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We prove that if a polygon P is decomposed into finitely many similar triangles then the
tangents of the angles of these triangles are algebraic over the field generated by the coordinates
of the vertices of P. If P is a rectangle then, apart from four “sporadic” cases, the triangles of the
decomposition must be right triangles. Three of these “sporadic” triangles tile the square. In any
other decomposition of the square into similar triangles, the decomposition consists of right triangles
with an acute angle a such that tana is a totally positive algebraic number. Most of the proofs are
based on the following general theorem: if a convex polygon P is decomposed into finitely many
triangles (not necessarily similar) then the coordinate system can be chosen in such a ‘way that the
coordinates of the vertices of P belong to the field generated by the cotangents of the angles of the
triangles in the decomposition.

Introduction

We shall say that a triangle A tiles the polygon P, if P can be decomposed into
finitely many non-overlapping triangles similar to A. The following problem, which
was the starting point of our investigations, was posed by L. Pdsa [4]: does the
triangle with angles 30°, 60°, 90° tile the square? As we shall see, the answer is no,
and thus the question arises, exactly which triangles tile the square? This problem
proves to be surprisingly difficult, and we only give a partial answer.

In Section 5 we shall prove that each of the triangles with angles (78, n/4, 57/8),
(m/4, m/3, 57/12) or (w/12, w/4, 2m/3) tiles the square. Apart from these, only
right triangles can tile the square. Moreover, as we show in Theorem 27, if a right
triangle with acute angle « tiles the square, then tan o must be algebraic and such
that each of its real conjugates is positive (these numbers are called totally positive).
Since —/3 is a conjugate of tan 60° = /3, this shows that the triangle with angles
30°, 60°, 90° does not tile the square.

Apart from the three triangles listed above, there is only one more which can tile
a rectangle and has no right angle. This is the triangle with angles (x/6, = /6, 27/3),
which tiles the rectangles of size a x b, where b/a = rv/3 and r is rational (Theorem
23).

As for tilings of arbitrary polygons, we prove that a triangle can tile a polygon
P only if the cotangents of its angles are algebraic over the field generated by the
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coordinates of the vertices of P (Theorem 14). This shows, in particular, that the
number of triangles tiling a given polygon is at most countable.

The underlying results to the theorems above are two generalizations of the
following theorem by M. Dehn (see [1] or [2], p. 77): if a rectangle R can be
decomposed into finitely many non-overlapping squares then (i) the sides of R are
commensurable, and (ii) the sides of the squares in the decomposition are also
commensurable.

We shall prove that whenever a polygon P is decomposed into finitely many
triangles (similar or not), then the coordinates of the vertices of the triangles belong
to the field generated by the coordinates of the vertices of P and the cotangents
of the angles of the triangles (Theorem 1). For example, if P is a rectangle with
commensurable sides then we may assume that the coordinates of the vertices of
P are rational. Now suppose that P is decomposed into finitely many isosceles
right triangles. Since cot45° = 1 and cot 90° = 0, our theorem implies that the
coordinates of the triangles in the decomposition are all rational. Thus we obtain
the second statement of Dehn’s theorem by dividing the squares into isosceles right
triangles.

We also prove that if a convez polygon P is decomposed into finitely many
triangles (similar or not), then we can choose the coordinate system in such a way,
that the coordinates of the vertices belong to the field generated by the cotangents
of the angles of the triangles (Theorem 2). If, for example, P is decomposed into
isosceles right triangles, then, in an appropriate coordinate system, the coordinates
of its vertices are rational. If P is a rectangle, then we obtain Dehn’s theorem.

As a further application of these results, we shall prove that the square cannot
be decomposed into finitely many non-overlapping triangles in such a way that the
size of every angle of the triangles, when measured in degrees, is an even integer
(Corollary 10). This also shows that the triangle with angles 30°, 60°, 90° does not
tile the square.

1. Tilings with arbitrary triangles

In this paper all polygons are supposed to be simple and to have all angles
different from =. We begin with the generalizations of Dehn’s theorem.

Theorem 1. Suppose that a polygon P is decomposed into the non-overlapping trian-
gles Ay,...,AN. Then the coordinales of the vertices of each A; belong to the field
generated by the coordinates of the vertices of P and the cotangents of the angles of
the triangles A;.

