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We construct a new class of positive definite and compactly supported radial functions 
which consist of a univariate polynomial within their support. For given smoothness and 
space dimension it is proved that they are of minimal degree and unique up to a constant 
factor. Finally, we establish connections between already known functions of  this kind. 
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1. I n t r o d u c t i o n  

In translation-invariant spaces (cf. [12]) interpolants of the form 

N 

j=l  

are natural tools to solve interpolation problems like Sf (X[)  = yj, I <_j < N,  with 
pairwise distinct points xj E ~d. In many cases it is useful to assume • : lt~ a ~ R 
is a radial function if(x) = qS([[xl] ) with a univariate function 4' :~>0 ~ ~ and 
the Euclidean norm 11. H, and to assume ff to be positive definite, which means 
that for all data sets {x~, . . . ,  xu} C_ R a of  pairwise distinct points the interpolation 
matrix 

A = 

is positive definite. A continuous function q~ : II~> 0 ---' I~ is said to be positive definite 
on IR d, q~ E PDd, if the induced function {(x)  :=~b(tt x [[), x E R a, is positive definite. 

This method of  multivariate interpolation using radial basis functions yields 
good numerical results (cf. [5]) and was studied extensively in recent years. Some 
further applications of  this theory are the construction of  neural networks (cf. 
[2]) and the construction and modelling of geometric objects (cf. [10]). If  ff is one 
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of the usual basis functions like multiquadrics or thin plate splines still some 
problems exist, caused by a large number N of centers xj. Special methods of 
computation (cf. [4]) and evaluation (cf. [9]) were developed to remedy this 
defect. These problems could be avoided if the radial basis function ~ is compactly 
supported. If • has compact support the interpolation matrices are sparse and for 
the evaluation of the interpolants sf only few terms have to be considered. This 
leads to efficient algorithms for the computation and the evaluation of the inter- 
polants (cf. [10]). Another advantage of compactly supported basis functions is 
the principle of locality which is well known from the classical B-splines. The 
change of one center x i causes only a local change of sf. 

In this paper we investigate functions ¢;(x) = ¢([[ x [[) of the following form: 

¢(r) = {0( r  ) 0 < r < I ,  
, . > 1 ,  (1) 

with a univariate polynomial p(r) = Y~.~=l cj rj, CN 7 £ O. We call N the degree of ¢5 
or ¢. Note that due to Bochner a function of this kind is positive definite, if and 
only if the d-variate Fourier transform 

~(x) ~ 5ca¢(r) = (2rr) -a/2 ~ a  ¢5(c°)e"r" dw 

/0 = r -(a-2)/2 ¢(t)ta/2J(a_2)/2(rt )d t  

is nonnegative and positive at least on an open subset. Here Jr denotes the Bessel 
function of the first kind. Note that the operator 5ca acts in this way on univariate 
functions. Up to now, only few positive definite functions of the form (1) are 
known. These are for odd space dimension d = 2n + 1: 

1. Euclid's Hat X t2"+~/which is generated by d-variate convolution of the char- 
acteristic function of the unit ball with itself, and which is in PD2,,+j N C O 
with a degree OX (2"+~) = 2n + 1 

2. Wu'sfunctionsCk+,,,,, C PD2.+~ N C a  with a degree 0¢k+,,,. = 2[d/2j + 4 k  + 1. 

Here, Ix] stands for the integer n satisfying n _< x < n + 1. In the first case it is 
used that the d-variate convolution of radial functions is again radial. We denote 
this with 

(¢ , a  ¢)(llx II) = ¢(llyll)¢(llx yll) '/3'- 

Both of these function types are handled in section 4, and a connection between 
them is given. 

Another known function is the truncated power function 

= (1 -,.)e+, (2) 

which is in PD a if g _> [d/2J + 1 (cf. [1,3,7]). Starting with this function we 
construct in the following section a class of new functions Ce, k- In section 3 we 
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show that  these functions are in PDd f-I C 2k and of  degree O~be, k =~d/2] + 3k + 1. The 
degree turns out  to be minimal  under  the requirement  q~ E C ~', and the minimal-  
degree solution is unique up to a constant  factor. Further ,  it will become obvious 
why we always talk about  even degrees of  smoothness.  

2. C o n s t r u c t i o n  

We 
bracket-operators  

I [~]_, := 
a + l '  

and 

start with some notat ion.  For  a E IR\{-1},  v E R and g E N we define 

[a]0:= 1, [~l~:=~(~-  1)..- ( ~ -  e + 1), ~ _ > e - 1  

(~)0 := 1, (~)e :=-(~ + 1 ) . . .  (~ + e - 1). 

