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STRUCTURAL COMPLETENESS OF GODEL’S AND DUMMETT’S
PROPOSITIONAL CALCULI

The purpose of this paper is to show that all Godel’s many valued propositional
calculi and Dummett’s linear calculus are structurally complete.

Godel’s calculi G, are given by matrices I, of Godel. The sequence of matrices M,
was introduced by Godel in [2] and was axiomatized by Thomas in [5]. Hence G, are
called Thomas’s calculi LC, as well.

Dummett’s linear calculus LC was studied in [1] by Dummett. These calculi be-
long to the class of intermediate or superconstructive (superintuitionistic) propositional
calculi. A superconstructive propositional calculus is formed from the intuitionistic
propositional calculus H by the addition of finite number of extra axioms.

1. Let Az be the set of all propositional variables p,, p,, ..., let S be the set of well-
-formed formulas built by means of variables p,, p., ... and connectives: ~ (negation),
— (implication), » (conjunction), v (disjunction). The variables o, B, ... run over the
set S.

If R is a nonempty, finite set of n-ary (» > 1) rules r" (resp. r), where r* < §",
and A < S, then the couple (R, A) is called the system of propositional calculus with
axioms A and primitive rules R. The rule " is structural, " € Struct, iff for every
e: At — S and for every oy, ...,a, € St if (o, ..., a,), then r"(h(x;), ..., h*(x,)), where A°
is the extension of e to an endomorphism 4°: S — S. The set Cn (R, X) is the least
set containing X and closed under each of the rules € R. The rule r is permissible in
(R, A>, r € Perm (R, A), iff Cn (R U {r}, 4) = Cn (R, 4); the rule r is derivable in
(R, A),reDer (R, A),ffCn (R U {r},d U X) < Cn(R,4 VU X),for every X < S.
The symbol r, denotes the modus ponens rule and the symbol r, denotes the substit-
ution rule, the sets R, and R, are defined by the equations Ry = {ro}, Rox = {ro> s}
respectively. Sb (X) is the smallest set containing X = S and closed under the sub-
stitution rule.

2. The system (R, A) is structurally complete, i.e. (R, A) € SCpl iff Struct n Perm
(R, A) < Der (R, A) (the notion of structural completeness is introduced by W. A. Po-
gorzelski in [3]).

T. Prucnal {4] proved that the system (R, A) is structurally complete iff for every
finite set = < S and for every geS:

(%) V &(r) cCa(R,4)=>hr(B)eCn(R,A4)) =>peCn(R,AUm).

e At—+S

[69]
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Classical propositional calculus (R,, Sb (4,)) is structurally complete [3]. This cal-
culus is the second element of sequence of calculi G, and these calculi begining with
the third one are, as mentioned above, intermediate calculi between classical and in-
tuitionistic. The latter one is known as lacking structural completeness (A. Wronski,
T. Prucnal). Hence there arises a problem of structural completeness of Godel’s and
Dummett’s calculi. (W. A. Pogorzelski proved that (R,,, A;,> € SCpl, where Ag, is
set of axioms of Godel’s matrix ;). Till now there is already solved the problem of
structural completeness of many valued Lukasiewicz’s calculi, Lewis’s systems S4, S5
and others.

3. By n-th Gbdel’s matrix Mi,,(n € N), (cf. [2]), we mean an algebra /|9M,|, Q>
with designated value {1} i.e. M, = {M,|, Q,, {1}>, where |M,| = {1,2,...,n}, Q, =
= {f . f.>f.,f.} and for every x,y e |M,|

~ | nifx <n, - [ Lifx >y,
Fa %) _4 1, if x = n, f"(x’y>_|ry, fx<w,
fr(x, y) = max (x, y), f,:(x, ) = min (x, y).

(The set of all positive integers is denoted by N). The set of all formulas valid in
matrix 9, will be denoted by G,, i.e. z € G, iff v (x) = 1, for every valuation v : § —
— |M,|. In [5] Thomas proved that G, = Cn (R, 4¢,), n€ N, where A, = H U
U {T,} and T, is defined: T, =: py, Tpiy == ((Pn = Prs1) > 1) — T .

By matrix 9 we mean an algebra < 9 |, Q > with designated value {1}, i.e. 9 —=
= M|, Q,, {1}>, where |M | = {1,2,...,7m, ... o}, Q = {f ,f,f.,f.} and for
every x,y € |9 |

- ([ o, if ¥ << w, . Ly,
L= Lifx =, Loy i x <y,
fo(x,y) = max (x,5), fo (%) = min (x, ), (c£. [1]).

The set of all formulas valid in the matrix Wi will be denoted by LC, i.e. « € LC iff
v (o) = 1, for every valuation v :S — [ |. In [1] Dummett showed, that LC =
= Cn (R, A.c) where Ay = H U {(py — p2) v (p2 — p1)} and that

(k%) LC=NG,.

neN
From the definition given above it is easy to see that
(skok k) HclCc...cG,.,ycG,c...cG,cG, =S8
where X < Y means that X < YV and X # Y.

LemMma 1. If € G,—,—G,3 then there exists a wvaluation v :S — |9, | such that
v () =2, (ne N).