Theorem 2. Let the conver polygon K be decomposed into the non-overlapping trian-
gles A1,...,Apn and let Fa denote the field generated by the cotangents of the angles
ofA; (j=1,...,N).

If K has two vertices with coordinates in Fa then the coordinates of each vertez
of K and of each triangle A; belong to Fa.

The proof of Theorems 1 and 2 is based on the following Lemma.

Lemma 3. Suppose that a polygon P is decomposed into the non-overlapping tri-
angles Ay,...,Ay and let X denote the set of x—coordinates of the vertices of
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A; (=1,...,N). Let F be a subfield of the reals such that the slopes of the non-
vertical sides of the triangles A; belong to F. Let 7, € X, min X < z; < max X,
and suppose that whenever V = (z1,y) is a vertez of P then P has a convex angle
at V and every open vertical segment containing V intersects the interior of P.

Then there are points y; € X (i =1,...,n); % € X (i =1,...,m) and
t;,8; € FOARY such that

(1) ¥ < Ty (i=1,""n)a T < % (i=1y"',m)
and

n m
(2) dotilm—w) =) sz —m).

i=1 i=1

Proof. Since z; € X, there is an z; such that V = (z;,z3) is a vertex of one of the
triangles A;. The condition on z, easily implies that one of the following statements
must hold.
(i) There is a triangle A; with vertices V = (21,22), B = (y1,72) and C = (z1, 22)
such that y; < 2, < z1
(ii) There is a triangle A; having a vertical side on the line = ;.
If (i) holds then there is a point D = (z1,u) on the segment BC. Let a,8,%,6
denote the angles DVB,VDB,DVC,VDC, respectively, then the cotangents of
these angles belong to F. We have

|z2 — u| = (z1 — y1)(cot a + cot B) = (21 — z1)(cot ¥ + cot §).

This implies

tzy — ) = s(za1 — 21),
where t = (cota + cot 3) and s = (coty + cot §), and hence the statement of the
Lemma is satisfied with n =m = 1.

Next suppose (ii) and let £ = {z;} X [b,c] be a maximal vertical segment
containing V' and contained in the union of the boundaries of the triangles A;.
Obviously, (z1,b) and (z1,c) are both vertices of some triangles A;. Let L and R
denote the sets of all triangles A; which have a side on the segment ¢ and lie to the
left and to the right of ¢, respectlvely

It follows from the chowe of x, that the segment ¢, apart from its endpoints,
lies in the interior of P. Therefore both of L and R cover ¢ (see Figure 1.) We may
assume that the triangles A; are indexed in such a way that

L={A;,..., A}, R={Ant1,---,Anim},
and there are subdivisions
b=up <y <...<up =c¢,
b=y <11 <...<vp==¢
such that {z} x [u;_,,u;] is a side of A; for every i =1,...,n and {z,} x [v,_l, vz]
is a side of Ap,; for every ¢ = 1,...,m. Let the vertices of A; be A; = (yi,4h),

B; = (z1,u;—4), C; = (z1,u43) (¢ = 1 ..,n) and of A, ; be D; = (2,%]), E; =
(xvl’vi—l)a Fi = ($17vi) (” = 1,"'am)‘
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Then y; < x; forevery i = 1,...,nand z; > z; forevery ¢ = 1,...,m. If 3;
and +; denote the angles of A; at the vertices B; and C; then we have u; — u;_, =
ti(z1 — y;), where t; = cot B; +coty; (i =1,...,n). Obviously, t; > 0, t; € F and
c—b=3Y" t;(x, —y;). We can see in the same way that there are positive numbers
s; € F such that ¢ — b = Y [%, 8;(z; — z1). Therefore (1) and (2) are satisfied and
this completes the proof of the Lemma. 1

Proof of Theorem 1. Let F' denote the field generated by the coordinates of the
vertices of P and by the cotangents of the angles of the triangles A; (j =1,...,N).
Obviously, the slopes of the sides of P belong to F. Since the angles between the
sides of any of the triangles A; and of P belong to the additive group generated by
the angles of the triangles Aj and m, it follows that the slopes of the sides of A;
belong to F.