Then we have simple relations such as [c~]e = ( a - e +  1)e, [c~]e[c~-g+ 1]. = 
(a - g + 1)[o~]e+,,_l and (u)e(u + g),, = (U)e+,,. After this we introduce the operators  

F I ( f ) ( r )  := sf(s) ds, (3) 

I 
D(f ) ( r )  := - r d f ( r ) '  (4) 

for all f u n c t i o n s f  for which the terms on the r ight-hand side are well defined. The 
operators I,  D, .T a and *a are connected in the following way. 

Lemma 2.1 
(1) If  ~b E C 2k then Dklkq5 = IkDkqb =- qS. 
(2) IfI~b E Ll(R d) then ~-a(I~b) = )rd+2(4~). 
(3) I f  D~b E L, (R d) then Jrd(DC~ ) = .Td_2(fb). 
(4) If  I~b, I~b E L~ (N d) then I(~b *d+2 ~b) = (Iq~) *d (I~b). 
(5) I f  Dq~, D~/' E L~ (R d) then D(q5 *d-2 ~b) = (D~) *d (D~). 

A p roof  of  these facts can be found in [13]. 
Note  that  assertions (2) and (3) give rise to construct ion methods  of  compact ly  

supported positive definite functions via integration or differentiation. Actually, 
Wu used statement  (3) in [15] to construct  such functions. He started with very 
smooth,  positive definite functions in R ~ and gained less smooth  functions that  
are positive definite in higher dimensional  spaces. Here, we take the opposite 
direction. We start with the function in (2) and construct  

~be. k := IkCe, (5) 

or, more  general, %,k := Ik¢~ with u > 0 and ¢~(r) = (1 - r)+. Therefore,  we need 
first of all a lemma about  the incomplete Beta function with one natural  argument ,  
which can be proved by simple induction. 
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Lemma 2.2 
For k E N and u E R>o we define 

f Mk,~(r) := sk~b~(s) ds. 

Then we obtain the identity 

k [kle k-t 
Mk.~(r) = Z (u + 1)e+, r ~b~+e+,(r). 

g=0 

Using this lemma we get the following representation of ~b,.k, which can again be 
proved by induction. 

Theorem 2.3 
We have the representation 

k 

~b,,k(r) = Z " '  " &k" 

The coefficients satisfy the recursion 

fl0.0 = 1, 

k fl,,.k [n + 1],,_j+ 1 , 
(u + 2k - n + 1),,_j+ 2 n=j-- I 

if the term for n = - 1 for j = 0 is ignored. 

If  we now choose u = g E N we get 

0 < j _ < k + l ,  

(6) 

Lemma 2.4 
1. The function ~be, k has support in [0, 1], and consists there of  a polynomial of  

degree O~bt.k = g + 2k. 
2. It possesses 2k continuous derivatives around zero. 
3. It possesses k + g -  1 continuous derivatives around 1. 

Proof 
The proof  can be given either directly by theorem 2.3 or by means of  induction, 
taking into account that a function of  the form (1) is in C 2k around zero iff the 
first k odd coefficients of  p vanish. []  

3. Main results 

In this section we shall prove our main 
appropriately. The shortness of  the proofs 
operators I and D. 

assertions by choosing g for ~br.k 
demonstrates the strength of  the 
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Theorem 3.5 
For every space dimension d E N and every k E N there exists a function ¢ of  the 
form (1) with degree 0¢ = [d/2J + 3k + 1 and ¢ c PDa M C 2k. 

Proof 
We choose g = [(d + 2k)/2j  + I = [d/2j  + k + 1. Then we get ~e E PDa+2k N C O 
by the remarks in the introduction. Using lemma 2.1 leads us to Ce, k E PDa. By 
lemma 2.4 we achieve that Ce, k possesses 2k smooth derivatives around zero and 
2k + [d/2J smooth derivatives around 1. This completes the proof. [ ]  

Before we prove the optimality and the uniqueness of  these functions, we wish 
to emphasize some additional features. If  we take space dimension d = 1 our C 2- 
function ¢2,1 has degree 0¢2,1 = 4 which is just one degree higher than the degree 
of  the classical cubic B-splines. 

The d-variate Fourier transform is computable by means of  lemma 2.1 as 

a~a Ce, k ( r) = .~a l k  Ce( r) = .Td+ 2k Ce( r ) 

= r - d - ~ - e  l r ( r  - t)et(d/2)+kJ(d/2)+k_ l ( t ) d t ,  
JO 

which is, except for ¢~,0, strictly positive (see Gasper [6]), so that the techniques of  
Narcowich and Ward [8] and Schaback [11] can be used to obtain bounds for the 
condition of  the interpolation matrix. The existence of  zeros of  the Fourier 
transforms was a very unpleasant feature of  Wu's functions and the Euclidean Hat. 

Figure 1 shows the function ~b3,1(r )--" ( l  -- r)4+(1 + 4r) E PD 3 f') C 3. Table I 
contains a table of  some of  the new functions. Here, - means equality up to a 
constant. 

