]  (2.52) 

with 
f13 = O(L2a) �9 (2.53) 

Defining ~ to be the fixed point solution of the 3 rd order equation, 

/~ = Le [-t,~ - -  fl2t~ 2 + f131~3], (2.54) 

the iteration equation for ~ = u ' - t1  is found to be 

fi' = L-~t7 + O(e4lloge124 log4L). (2.55) 

If C' is the constant in the O-bound of the remainder, we can require that 
c'eellog~le4L a log2L < ( 1 -  L-~), so that the inequality in (2.2) iterates. 

(c'). We consider Isl > Ilogel, llmsl < L-~/2llogzl. The analysis here is so similar to 
that in the last step of the proof Gawedzki and Kupiainen gave of their 
Proposition I in [-5] that it would harldy merit any discussion, except that there is 
a small technical error in that step of their proof. We point out here how to remedy 
that flaw. One observes first, as those authors do, that for Izl <�89 

lg +_l <exp I _  ~--~((ReS + )4 + (ReS +_)2)] . (2.56) 



Quantum Field-Theory Models on  Fractal Spacetimes. II 91 

Therefore, 

Izl <�89 gL+a/Zg~alZdlz 

~oxp[ ~6,~ "=es,'+~-=o<,] 
[~ 1 x , j" exp -- ~ .  6Ld-"(Res)Zz 2 d#(z) 

Iz I <~L-~/2IRes  ] 

_<exp[ -l i~(Lz-1)(Res)21j 'expl- u---- L a-4-]4! z j d/~ 

(2.57) 

For [z[ >_�89 one observes that for exactly one of the signs + or - ,  ]ReS+[ 
> ~ L - ~  l~l--s and thus (2.56) holds. For the other sign use that [g[<2. 
Then, 

[~1 ~ gL+a/ZgL-~/2d# 
> ~L - ~'/ZlRes [ 

< 2 L~/2 exp -- (L~/2) ((3)4LZ~(Re s)4 + O/U( Re s) 2) " f d#(z) 
I=[_-> ~L-"/alR~sl 

= ~ (L ~ ((Res) + �9 

=expl--  g~(L2-1)(Res)2][exp[--~.Laz*ld # 

x[l+O(e-Cl~ ~ ((Res)i 4 + (Res)2)]. (2.58) 

Combining the contributions in (2.57) and (2.58) gives 

,..~..~2~,,~ox, I_ ~ 2-~>=e<I~=, I ~'z'l~ 
•176 I- ~-~((Res) ~ 4+(Res)Z)]. (2.59) 

On the other hand, 

'g(z)L~-P(z)>exp[O(e211oge'61ogZL)] fexpI- ~ I~z41dl~ (2.60) 
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_<_ ~ t~ 1)(Res)2 ] Ig'(s)l exp l_O(eZllogel6 log 2 L ) -  ~ (L 2 - 

[~ 7 x exp - ~ ((Res) 4 + (Res) 2) 

=<exp - ~-~((Res)4+(Res) 2) for e<eo, (2.61) 

which is (c'). 
To complete the proof of the theorem statement, we must only demonstrate 

mathematically that r may be fine-tuned. This is established also by arguing along 
rather standard lines [7-8]. We note first the iteration equation for f which follows 
from (2.3), (2.8): 

r' ---- L2[r + ~xau 3 + O(e4lloge124 log4L)] (2.62) 

with ~a = O(L2a) �9 Let ~o be the closed disk in C about 0 with radius B~3L -a log3L 
and assume chosen closed subsets ~k, -", ~o such that ~l--c ~t  + 1 and ~t[~t]  = ~0, 
k < l <  0, where 7k =~k[~]" Now if the constant B is taken sufficiently large, say, 
B > 4Lao~a/fla2, then for L sufficiently large, and small e, it follows from (5.78) that 
~k - l [~k]  3@0, and one may chose inductively the closed set ~k-~-----~k21[~0] 
C ~  k. Of course, the set ~ - 0 ~k is nonempty and for ~r ~,  the bound I?kl 

k_<O 
<Be3L-alog3L is obeyed for all k<0. 