Let zo < z; < ... < zp denote the z—coordinates of the vertices of the triangles
Aj (j=1,...,N). It is enough to prove that each x; belongs to F. Let L be the
linear space over the field F generated by the numbers z; (1 = 0,...,p) and let
B be a basis of L containing 1. We have to show that B = {1}. Suppose this is
not true and let an element by € B \ {1} be selected. Each z € L can be written
uniquely in the form 3 tb, where t € F, b € B. Let c(z) denote the coefficient of by
in this representation of z. By the definition of B, ¢(z;) # 0 holds for at least one
#; we may assume that c(z;) > 0 for some i. Let m = max{c(z;):i =0,...,p}, then
m > 0. Let 7 be the greatest index with ¢(xy) = m. Then 0 < r < p. Indeed, z,
and z, are the r—coordinates of two vertices of P and hence they belong to F. Thus
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c(zo) = ¢(zp) = 0 and, consequently, 0 < 7 < p. By the same argument, z, cannot
be the z—coordinate of any of the vertices of P. This implies that z, satisfies the
conditions of the Lemma 3 and hence there are numbers ¢;, s; and points y; and 2;
satisfying (1) and (2) with z, in place of z,. Since t;, s; € F, (2) implies

7 m

(3) D tilelar) = e(wi) = D sie(z) — e(er)).

i=1 i=1

By the choice of z,, the left hand side of (3) is non-negative, while the right hand
side is strictly negative. This contradiction completes the proof. |

Proof of Theorem 2. By Theorem 1, it is enough to show that the coordinates of the
vertices of K belong to Fa.

First we suppose that K satisfies the following conditions. (%) The origin is a
vertex of K and is the lower endpoint of a vertical side of K, and (i) the greatest
z—coordinate of the vertices of K is 1. Let 0 = zp < z; < ... < zp = 1 be the
z—coordinates of the vertices of the triangles A; (j = 1,..., N). The convexity of
K easily implies that each of the points z; (1 <1i < p—1) satisfies the conditions of
the Lemma 3. This implies, by the argument used in the proof of Theorem 1, that
x; € Fa for every t = 1,...,p. In particular, the z—coordinates of the vertices of K
belong to Fa.
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Fig, 2
Since K is convex, its vertices can be listed in two sequences V3 =(yo, 20),...,Va=

(Ya, 2q) and Wy = (ug, vo),.-., Wp = (up, vp), where 0=y < ... <yg =1, 0 =14 <
.. <up=1,and 0 = z; < vy (see Figure 2). It is easy to see that the angles between
the sides of K and the coordinate axes belong to the additive group generated by
the angles of the triangles A,. Therefore the slopes of the sides of K belong to Fa.
Since yp,...,ys belong to F?A, this implies that 2p,..., 2, also belong to Fa. Let
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denote those triangles of the decomposition which have a vertical side
lymg on V7W0 Since the z—coordinates of the vertices, and also the slopes of the
sides of these triangles are in Fa, it follows that the y— coordmates of the vertices of
Aj,...,4j, also belong to Fa. This easily implies that vy € Fa. Therefore vy, ..., v
are in Fn as well and hence the Theorem is proved supposing that K satisfies (i)
and (71).

Considering the general case, suppose that K has two vertices with coordinates
in Fa. Using a translation we may assume that one of these vertices is the origin.
Since K is convex, there is a rotation R such that R(K) satisfies (i) and lies in the
half-plane z > 0. Then there is a homothetic transformation H such that HR(K)
satisfies both (i) and (4). Therefore, the coordinates of the vertices of HR(K)
belong to Fa. By assumption, there is a vertex (z,v) of K such that z,y € Fa, and
7%+ y? # 0. The matrix of HR is of the form

_fa b
HR—(—b a)’

and hence we have az+by € Fa and —bx+ay € Fa. This implies a,b € Fa. Therefore
the entries of the matrix of (HR)™! also belong to Fa. Since the vertices of K are
the images of those of HR(K) under (HR)™?, their coordinates belong to F,. This
completes the proof of Theorem 2. 1

Remark 4. The condition of convexity cannot be removed from Theorem 2. Indeed,
the hexagon H in Figure 3 is decomposed into two isosceles right triangles and has
three vertices with rational coordinates, but the other vertices of H have irrational
coordinates.