Theorem 3.6 
There exists no function ¢ of  the form (1) with C E P D a M C  ~k and 
0¢ < [d/2J + 3k + 1. 

1,5 

Figure t, '~3.). 

L5 
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T a b l e  1 
T a b l e  o f  f u n c t i o n s .  

H. Wend~and~ Radial functions of m#1hnal degree 

d =  1 ~ * . o = ( 1 - r ) +  C O 

~,, --" (1 - r)~+(3~ + 1) C 2 
~3.-~ "-" (1 - ,')5+(8,'2 + 5 r +  1) C 4 

d : 3 ~'2.o = (1 - r)2+ C O 
~3,, =" (1 - r)4+(4r + 1) C 2 

@4._, - (1 - r)6+(35r 2 + 18r + 3) C a 

tbs. 3 =" (1 - r)8+(32r 3 + 25r  z + 8r  + 1) C 6 

d = 5 %.o = (I - ,.)3+ C o 
~4., - (1 - ,')~(Sr + l) c-'  
~95.2 - (1 - r)7(161 ~ + 7 r +  1) C 4 

Proof 
Suppose there exists such a function qS. On account  of  the C2k-smoothness of  q~ we 
can write p(r) = q(r 2) + r2k+lh(r) with polynomials  h, q, Oq = k. But then Dkp is 
again a polynomial  because D operates on q(r 2) as d/dr on q. So ~ := Dkq~ is a 
function of  the form (1) with ~b E PDa+2k A C O and 0~b < [(d + 2k) /2j  + 1. This 
is a contradict ion to the following lemma. []  

L e m m a  3 . 7  
If  q~ is a cont inuous,  on IRa positive definite function of  the form (1) then ~b has 
degree greater than or equal to kd/2J + 1. 

Proof 
A proof  of  this was given by Chanysheva [3] and uses the existence of  [d/2J smooth  
derivatives, which again follows in odd dimensional  spaces easily f rom the integral 
representation for positive definite radial functions. In even dimensional  spaces the 
special form of  q~ has to be considered. []  

Note  that  there is no difference between the opt imal  funct ion for d = 2n 
and d = 2n + 1. This optimal  function is in the cont inuous  case unique if it is 
normalized by q~(0) = 1, namely ~b(r) = (1 - r) td/2j+l . This generalizes to 

Theorem 3.8 
Up  to a constant  factor there exists exactly one positive definite function 
• (x) =  (llxll) on ~ '  with 4~ of  the form (1), i.e. 

f p ( r )  0 < r < l ,  

0 r > t ,  

consisting of  a univariate polynomial  p of  degree Op = &b = kd/2] + 3k + 1 and 
satisfying 4~ c C 2k. 
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P r o o f  

Assume there exist two such functions ¢, ¢ with ¢ # c~b, c # 0. Then we must also 
have ¢ : = D k ¢  # c D k ¢ = : ¢  because of  ¢ = I k$  and ¢ = I k ~  by lemma 2.1. But 
this contradicts the just mentioned uniqueness in the continuous case. []  

4. C o n n e c t i o n  b e t w e e n  W u ' s  f u n c t i o n s  a n d  Euc l id ' s  H a t  

In the introduction we mentioned that in the odd dimensional case two 
additional instances of  positive definite functions of  the form (1) exist. We will 
now show that these functions are connected by the same trick we used to 
construct our optimal functions. Let us suppose in this section that d = 2g + 1 is 
odd. As both function types are constructed via convolution, let us suppose for 
simplicity now that their support is {x : 0 _< [[ x H <- 2}. 

The Euclidean Hat X (~+0 is constructed by 2g + 1-variate convolution of  the 
characteristic function X of  the unit ball with itself. Explicit formulas are given 
in [14] and the proof  is sketched in [10]. These functions are of the form (1) 
and of  degree OX 12e+° = 2g + 1. Wu constructed his functions by starting with 
fe(r) = (1 -r2)+,e Ce = f e  *fe with univariate convolution and ended with Ce, k = 
DkCe, 0 < k < g. This led him to functions Ce.k C PDzk+l ffl C 2e-zk. 

If  we mark  equality up to a constant again with - we get 

Theorem 4.9 
Wu's functions Ce, k and Euclid's Hat  X (2e+l) are connected by 

Cg, k -- I e-kX(2~+~). 

Proof  
We use lemma 2. t to get 

Ce, k = Dk(fe *l re) 

= (Dkfe) *2k+l (Dkfe) 

= (Ie-kDtfe) *2k+, (Ie-kDefe) 

= le-k((Deft),2e+t (Defe)) 

• __ i e - k X ( 2 e + l ) ,  

if we take into account that Deft(r) = 2eg!x(r). []  

Note that this leads to explicit formulas for Wu's functions, but it is obvious that 
these formulas cannot be as simple as the formulas given in theorem 2.3. 
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