This completes the proof. We only remark that, following the same arguments 
as were used above, one can show that g(s)= e-'(~) with w(s) given by (2.12) obeys 
(c). Obviously it obeys (a), (b) and this shows that the domain 9 is nonempty. 
Similarly, one can show that (2.13) obeys (c). 

3. Existence of Critical Trajectories 
and a Non-Gaussian Fixed-Point Theory 

We now go on to establish the existence of critical trajectories and a non-Gaussian 
fixed point for the hierarchical recursion. This is an old result [1-3, 5] and we shall 
follow closely the proof of Proposition 2 in the paper [5] of Gawedzki and 
Kupiainen. The results are improved to third-order and the technique is refined, 
using methods of [6]. Most of the modifications can be inferred from those made to 
their Proposition 1 in our Theorem 1. Therefore, we shall content ourselves with a 
statement of the results and a sketch of the proof. Then, we point out the 
implications of the result for the existence of a scale-invariant, non-Gaussian field- 
theory. 

Theorem 2. For any weight function g in the domain 9 obeying conditions (a), (b), (c) 
of Theorem 1, it is possible to choose the parameter F=Fc with all other parameters 
fixed, so that for all k <= O, g~k exists and belongs to 9 ,  and further, the limit of g~k as 
k-o - o o  exists absolutely uniformly for s in the strip IImsl < L-~/E[loge[. The limit 

g*(s)= lira g~(s) (3.1) 
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belongs to ~ff and is a non-Gaussian RG f i xe&poin t  with 

u* = I)l + O(g3110gg124 log3L), (3.2) 

where ft is the approximate f i xed  point coupling of  3 ra order perturbation theory. 

More specifically, with quantities 6fk = fk _ 1--fk, we establish for all k=<0: 
(Ak) For I in the range k < l < 0, one can choose compacts N'~_ ~ such that N'~_ 1 

CN'l and such that c5? z range s over the closed ball 8N'~={z:lzl 
< �88 a + l, log4L} as f =  ro ranges over N'~_ l. The constant B is the same 
as in Theorem 1, and N'l--Nz. 

(Bk) For f~Nk, one has also for some constants A, C, D, E: 

16u~l < 2AeZL - zt + k~ 1og2 L, (3.3) 

I~?kl_-< 2C~3 L -  it + ke log3 L, (3.4) 

16hul < 2De 3L- a + k, log3 L, (3.5) 

sup ld~k(S)l <= 2Ee411ogel2'* L -~+k~log4 L.  (3.6) 
Isl < Ilog el 

(CO For f~  Mk, iff Isl => Ilogel, Ilmsl <L-~/elloge[, then 

Ifg~(s)[<--Lk~(Res) 6 _  e x p [ - -  ~ti ((Res)4 + (Res)~)] . (3.7) 

Then, for ~ e N  ' =  (] ~ ,  the existence and convergence claims made above are 
true. k Z o 

Proof  The proof  of assertions (At) , (Bk), (Ck) for k < 0 is by induction on k. There 
is no difficulty in verifying (B0) , (Co). For (Ao), one defines 

uses 

and defines 

6r162 {z :rz I <�88 -~ log3 L} 

6~o [t~o] = ~r'o ---- 17-1 -- r'o ----- ( L2 -- 1)ro -[- O( g3L-8 log 3 L) 

N'- 1 ~,5~o ll-6N;] aN; .  