Ffo)

E (7,1-0)
D (o, 1-01)

A(00) 81,0
Fig. 8
Our next theorem states that whenever a polygon is decomposed into triangles

then the cotangents of the angles of the triangles have to satisfy a certain condition
concerning the isomorphisms of the field described in Theorem 1.



TILINGS OF POLYGONS WITH SIMILAR TRIANGLES 287

Theorem 5. Let P be a polygon with vertices V; = (a;,b;) (i = 1,...,n). Suppose
that P is decomposed into the non-overlapping tmangles A; (G= 1 ,N), and let
aj, Bj, v; denote the angles of A;. Let F denote the field generated by the numbers
a;, b, cotay, cotf;, coty; (i=1,...,n; j=1,...,N), and let $:F — R be a
real isomorphism of F that leaves the numbers a;, bi, (z‘ =1,...,n) fired.

Then there is a j such that at least two of the numbers ¢(cot a;), ¢(cot B;), #(cot ;)
are positive.

Lemma 6. Let A be a triangle with angles o; (1 = 1,2,3). Let the vertices of A be
Vi = (a;3,0;) (i = 1,2,3) and let F be a field containing the numbers a;, b; (i = 1,2,3).
Suppose that ¢: F — R is a real isomorphism of F and let the map ®: F x F — R?
be defined by

(4) 2((z,y)) = (¢(z),0(y)) ((z,y) € Fx F).
Let A" denote the triangle with vertices ®(V;) (i = 1,2,3), and let o) (i = 1,2,3)
denote the corresponding angles of A'. Let € = 1 if the map ® does not change the
orientation of A, and let ¢ = —1 otherwise.

Then we have cot o) = ed(cot ;) (i =1,2,3).
Proof. Suppose that the order of indices of the vertices (aj, b;) corresponds to the
positive orientation of A. If the angle a; is at the vertex (a;, ;) and by # ba, by # bs
then we have

[(as — a1)/(bs — b1)] - [(a2 — 1) /(B2 — B1)} + 1
[(a2 — a1)/(bz — b1)] — [(as — a1)/(bs — bs)]
so that cot o; € F. This formula also shows that if ¢ = 1 then cot a] = ¢(cot or;). On

the other hand, if the order of indices corresponds to the negative orientation of A,
then in the right hand side of (5) the indices 2 and 3 have to be interchanged. This

(5) cot oy =

implies that in the case of ¢ = —1 we have cota} = —@(cot @;). Similar argument
applies if by = by or by = bs. ]
Proof of Theorem 5. We may assume that the vertices V,..., V;, are listed counter-

clockwise. Let (a;'.,bj.) (¢ = 1,2,3) denote the vertices of A; listed also counter-
clockwise. By Theorem 1, aj»,b; € F holds for every ¢ and j. Let A;- denote the
oriented triangle with vertices (¢(a}), ¢(8})) (i =1,2,3).

If we consider the boundary 9A; of the triangle A; as a cycle (sum of oriented

segments), we can see that Zﬁ 104 equals the cycle ' =V, ...V, Vi

Since ¢ is an isomorphism, the map & defined by (4) is a collineation on F x F.
Therefore the sum of the cycles §; = BAS equals the cycle I, as ® leaves the vertices

V}. fixed. Since the cycle T' is positively oriented, at least one of the triangles A; must
be positively oriented as well. Indeed, the integrals [; = f5 xdy and [ = [xdy
equal the oriented areas of A, and P, respectively. Since ZJ wlj =1Tand Iis
positive, at least one of the numbers I; must be positive.

If the orientation of the triangle A’ is positive and a ;, 'y;- denote its angles
then, by Lemma 6, we have

cot a;- = ¢(cot a;), cot ﬂ; = ¢(cot F;), cot 'y;- = ¢(cot ;)
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Since at least two of a;-, ,8;., 'y;. are acute angles, at least two of their cotangents are
positive, and this completes the proof. 1

Corollary 7. The square cannot be decomposed into finitely many non-overlapping
triangles with angles 30°, 60° and 90°.

