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S T R U C T U R A L  COMPLETENESS OF G()DEL'S AND D U M M E T T ' S  
PROPOSITIONAL CALCULI  

The purpose of this paper is to show that all GiSdel's many valued propositional 
calculi and Dummett 's  linear calculus are structurally complete. 

GtSdel's calculi Go are given by matrices 92ln of G6del. The sequence of matrices 9Jl, 
was introduced by G6del in [2] and was axiomatized by Thomas in [5]. Hence G, are 
called Thomas's calculi LCn as well. 

Dummett 's  linear calculus LC was studied in [1] by Dummett.  These calculi be- 
long to the class of intermediate or superconstructive (superintuitionistic) propositional 
calculi. A superconstructive propositional calculus is formed from the intuitionistic 
propositional calculus H by the addition of finite number of extra axioms. 

1. Let At  be the set of all propositional variables Pl, P2, -.., let S be the set of well- 
-formed formulas built by means of variables Pl, P2, ..- and connectives: ~ (negation), 

(implication), ^ (conjunction), v (disjunction). The variables ~, ~, ... run over the 
set S. 

I f  R is a nonempty, finite set of n-ary (n > 1) rules r" (resp. r), where r n _ S", 
and A c_ S, then the couple (R, A)  is called the system of propositional calculus with 
axioms A and primitive rules R. The rule r n is structural, r"E Struct, iff for every 
e :At  -~S and for every ~1, . . . ,e ,  e S: if r~(el, ..., ct,), then r"(he(el), ..., he(~t,)), where h e 
is the extension of e to an endomorphism h e : S ~ S. The set Cn (R, X )  is the least 
set containing X and closed under each of the rules r E R. The rule r is permissible in 
(R, A) ,  r e Perm (R, A), iff Cn (R u {r}, A) _ Cn (R, A); the rule r is derivable in 
(R,  A ) ,  r E Der (R, A), i ffCn (R w {r}, A t3 X) __c Cn (R, A k3 X) ,  for every X _ S. 
The symbol ro denotes the modus ponens rule and the symbol r ,  denotes the substit- 
ution rule, the sets Ro and R0. are defined by the equations Ro =-- {r0}, R0. = {to, r.} 
respectively. Sb (X)  is the smallest set containing X c_ S and closed under the sub- 
stitution rule. 

2. The system (R, A)  is structurally complete, i.e. (R, A)  E SCpl iff Struct c~ Perm 
(R, A) _c Der (R, A) (the notion of structural completeness is introduced by W. A. Po- 
gorzelski in [3]). 

T. Prucnal [4] proved that the system (R, A)  is structurally complete iff for every 
finite set x c__ S and for every fl ~ S: 

(•)  V (he(x) _____ a n ( g , n )  ~ h e ( f l )  E C n ( R , A ) )  : = > f l E C n ( g , A  LJ x ) .  
e :At-+S 
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Classical propositional calculus (Ro, Sb (A.,)) is structurally complete [3]. This  cal- 
culus is the second element of  sequence of  calculi G,, and these calculi begining with 
the third one are, as ment ioned above, intermediate calculi between classical and in- 
tuitionistic. The  latter one is known as lacking structural completeness (A. Wrofiski, 
T.  Prucnal). Hence there arises a problem of  structural completeness of  G6del 's  and 
Dummet t ' s  calculi. (W. A. Pogorzelski proved that (Ro. ,  A ~ )  �9 SCpl, where Ac~ is 
set of  axioms of  G6del 's  matrix '))la). Till now there is already solved the problem of  
structural completeness of  many valued Lukasiewicz's calculi, Lewis 's  systems $4, $5 
and others. 

3. By n-th G6del 's  matrix 9)l,,,(n E N) ,  (cs [2]), we mean an algebra ~19~l,,I, f~.) 
with designated value {1} i.e. 93~,, = (19)~,l, f~,,, {1}), where [9.1l,,I = {1, 2, ..., n}, f2~ = 
~- J , , , f , , , f , ,  , s  and for every x , y  ~ I~)/,,I 

n, i f x  < n, 
fT' (x) = 1, i f x  = n, 

f,;(x, y)  = max (x, y) ,  

[ i ,  i f x  ) y ,  
f , . ( x , y )  = I Y ,  i f x  < y ,  

s  y )  = m i n  ( x , y ) .  