(3.8) 

(3.9) 

(3.10) 

(Bt_l) The essential tools to establish (3.3-6) for k - 1  are a set of iteration 
equations (with 6f,_ 1 =- 6f', 6fk = 6f) 

6~' = L2 [6~ + O(e4110g e124L -a+k' log4L)], 

(~ff = L-~6~ + O(e4llogel24 L -a+k~ log4L), 

6~' = L- 2(1 -")[6~+ O(841log e[Z4L -it +ke loggL)], 

6h' = L -4 + 3~[6h + O(elloge[Z4 L -a+k~ log4L)], 

0.11) 
(3.12) 
(3.13) 
(3.14) 

from which the stated bounds iterate rather directly. These can be derived by 
writing 

6w'(s) = 6y ' (s)-  6y'(O), (3.15) 
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where 

and 

so that  

6 y ' ( s ) = y " ( s ) - y ' ( s )  (3.16) 

y ' ( s ) -  - l o g S d # e  -Leq , y'(s) = - log J" d#e -Laq' , (3.17) 

6y'(s) = - log [~ d#  e - Laq' fl. d#  e - Laq] . (3.18) 

One can then decompose 6y'(s) as 

5y'(s) = 6y'z(s ) + 6y'~(s) (3.19) 
with 

6y'z(s ) = - log[I e -  L"aq(~, ~)dv(s, z)], (3.20) 
where 

dr(s, z) = e-Laq(~, ~)X(z)d#(z)/S e -  r~q(~, ")Z(z)d#(z) , (3.21) 
and with 

6y~(s) = - log[1 + (~ e -  r"q'z• e -  LaCzd#)] 

+ log[ 1 + (~ e-  Laq)~ld#/J e -  Laqzd#)]. (3.22) 

The same arguments  applied to (2.27) to derive (2.43-47), apply also to (3.20) to 
derive (3.11-14). The derivation of (Bk) is completed by showing that  

sup 16y'~(s)l = O(e-Ct'~ (3.23) 
Isl < [ logd  

First, as a consequence of (B~) and (CO it is seen that  

I~gl _-__ 2C(L)LU~ 3/2 (3.24) 
with 

C( L ) = O( L3a/ 2) . (3.25) 

Then,  it is no t  difficult to show also that  

6y2 = O(I '6J)  + 0(~I )  (3.26) 
with 

I = ~ e -  Cdqz• e -  Laqzd#, (3.27) 

6 j =  l --(~ e-L~r  e-La)~d#)=O(e2[log~14 Lk~log2 L) (3.28) 

and 
I'  = I e - L "q'Z• d#/~ e - L ~qzd# = O(e -  cl~og ~1 ~). (3.29) 

One then verifies 61 = I ' - I  = O(e-Cl~~ and (3.23) follows. 
(Ak-0  One uses (3.11) to show that  

5Nk- ~ [ ~ k -  1] = 5Nk- 1 (3.30) 
and defines 

. . . .  (3.31) 

(Ck-~) We write 

fig' = g" - g' = (~ i f (s ,  z)d#(z)/~ f '(O, z)d#(z)) - (~ f (s, z)d#(z)/~ f (O, z)d#(z)) 
(3.32) 

= (i af(s,  z)d#(z)/~ f '(O, z ) d p ( z ) ) -  g'(s) (l 6f(O, z)d#(z)/5 f '(O, z)d#(z)) ,  
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where 

f (s, z) =_ g(L ~/2s + z) L~ /zg(L- ~/2s- z) L~ /2 = e-  L~q(s. ~). 

The same methods applied in (c') of Theorem 1 to g'(s) apply here to give 

and 

(3.33) 

fi 2 (Res)2] I~ (~fd#/~ dfod#l ~ I~ -  3~t(3)6 exp IO(e2[loge[6 log2L)-  9-6 (L - 1) 

+(Res)Z)l (3.34) x Lk~(Res) 6 exp I - ~ ((Res)4 

If 6fodl~/I fdd#l ~ L a- 3~ exp [O(e 2 Ilog el 6 log2L)]/3, (3.35) 

which, with (2.61), give (3.7). Hence, (Ak), (Bk), (Ck) are inductively established. The 
convergence claims follow rather directly from the established bounds. That the 
limit function is a fixed point can be seen by taking the limit as k ~  + ~ of both 
sides of the recursion formula (1.1). Finally, (3.2) is a consequence of (2.9). [] 

We now observe the following 

Corollary 1. For either of the following choices of sequences (renormalization 
schemes): 

(i) g(U)(s) - gL u(s), M > 0, (3.36) 