Proof. Suppose that the unit square has such a decomposition. Since cot 30° = /3
and cot60° = /3/3, we may apply Theorem 5 with F = Q(+/3). Let ¢ be the

automorphism of Q(v/3) with ¢(v/3) = —+/3. Then ¢ maps cot 30° and cot 60° into
negative numbers, which contradicts Theorem 5. 1

s
Lemma 8. Let n be a non-zero integer and put ¢ = e2r’. Then

cm%weQK)

for every integer a not divisible by n. In addition, if k is prime to 2n then there is
an automorphism ¢ of Q({) such that

80y = (=1)h-D/2 o OF
(6) o(cot nvr) =(-1) cot T

for every a not divisible by n.
Proof. We have

enm' + e nTl
cot om = Lri -%mg
en”t —¢
Now i = (", and hence
a C?a + C-—za
) cm;w=c}m_cﬂaeQK)

If (k,2n) = 1 then ¢* is a primitive 4n'® root of unity and hence there is an
automorphism ¢ of Q(¢) such that ¢(¢) = ¢k. Then (7) gives

k ~2ak
a \_ eS¢ _ onk-1y ., 9k _ (k=1)/2 ., Ok
qb (CO‘? ;ﬂ') = g m = C cot -‘H‘ﬂ' = (—1) cot ‘;{ﬂ',

since (kD = k-1 = (_1)(k-1)/2, ]
Theorem 9. Suppose that each vertex of the polygon P has rational coordinates, Let
P be decomposed into non-overlapping triangles Ay,..., AN in such a way that the

angles of the triangles A; are all rational multiples of m.
If the angles in question are %7( (i=1,...,3N), then 4|n.

Proof. Let F denote the field generated by the numbers cot Lig ({=1,...,3N).

n

By Lemma 8, F C Q(¢{). Suppose that 4tn. Let £ = 2n + 1 if n is odd, and let
k=n+1ifn=2(mod4). Then (k,2n) = 1 and hence, by Lemma 8, there is an
automorphism ¢ of Q(¢) such that

(8) ¢(cot %7{) = (_1)(k—1)/2 cot a’;—.kﬂ
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holds for every 7. This implies, in particular, that the restriction of ¢ to F is a real
isomorphism. As k = -1 (mod 4) and k = 1 (mod n), we have a;k = g; (mod n)

and hence the right hand side of (8) equals — cot %w.

That is, if @ is an angle of any of the triangles A; then
¢(cot a) = — cot a.

This implies, by Theorem 5, that there is a A; such that two of the cotangents of its
angles are negative. Since A; has at least two acute angles, this is clearly impossible.
This contradiction completes the proof of the Theorem. 1

Corollary 10. The square cannot be decomposed into finitely many non-overlapping
triangles in such .a way that the size of every angle of the triangles, when measured
in degrees, is an even integer.

Proof. Suppose that there is such a decomposition. We may assume-that the
vertices of the square have rational coordinates. If k is an even integer, k = 2n,
then k° = kn/180 = nx/90. Since all the angles are of this form, and 90 is not
divisible by 4, this contradicts Theorem 9. 1

Remark 11. We mention here the following theorem by P. Monsky [3]: the square
cannot be decomposed into an odd number of non-overlapping triangles of the same
area. In spite of the resemblance, there does not seem to be a close connection with
Corollary 10. The proof of Monsky’s theorem is based on valuation theory.

2. Conjugate tilings

Let P be a polygon with vertices Vi,..., Vy listed counterclockwise, and let P
be decomposed into the non-overlapping triangles Aq,...,An. Let ¥ denote the
set of the vertices of the triangles A; (j = 1,...,N) and let &: ¥ — R? be a

map. If the vertices of the triangle A; are V;; (i = 1,2,3) then we denote by A;-
the (possibly degenerate) triangle with vertices ®(V;;) (i = 1,2,3). We say that
® preserves the orientation of A; if Ag is degenerate, or the orientation of the
vertices ®(V;;) (i = 1,2,3) is the same as that of V;; (¢ = 1,2,3). The map & is
a collineation if, whenever three points of U are collinear then their images are also
collinear (including the possibility that some of them coincide).

Lemma 12. Suppose, with the notation above, that ® is a collineation and preserves
the orientation of each of the triangles A; (j = 1,...,N). If the points ®(V)
(i = 1,...,n) are the consecutive vertices of a polygon P' then the triangles A;-
(j =1,...,N) are non-overlapping and constitute a tiling of P'.