(The set of  all positive integers is denoted by N).  The  set of  all formulas valid in 
matrix 9Jl,, will be denoted by G,,, i.e. ~ E G,, iff v (~) = 1, for every valuation v : S 

lgJl,,[. In [5] Thomas  proved that G, =- Cn (Ro . ,  At , , ) ,  n �9 N ,  where Ac.  = H u 
u {T,,} and T,, is defined: T~ =:p~, T,+~ =: ((p, ,-~ P, ,+I)-~Pl)  ~ T,,. 

By matrix 9 ) l  we mean an algebra : 9)lol, f~,.,) with designated value { 1 }, i.e. 9 ) l  -- 
- -  . ' ,  . . .  ~ f ~ ~ f ^  -- .l~lllol, f ~ ,  {1}), where 19.1l I . . . .  [1, 2, .. n, o1, f2o t f s  and for 
every x , y  s 19.~ U 

[ % if x < o,,  f,i,(x,Y)--~ [ 1, if  x ~ : y ,  
f ~ ( x ) - ~  } 1, i f x = ~ , ~ ,  [ y ,  i f x < y ,  

f s  y )  ~: max (x, y ) ,  f2 (x, y)  = min (x, y) ,  (cf. [1]). 

The  set of  all formulas valid in the matrix :1)~ will be denoted by L C ,  i.e. ~ �9 L C  iff 
v (@ = 1, for every valuation v : S - - 7  I~-~U- In [1] D u m m e t t  showed, that L C  = 

= Cn (R, ,  ALC) where ALC = t - I  L3 {(Pt-~P' , )  v (p._, - .  p~)} and that 

(**) L C =  AG,,. 
n ~ N  

From the definition given above it is easy to see that 

( ~ )  H ~ L C  ~ ... ~ G ~ t  ~ G,, ~ ... ~ Go. ~ G1 = S 

where X c Y means that X _~ Y and X ~ I,'. 

LI~MMa 1. I f  ~. E G,,-~--G,,; then there exists a valuation v �9 S ~ i9.)l~ ] such that  
v (c,.) = 2, (n �9 N ) .  

P r o o f .  We will show that if ~E G,,_~--G,  then v (c,.) ~ 2 ,  for every v : S ~ 19~1 
I t  is easy to see that the mapping h : 19.~,,I -~ I'~)~,,-~1 defined" 

h (1) = h (2) = 1; h (k) = k - - l ,  for k = 3, ..., n .  

is a homomorphism of an algebra l~.l)l,,I, fL,) onto an algebra (1991,-xl, fL,-x). 
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N o w  suppose  tha t  fo r  ~ ~ G._~--G.  t he re  exists a va lua t ion  ~ : S ~ l O J t ,  I such tha t  
v (~) = x0 > 2. T h e n  for  va lua t ion  ~ (~) = h (v (a)) ,  v : S ~ [gJt._ d we have ~ (oc) 
= h (xo) > 1, wh ich  is impossible .  

L e t  us def ine such  a s equence  o f  fo rmulas :  

AI  = " '  (Pl ~ P l ) ,  V = Pl  ~ P l ,  

A2 = po v (P2 -+ Pl) 

A k = p ,  v ( p , ~ A k _ 0 ,  for  k > 2 .  

W e  wri te  ~. = ~ ins tead  o f  (0~ ~ {3) ^ ({3 ~ ~), and  ~. e H for  ~ der ivable  in in tu i t ion-  
istic propos i t iona l  calculus.  

LEMMA 2. The following formulas are derivable in the intuitionistic propositional cal- 
culH$ : 

(i) ~ At =- Al ,  for i >  1; 

(ii) a) (A,+s --,- A,)  -- A t ,  
b) (At --> A,+s) -= V ,  

(iii) (At-,-s v A,) - At+s, 

(iv) (At+s A A,) =- A t ,  

V =  A1; ~ A1 =- V ,  

( V  ~ A,)  --- A , ,  
( A t - , - V )  - V ,  

(At v V) - V ,  

(At ^ V) = - A t .  

P r o o f .  (i). S ince  A~, i > 1, are classical tautologies  it follows that  ~ ~ A~ ~ H .  
F r o m  this,  using the fo rmula  ~ ~ ~. ~ ( ~  , -~ {3) ~ H ,  we have (i). 

(ii) follows by  induc t ion  on j us ing the  formulas  respect ive ly  

a) ((~. v (~ -+ {3)) -7 {3) -> {3 E H ,  ((~ -+ {3) ~ {3) ~ (((~, v (~ -~ , ) )  ~ {3) ~ {3) ~ H  

b) r162 ~ ({3 v ({3 -~ , ) )  c H ,  (a. ~ {3) ~ (v. ~ (7 v (.( -~ {3))) ~ H .  