(ii) g(~t)(s) =- g*(s), M > O, (3.37) 

the continuum limit or equivalent sealing limit 

G*(xl ..... Xp; N)= lira G(M)(xl .... ,Xp; N) 
M---~oo 

= lira LM~p/2C(~LMx~, ..., ~LMxp~; g(~t),U+M) (3.38) 
m ~ o 9  

exists pointwise for non-coincident points (xl, . . . ,  xp)~ (*Fu) p and is the same limit 
for (i) or (ii). Furthermore, the Green's functions G* obey the scaling law 

G*(Lxl ..... LXp; N) = L-~P/ZG*(xa,..., Xp; N -  1). (3.39) 

This corollary follows essentially directly from Theorem 2 and our earlier 
remarks in Sect. 4. Equation (3.39) is easily derived from the explicit expression 

G*(xl . . . .  , xp; N) = Lkctp/2C(~Lkxl~ . . . .  , ~Lgx,~; g*, N + k). (3.40) 

We also note that the cont inuum limits of k-scale Green's functions 

Gk(n 1 . . . .  , np; N) = lira G~M)(nl,..., rip; IV) 
M---~ao 

= lira LM~v/zC(~L~tnt~ ..... ~LMnp~; g~ff~,N+m) (3.41) 
M ~ a o  

exist for non-coincident points (nl . . . . .  np)e(*lFf)P and obey a difference RG 
equation: 

6Gk (nl, ..., np; N) = 0. (3.42) 
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4. Massive Theory with Non-Gaussian UV Fixed Point 

We finally present the construction of the massive theory with the Wilson-Fisher 
non-Gaussian fixed-point function as its UV attractor. This result is new, al though 
the proofs are not  technically much different from the preceding. Again, we state 
the results, sketch the proofs and then draw the conclusions for the quantum field- 
theory models. 

For  each k >  0, define a domain ~ )  of weight functions g by the follow- 
ing conditions (ak), (bk), (ck): 

(a k) For  ]Ims] < Iloge[, g(s) is an even analytic function, positive for real s and 
g(O) = 1. 

(b k) For  Isl < I]oge], g(s)=e -w~ with w(s) analytic and 

1 2 1 1 
w ( s ) = c + ~ r : s  : +  . . u : s 4 " + ~ . t ' s 6 : + ~ ( s )  (4.1) 

with di#(O)/ds i--O, i=O, 2, 4, 6 and c fixed by w(O)= O. Furthermore,  for some 
arbitrary but fixed choice of O, 0 < 0 <  1: 

u=u* + Au, [Au] <=AeL-a- 2k~logL, (4.2) 

r = r* + 2rzcu*Au + rzc(Au) 2 -}- At ,  [drl ~ BeZL -21- 2kO log2 L, (4.3) 

t = t* + 2t2,u*Au + t2a(Au) 2 + At,  tZltl "~ Ce 2L- ~- 2kO log2L, (4.4) 

k = # * + A ~ ,  sup ]Ak(s)l<De3]logellSL-a-2k~ (4.5) 
[s[ < ]loge I 

(c k) For  Isl > Ilogel, Ilmsl <L-~/Zllogel, 

Ig(s)l __< exp[ -u~ ((Res)~ + (Re s)2)l (4.6) 

and 

lz~g(s)~__lg(s)--g*(s)lSg-2kO(Res)6exp[ - ~6 ((Res)4 + (Res)2)]. (4.7) 

Then, the following holds: 

Theorem 3. For each k > 0 if g e ~ ) ,  then the RG transform g' exists and also obeys 
(ak), (bk), (C k) except possibly condition (4.3) of(bk), and a fortiori all of (a k - ~), (b k - 1), 
(c k- 1) except possibly (4.3) of (b k- 1). 