Proof. We give the positive orientation to each triangle A; and denote by d; the
sum of the oriented segments of the boundary of A;. Obviously, the sum of the cycles
8; (j=1,...,N)equals tlie cycled=V,...,Vq, V). Let 3;- and & denote the images
of 3; and 8 under ®. Since ® is a collineation, we have E;V:I 8; = &' Now, as 9} is
positively oriented for every j (or equals zero if Ag is degenerate), this implies that
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the triangles A;- are non-overlapping and cover P’. The easiest way to prove this is
to use complex line integrals around the cycles 6; We identify R? with the complex
plane C and put

1 1

27i a;ﬁ—zdg

Ij(z) =

for every z € C\ 6; Then I;(z) = 0 or 1 according to whether z is outside or inside
A;. Since

Y 1 1
1;(2) = — =1
; &) =5 | 75 %= 1)
and I(z) = 1 for every z covered by P’ and I(z) = 0 for every z outside P/, our
assertion follows. 1

Remark 13. The tilings of P and P’ in the lemma above need not be topologically
isomorphic. Consider the following example. Let the square ABCD be decomposed
into the triangles ABF, BCG, CDG, DAE, DEG, EFG as shown in Figure 4.
Let & map 4,...,G to A',...,G’ shown in Figure 5. Then & is a collineation and
preserves the orientation of the triangles ABF, ..., EFG. Accordingly, the triangles
A'B'F',...,E'F'G’ constitute a tiling of A'B'C'D’. However, these tilings are not
isomorphic topologically. In fact, even the graphs shown in Figures 4 and 5 are non-
isomorphic, as one of them contains a point with valency 5, while the other does
not.

0 ¢ o c
r
F £
E F
&
A ; A g
Fig. 4 Fig. §

Let F be a field containing the coordinates of the points of ¥, let ¢: F — R
be an isomorphism and let the map @ be defined by (4); then ® is a collineation.
Suppose that the points V] = ®(V;) (i =1,...,n) are the consecutive vertices of a
polygon P’. By Lemma 6, & preserves the orientation of A; if and only if at least
two of the numbers ¢(cota;;) (i = 1,2,3) are positive, where a;; (i ='1,2,3)
denote the angles of A;. If this condition is satisfied for every j then, by the previous
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Lemma, we obtain a tiling of P’ with the triangles A’ such that the angles a ; of A’
satisfy cot a“- = ¢(cot ;) (i =1,2,3). If, for every j, at least two of the numbers

#(cot aj;) (i = 1,2,3) are negative then ® changes the orientation of the triangles
A;. Using a reﬁectxon we can reduce this case to the previous one, and obtain a tiling

of P’ with A’ such that cot Of], = —¢(cotaj;) forevery j=1,...,Nandi=1,2,3.
In each case we may call this tiling of P/ a conjugate to the original tiling of P.

V3

o1y C(a-—.u
X 0
3 2
x 5 x
4 V3
A0 £(3-V3,0) 814-23ﬁ.o;
Fig. 6
ony) c'/a.i"aﬁ.u

it

Af0,0)

Fig. 7

Consider the following example. Let P be the trapezoid with vertices A(0,0),
B((12 — 2v/3)/3,0), C((9 — 2v/3)/3,1), D(1,1). Then P can be tiled with three
triangles of angles 7/4, /3, 57 /12 (see Figure 6). The coordinates of the vertices of
this decomposition belong to Q(\/§). Let ¢ be the automorphism of Q(+/3) satisfying
#(v/3) = —v/3. The image P’ of P under the map & is shown on Figure 7. Since

¢(cot§)=1=cot%, qb(cotg):qS(?):—\/Tg:cot%r, ¢( t%)—

(2 - V3 3) =2+ V3 =cot 12- the argument above applies and we obtain a tiling of

P’ with three triangles of angles 7/12, m/4, 2r/3. This tiling, shown on Figure 7, is
the conjugate of the tiling of Figure 6

3. Tilings of polygons with similar triangles

We say that a triangle A tiles the polygon P if P can be decomposed into finitely
many non-overlapping triangles similar to A.
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Theorem 14. Let A be a triangle with angles o, 8 and v. If A tiles a polygon P then
cot e, cot B, coty are algebraic over the field F generated by the coordinates of the
vertices of P.