(iii) and (iv) fol lows immed ia t e ly  f rom (ii) by  formulas  

{3) {3 = {3) e g 

(~ - .  {3) ~ (~ ^ {3 _= ~) e H ,  respect ively .  

L e t  {F.} be  a sequence  o f  sets def ined  by  

Ft = {V},  F.._ = {V, a~} , . . . ,  F ,  = {V, A k _ i ,  A, -2 , . . .  , A , } .  

Cons ide r  a ma t r ix  . 7 . =  ~ . F . , u , , { V } ; ,  where  U , , =  { ~ . , - ~ . ,  ^ , ,  v ,}  is a set o f  
func t ions  on  t7. def ined  by  

,, B l  = B2 

B1 -% B.. - -  Ba 

B1 ^ .  Bz - -  Ba 

Bt  v .  B._, = Bs 

iff  ~ BI m B ~ e H ,  

iff (BI -~ Bo) = Bs e H ,  

iff (B1 ^ Bz)  - B s  e H , 

iff (B1 v B~) -= Ba E H ,  
B .  B2, Ba E F. .  

LEMMA 3. A matrix 7,, is isomorphic to a matrix OJ~,, for every n ~ N. 

P r o o f .  F o r  a rb i t ra ry  n ~ N let 

sJ(t = { Ai,V, i f  i f i i = = n . l ' " " n - - 1  
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The  mapping x : 19J/,] -+ F .  such that x (k) = .c-"[n_k+ 1 is an isomorphism of  ~ .  onto 
'Y-.. This  is easily seen, since by Lernma 2 we have 

(i) ~,,-~-~,-k+l = ~,-s,<k~+l, 

(ii) ~{.-~+i -~..~-i._~+~ : ~:?._fZ.~k.~+~, 

(iii) .~._~§ v ~'i._~+, = ~-~._f~ ,+1, 

(iv) M.-~+I ^. M._,+I = -~-i.-ff~k.o+,, 

for k, l = I, ..., n .  

THEOREM. (a) (Ro, Sb (At . ) )  �9 SCp1,  (n �9 N )  ; 

(b) (Ro, Sb ( A L c ) ) � 9  SCp1. 

P r o o f .  Both cases will be proved by using condition ( . ) .  (a). Let  = = {as, ..., - j} 
and assume that ~ r Cn (Ro, Sb (A~.) u ~) for some n �9 N. Then  | = ~ ~ (~s ~ ... 
... ~ (~.# ~ ~) ...) r Cn (Ro, Sb (A~,)) = G,. By ( * * * )  there is a k ~< n such that |149  
�9 Gk-~--Gk. From these by L e m m a  1 there exists a valuation v : S  ~ 1931k1 such that 
v (O) ----- 2, i.e. 

v (, ,)  ----- 1 ,  v (f3) = 2 ,  i = 1, . . . , j .  

N o w  define a substi tution ek : A t  ~ Fk 

e~(p,) = ~ (v (p,) ) 

where ), is an isomorphism of  9Jtk onto .7.~ defined as in the proof  of  Lemma 3. It  is 
easy to show by induction over the length of  the formula ~ that 

h*~(~) = x (v (~)) �9 H .  

In particular, by  definition of  )~, we have h%(~i) - V �9 H,  i.e. he~(oq) ~ H,  and h*"([3) - 
= Ak-~ ~ H. It  means that h%(oq) �9 G,. for m ~> 1 and h~(f3) r G., for m ~ k, since 
A , r  for s < t. 

Hence  h"~(n) _c G. and h~(f3)r G. which proves condition ( , )  in case (a). 

(b). Proof  of  (b) is quite analogous to that of  (a). I f  O = ~a -+ (~z -+ ... -+ (% -+ 
f3) . . .)(s L C  = 0 G, then by i * * * )  (9 �9 G~_~--G~ for some k �9 N. N o w  applying 

neN 
the same substi tution e, as in case (a) we have h%(e~) ~ G~ for each m �9 N and i ~<j. 
Hence  h%(~) __ O G . = L C  and h%(f3)r  

neN 
This  completes the proof  of  the Theorem.  

It  is known that if  (Ro, Sb (A))  ~ SCpl then (R0, ,  A )  �9 SCpl (converse is not true). 
Hence,  by the above theorem (R0, ,  Aa . )  e SCpl and (Ro, ,  ALC) ~ SCpl. 
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