Furthermore,  for some constants A', B', C', independent  of k, 

IAu ' -  (1 -- fleu)Au] < A% 311ogellaL- 2kO log3 L, (4,8) 

[Ar'-- L2Arl ~ B' e3110gellS L-  2k~ L,  (4.9) 

[A t' - L-  2 zl t[ <= C' e 3 [log el 1 8 L-  2kO 1oga L. (4. I0) 

Proof The proof is essentially the same as that  of Theorem 1. Note  the major 
changes in the statements: rather than the bound (2.6) on # one requires now a 
bound on A#, in the large-field bounds (4.6), (4.7) the running coupling appears 
rather than the fixed point coupling; and, there is a second large-field bound, on 
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Ag, as well as on g. To derive the bound on Aw', one employs the expression 

1 dt(1 y'(s)= I~(qo) -  
2! + o 

1 

+ L a ~ dt(gl)vo, t + O(e-Cll~ (4,1 I) 
o 

giving the perturbative contributions to second order. Writing 

y' =y*  +Ay (4.12) 

and so forth, one obtains at once 

1 
Ay'(s) = ~(Aqo)  - ~. L2a(2(qS; Aqo) r + ((Aqo)2) r) 

1 L3 a if dt(1 t)2(3(q*; q*; qoA)f+((Aqo)3)t r) 
-~ - -  3 - -  2! o 

1 

+ L3 I dtf Aq)~o,, + O(e-cl'~ (4.13) 
0 

which, analyzed along the lines of Theorem 1, provides the desired bound. The 
proofs of the iterability of (4.6), (4.7) proceed in tandem. For  (4.6) one argues as in 
Theorem 1, but uses 

y' =y*  +Ay (4.14) 

to replace u in the analogue of (2.61) (with ff~u) by u' and so proceeds to derive the 
bound 

[u 1 Ig'(s)r < exp - ~ ((Res) 4 + (Res) 2) . (4.15) 

For  (4.7), one argues essentially the same as for (3.7) of Theorem 2, noting that 

1 
Ay'(s)=I~(Aqo ) - ~. L2a(2(q*; Aqo)T + ((Aqo)2) r) 

1 

1 La;t ! dr(1 - t )2  (3(q~; q*; Aqo)f+3(q*; Aqo; Aqo)tr+((Aqo)3)t r) 

1 

+ L a f dt(A~l)~o,, + 0(e-Cja~ (4.16) 
0 

If one now takes 6-~A, g'---,g, g~g*, Lk"~L -2k~ ~ u ,  the same proof as of (3.7) 
carries through except for a few minor modifications. [] 

One next defines, for each M > 0, certain subdomains ~ ) ,  ~ )  of N(M) by 
adopting, for N~),  the conditions 

A r (u) = L- 2Mrn2 + 3~(M), (4.1 7) 

IA ?(M)r ----< Ee311oge] ISL-a- 2~t~ L, (4.18) 

Im2[ <=�89176 (4.19) 
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in place of the bound in (4.3). The definition of ~M) os identical, but with (4.18) 
replaced by 

I Ar(M)I ~lEe3[loge[ 18L-a- 2M0 log3L, (4.20) 

The results of Theorem 3 carry over with ease to the subdomain ~ ) .  If one defines 
A?~ M) in general by the equation 

Ar(kM)=L-2km2+A~'(k ~) , k < M ,  (4.21) 

then one derives 

A~(~) I-? " A~(M)I < Be3Ilog/3IX8 L-  2M~ L (4.22) / M -  1 - -  

The fundamental result is then: 

Theorem 4. For each sequence (g(~t) ~ ~(m M) : M >= O) there exists a choice of sequence 
( A ~(~t) : M > O) such that for all M > 0 and all k, 0 <<_ k <<_ M,  g[M) exists and belongs to 
~ ) .  Furthermore, for all k >= O, there exists a g k e ~  ) such that as M--, + ~ ,  

g(kM)(S)--> gk(s) , (4.23) 

absolutely uniformly on the strip IIms] <L-~/Zllog/3l. The sequence (gk:k>0) is an 
RG trajectory: 

g~ =gk-  ~ (4.24) 

which has effective mass m: at unit length scale, or, more generally, 

A r k = L-  2km2 + 0 ( 1 3 3 1 l O g  el 18 L-  ZkO log3 L). (4.25) 

Finally, gk has g* as UV f i xed  point: as k--* + 0% 

gk(s)~g*(s), (4.26) 

absolutely uniformly on the strip Ilmsl <L-~/211oggl. 