Proof. We fix a tiling of P with triangles similar to A. First we suppose that cot a
is algebraic over F' and prove that in this case cot 8 and cot y are also algebraic over
F.

Assume that cot @ is transcendental over F'; then cot g is transcendental over
Fy = F(cota) as well. Let U denote the set of those real numbers which are
transcendental over Fy and let u € U be arbitrary. Then there exists an isomorphism
¢: Fi(cot §) — R such that ¢ leaves the elements of F fixed and ¢(cot ) = ». Since
v =7 —a~— [, we have

1—-cotacotf
= = O e R
coty cot(a + ) cota F oot B € Fi(eot 8)
and
l—cota-u
ty) = ——— .
$(cot) cota+u

Since U is everywhere dense in R, we can choose u in such a way that » and
(1~cot a-u)/(cot a+u) are both negative. However, the existence of such an isomor-
phism contradicts Theorem 5. Therefore, if one of the numbers cot o, cot 3, cot+y is
algebraic over F' then they are all algebraic.

Suppose now that cot &, cot S, cot+y are all transcendental over F. Let V be a

vertex of P at which P has a convex angle §. Then there are non-negative integers
n, k, m such that na+ k3 +m~y = 6. Since § < 7, at least one of n, k, m is zero; we
may assume that m = 0. If k = 0 then we have no = 4. Since cot § € F, this implies
that cot « is algebraic over F' which is impossible. Therefore £ # 0 and, similarly,
n # 0.
_ We fix a real number u such that u < cot § and u is transcendental over F. Let
F denote the algebraic closure of F. Since cot @ and u are both transcendental over
F'| there is an isomorphism ¢ of C into itself such that ¢ leaves the elements of F
fixed and ¢(cot @) = u. We show that ¢(cot 3) and ¢(cot ) are real.

Let z = €@, y = B, z = e®: then na + kB = 6 gives z"y¥. = 2. Since
cotd =i(z+ 271} /(z— 2z7!) € F, we have z € F and thus

(9) ($(2)™((y))F = =.

For every ¢ € C, i(c+ ¢ 1)/(c — ¢™?) is real if and only if |c| = 1 and ¢ # *1.
Therefore, by

(7)) +¢(2)”1 _
ZW = ¢(cota) =u€ R,
we have |¢(z)} =1 = |2| and thus, by (9), |#(y)| = 1. Hence

d(y) + d(y)™
d(y) — o(y)~!

This gives then ¢(coty) = —d(cot(a + B)) € R.

p(cot B) =1 €R.
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This implies that the restriction of ¢ to the field F(cot a, cot 5, cot v) is real and
hence, by Theorem 5, at least two of the numbers ¢(cot a), ¢(cot 3), @(cot~y) are
positive. Let o/, 8, 4/ € (0,7) be such that

d(cota) = cota’, ¢(cot B) = cot B', ¢(coty) = cot~.

Applying the results of the previous section we find that the isomorphism ¢ induces
a tiling of P with triangles of angles o', ', 7. At the vertex V this tiling has n + &
triangles with angles o’ and A, respectively. Therefore na’ + k8’ = é, from which
we obtain o/ < 6 and cota’ > cot §. However, this contradicts cota’ = ¢(cota) =
u < cot §, completing the proof.

Corollary 15. For every polygon P, the set of triangles which tile P is countable.

Remark 16. The set of triangles tiling a given polygon can be infinite. For example,
if P is a parallelogram, then we can divide P into nk congruent parallelograms and
then, dividing each of these small parallelograms into two triangles, we obtain a tiling
of P with 2nk congruent triangles.

In order to formulate further necessary conditions on tilings with similar trian-
gles, we shall need the following definitions.

Definition 17. Let P be a polygon with angles é1,...,6, and let

Lp= {ZT,‘&,': rneQ(i= 1,...,n)}.
i=1

We denote by dp the dimension of Lp as a linear space over Q, and put

’I”P=dp—l.