Proof. We will show that if «e G,_, —G, then v («) <2, for every v : S — |,
It is easy to see that the mapping % : [M,| — |IM,_,| defined:

RO =h)=1; hk)=Fk—1,for k=3,..,n.

is a homomorphism of an algebra ||, Q,> onto an algebra {|IM,_;l, Q,_>.
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Now suppose that for « € G,_,—G, there exists a valuation v:S — |9M,| such that
v (o) = x, > 2. Then for valuation 7 («) = & (v'(«)), T: S — |M,_,| we have 7 («) =
= h(x,) > 1, which is impossible.

Let us define such a sequence of formulas:

A= ~({pr—p)s V=p —>p1,

Ay = ps v (P2~ P1)

A= po v (b > Ai-yr),  for k> 2.

We write o = B instead of (¢ - B) » (B — &), and « € H for « derivable in intuition-
istic propositional calculus.

Lemma 2. The following formulas are derivable in the intuitionistic propositional cal-
culus:

(1) ~Ai=A,fori>1; ~V=A4; ~A, =V,
@) a) (4dir; > 4) = 4, (V->4)= 4,
b) (Ai~Ai+) =V, A, -Vy=V,
(iii) (Aiv; v A) = Ai+js A;vI=V,
@iv) (Ais; ~ A) = Ai (A; A V) = A,

Proof. (i). Since 4,, 1 > 1, are classical tautologies it follows that ~ ~ 4, € H.
From this, using the formula ~ ~ o — (~ « —> ) € H, we have (i).

(ii) follows by induction on ; using the formulas respectively
a) (2 v(x—>B))—>B)>BeH, (a>P) >8> {(rvy—m))>pE)—>BeH
b)a>@v@—-u))eH, (@a>B) > (x> v —>P)))eH.
(ili) and (iv) follows immediately from (ii) by formulas
(x>B)~>(@vB=peH
(0 > B) > (. A B = o) e H, respectively.
Let {F,} be a sequence of sets defined by
F,={V}, Fo={V,A},.... Fi = {V,Ai_1, As_25.., 4}
Consider a matrix 7, = /F,,0.,{V},, where 0, = {~,, —=n Apn v,.} is a set of
functions on F, defined by
"’nBl:Bg iff NBIEBgeH,
B, -,B,=B; it (B,—~B,) =B;eH,
B,~,B,=B, iff (B, B, =B,eH,
B,v,B,=B, if (B,vB,)=B;eH,
B, By, B;€ F,.
LemMma 3. A matrix 7, is isomorphic to a matrix IR,, for every ne N.
Proof. For arbitrary ne N let
_j A ifi=1,.,n—1
—1 vV, fi=n.

o,
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The mapping A : |[M,| — F, such that A (k) = <(,_,+, is an isomorphism of M, onto
.. This is easily seen, since by Lemma 2 we have

® T !’{n—f:(k)‘*'lj
(ii) Slyeyt1 —>n e g = 5:'Zn—f;'n(k_1)+1 R
(iii) pwtr Vo ooy = ;,_.[,,_f:(k_,,ﬂ S
(iv) Slpeitr Ap ooy = -"’(‘n—f"(k_nﬂ )
for Ri=1,..,n.
THEOREM. (@) (Ryp Sb(A;)»eSCpl, (reN);

(b)  <(Re Sb(ALc)) € SCpl .

Proof. Both cases will be proved by using condition (). (a). Let = = {a;, ..., &}
and assume that 8 ¢ Cn (R, Sb (4g,) U =) for some ne N. Then O = o, — (&, — ...
oo = (2; > B) ...) ¢ Cn (R, Sb (A4;,)) = G,. By (x%3k) there is a £ < » such that e
€ Gi-;—G,. From these by Lemma 1 there exists a valuation »:S — |M,| such that
v (@) =2, ie.

v)=1, o@) =2, i=1.,J.
Now define a substitution ¢, : Ar —~ F,

a(p) = 2 (v (p))

where A is an isomorphism of 9, onto ./, defined as in the proof of Lemma 3. It is
easy to show by induction over the length of the formula « that

Kx(a) = A(v(a)) e H.
In particular, by definition of A, we have #°«(«;) = V € H, i.e. i(;) € H, and A°(8) =

= A,_, € H. It means that A°(o;) € G,, for m > 1 and 4°<(B) ¢ G,, for m > k, since
A, ¢ G, for s < 1.

Hence »*(x) < G, and A*{B) ¢ G, which proves condition (%) in case (a).

(b). Proof of (b) is quite analogous to that of (a). If @ = a; - (a; - ... > (o; —
—B)...)¢ LC= N G, then by %%*%) © € G,_,—G, for some % € N. Now applying
neN

the same substitution e, as in case (a) we have #°(«;) € G,, for each me N and ¢ <j.
Hence i°((=x) ¢ N G,= LC and A*<@) ¢ LC.
neN
This completes the proof of the Theorem.
It is known that if (R,, Sb (4)) € SCpl then (R,,, A> € SCpl (converse is not true).
Hence, by the above theorem (R, A;,> € SCpl and <{Ry,, A.c> € SCpl.
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