More specifically, with bf~ m -  ~M)_  f~M) and for some arbitrary but fixed 0, 
0 < 0 < 1 we prove for each M > 0 that A~ (~ e M(0), ..., A?(m e N(~) may be chosen-  
where N(s) is the disk in IE centered at 0 with radius -~Eg 311Ogel a 8L- 2JO loga L -  such 
that for each 0 < k < M: 

(A~) For  all J, 0 < J < M and all l, 0 < l < J, 

Ig)A ~Is)l < �89 ts L-a-  2J0 log3 L. (4.27) 

Furthermore, there exists a descending chain of compacts, ~(M+a)C~(M+I) ~'a I = o ' a / +  1 , 

k<_l<_M..., ~(M+~M+ ~)----- N~M+ a) such that as A?(~t + 1) ranges ~ N~ M + ~ )  ~), 6A?IM) rang es 
o v e r  ~ ( M ) .  

(B~) For  all J, O<_J<_M and all l, O<_l<J if J < M  and k<l<__M if J = M ,  

[6 Aulj)l = [c~ulS)l <_ 2AeL-  d- 2so logL, (4.28) 

cSA tl J) < 2CeZ L - ~- 2J0 log2 L, (4.29) 

sup IOAw}J)(s)[= sup 16wlS)(s)l<2D/331logel~SL-a-ZS~ (4.30) 
[sl < Ilogel Is[ < ]logel 
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(C~) For all J, 0 < J_< M and all l, 0 _  l_< J if J < M and k_< 1 < M if J = M, 

,glS)(s)l < exp [ - U~6 ((Res)4 + (Res)2)l (4.31) 

and 

[6Ag~S)(s)[<L-2a~ - _  ~ulJ) ((Rex)* +(Res)2)l.  (4.32) 

Choosing successively for M > 0 some A?<M)e ~(o ~), the existence and conver- 
gence claims made in the theorem statement above are true. Furthermore, for all 
M > 0 and all k, 0 < k < M, one has for constants A", B", C": 

16A?~)I - l J .  6A~'~u) I < B"e 3 [log el ~ s L- 2M0 log3 L, (4.33) 

[6hu~);= [1 =fi2(U*§ ~) + AUk(~t + ~))]O AUk '~) 
< A,s3]loge] ~ 8 L- 2~o log3 L, (4.34) 

]hA t(k~_)~ -- L- 2.6A t~ ~)] < C"t3]logs[ 18 L- 2M0 log3 L. (4.35) 

Proof. The proof is very similar to the proof of Theorem 2. The proof of assertions 
M (Ak), (B~), (C M) is by induction on M and, within the induction step, a second 

induction on k. 
The proofs of the induction step assertions (B~ (C ~ is direct. We note that the 

proof of (Ao ~ requires the parameter 0 that has been introduced. Indeed, one can 
easily show that for some arbitrary but fixed A~(~ ~ ~(o) as A~ (1) ranges over ~(1), 
L2A~ "~)- A~ "(~ ranges over the displaced disk N(1)_ A?(O) which contains the disk of 
radius (L 2(~ -0)_ 1)ER centered at the origin. Using (4.22) one can then argue that 
6A~ (~ ranges over a set containing ~(o) as AW ) ranges over ~(~1. Defining 
6N~M):~(M+I)~r for k, O<_k<_M, by (~(kM)[A~'(M+I)]----(~A~ "(M), o n e  can then 
define 

~(01) ~ (1~00) - 1E~(0)] ( ~ ( 1 ) ,  (4.36) 

which gives (A~ Now, assuming for M -  1 that (A~ M- ~)), (B~ M- ~)), (C(k M- ~)) hold for 
all k, 0 _< k _< M -  1, one seeks M M M to prove (A k ), (Bk), (C k ) for all k, 0 _< k _ M. The proof 
is by induction on k. 

The proof of the initial step k = M is virtually identical to that for M = 0 above. 
For  the induction step it suffices to establish M (A k), (B~), (C~) only for the case 

J = M. Then, in turn one checks: 
M 

(Bk- 1) The proof is very similar to the proof of (B k_ 1) in Theorem 2. One 
observes that 

A yk - 1 ---- Yk - 1 --Y* = --log ~ dp e-  Laq~ + log ~ dl~ e- L?tq* 

= - log [~ dl~ e - L%,/~ dpe - Laq,] (4.37) 

and analyzes this expression as (3.18) there. In particular, this analysis yields the 
iteration equations (4.33-35), which allow one to establish the bounds (4.28-29). 
To iterate the bound (4.30) for 6A w one uses the irrelevancy factor L-4 + a~ of that 
variable. 
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(Ak M- 1) The proof is essentially the same as above and again requires the use of 
the arbitrary parameter 0, 0 < 0 < 1. One defines 

~(M+ 1)--~,~ a0(M) ~- 1 [-~(M)] ~ U +  1), (4.38) k-1 ~,W~ 

which is seen to have the correct properties. 
(Ck M- 1) One notes that 

(M) _ .q,~(M) [o ]  - -  ~ ( M  + _ ( s )  - " ( s )  - ( s )  U~Nk - 1 ~o1 - -  ~ k  - 1 

= (~ fk TM + a)(s, z)d#(z)/f fk TM + a)(O, z) 

- ( f  A c M ) ( 0 ,  

= (I 6A(M)( s, z)d#(z)/f fk (M + 1)( 0, Z)) 

-- g(k~)a (S) q bfk(M)(o, z)d#(z)/~ fk TM + t)(O, z)d#(z)) (4.39) 

which corresponds exactly to (3.32) of Theorem 2 and is employed in a similar 
fashion as there to iterate the bounds (4.31), (4.32) for J = M, t=  k - 1 ,  establishing 

Therefore, (A~), (BkM), (Ck M) are inductively established and the existence and 
convergcnce claims at the beginning of Theorem 4 follow rather directly. 

To establish (4.24) one takes the limit as M~ + 0o of both sides of the rccursion 
formula, 

g ( M ) l ( S )  = I g ( M ) (  L -  ~/2s "~ z)Ld/2g(M)( L -  ~/2S --2)Ld/2d#(z)/~ g(M)(Z) L~d~(Z)' (4.40) 

using uniformity of the limit g~M)-~g k on the strip IImsl <L-~/2llogel, whereas (4.26) 
follows from the fact that gk e ~ )  for each k > 0 and employing the bounds on 
Ag=gk--g* which appear in the definition of ~ ) .  [] 

We conclude with 

Corollary 3. For any choices of  sequences (renormalization schemes) 

(g(M) ~ ~ I M  > 0) (4.41) 

with A~ (M) adjusted as in Theorem 4, the continuum (sealinG) limit 

G(x~, ...,xp; N ,m)= lira G(M)(Xl, ...,xp; N,m) 
M~ot) 

= lira LM'p/2C(~LUx,~ .. . . .  ~LMxv~; g(U),U+M) (4.42) 
M--*oo 

exists pointwise for non-coincident points (xl ..... Xp)6(*I:s) p. The 
Green's function obeys the asymptotic scalin G relation 

G(L-MXl, . . . ,L-Mxp; N-M,m),,~LM~p/2G*(xl, ...,Xp; N) (4.43) 

as M ~ + ~ .  
Note that (4.43) follows from the explicit expression 

G(xl, . . .  , xp; N, m) = Lk~P/2C(ELkx 1~,''', ~LkXp~; gk, N At- ]s (4.44) 

continuum 
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for k>=Q(xl . . . . .  Xl,). Also, the con t inuum limits Gk(nl , . . . ,np;N,m) of k-~caie 
blocldield Green 's  functions exist, obey the R G  equat ion (3.42), and also obey 

Gk(nl, ..., np; N,  m) ~ G*(nl, ..., np; N) (4.45) 

as k ~ + ~ .  
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