Definition 18. Let P be a polygon. Suppose that the polygon P' is similar to P and
has at least two vertices with rational coordinates. Then we denote by Fp the field
generated by the coordinates of the vertices of P'. (It is easy to check that Fp does
not depend on P, only on P.) The trancendence degree of Fp over Q will be denoted

by tp.
Lemma 19. For every triangle A we have tp <1p £ 2.

Proof. Let the angles of A be o, 3, . If the vertices of A with angles a, § are
placed at (0,0) and (1,0), respectively, then the coordinates of the third vertex of A
are £ = cosasin(/sin-y and y = sin asin 4/ sin~.

If rao = 0 then a, (, + are rational multiples of 7. In this case z, y are algebraic
numbers and hence t5 = 0.

Suppose next ra = 1. Then two of the angles of A generate La. We may suppose
that these are a and 3, and then ra+ s = 7w with some r, s € Q. This easily implies
that any two of the numbers sinc, cosq, sinf, siny are algebraically dependent
and, consequently, t5 < 1.

As ta <2 and ra < 2 hold in every triangle, the proof is complete. 1

In the sequel we shall only consider similar tilings of convez polygons.
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Theorem 20. Suppose that the triangle A tiles the convez polygon P. Then we have
(’ii) tp=1ta <7Ta <2,

(i) rp < 7Ta, and

(iv) if rp =0 then ra < 1.

Proof. We may assume that P has two vertices with rational coordinates. Let «, 3,
v denote the angles of A. By Theorem 2, we have Fp C Q(cot a, cot 3, coty). Since
cot «, cot 3, cot v belong to Fa, this implies Fp C Fa.

.~ As we saw in the proof of Lemma 19, Fo = Q(cos asin 3/ sin~, sin avsin 8/ sin ).
Then, by Theorem 14, F, is an algebraic extension of Fp and hence tp = tA. Now
(ii) follows from Lemma 19.

Since each angle of P is a linear combination of a, 3, -y with integer coefficients,

we have Lp C L, and (iii).

~ Finally, suppose 7p = 0. Then each angle of P is a rational multiple of 7. Let
§ be an angle of P, then § = aa + b3 + ¢y with non-negative integers a, b, c. Since
§ < w,oneof a, b, cmustbezero. We may suppose that c=0.Let § =rmw (r € Q),
then aa + b8 = r(a + 8 + ) and hence dim(La) < 2. Thus 74 < 1, which proves
(iv). |
Theorem 21. Let A be a triangle with angles a« < 8 < v, and let P be a convex
polygon with angles 6; (i=1,...,n). If A tiles P then either
(i) there is an i such that §; € {a,8,y, * —a, 7= B, T — 7,27}, or
(ii)TP=TA51.
Proof. Let P be decomposed into the triangles A;,...,Ay such that each A; is
similar to A. Let V be a vertex of one of the triangles A; and let {A;,.. "Ajk}
be the set of triangles having V as a vertex. Let aj, denote the angle of A;, at
V (s=1,...,k). HV is a vertex of P with angle §; then we have

k
(10) > aj, =6
s=1
If V is not a vertex of P then we have either
k
(11) Z aj, =27
s=1
or
k
(12) Z Qjg = .
5=1

In fact, (11) holds if V' is in the interior of P and whenever V' is on the boundary of
a triangle A; then necessarily V is a vertex of Aj; in all other cases we have (12).

Since 3y >2v+f8>22yvy+a>2a+f+y=mand y+28 > v+ F+a=m, each
of the equations (10) must take the form of one of the following equations:

2y=6;, B+y=06;, ka+y=6(k>0) and ka+mfB=46; (k,m=0).
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If any of the equations 2y = §;, B+v =6, vy=6, a+vy=8;, a=6;, 8 =46,
a + 8 = §; occurs among the equations (10), then (i) is true.
Therefore we may assume that each of the equations (10) is of the form

(13) kio+y=6  (k2>2)
or
(14) kia+miB=26;  (max(k;,m;) > 2).

Now we suppose that neither of (i) and (ii) is true. Since rp < ra < 2 by
Theorem 20, this implies that either ra =2 orrp =0and ra = 1.

First we consider the case when r, = 2. Then a, 3, 4 are linearly independent
over Q. Hence, if

(15) pa+gB+ry=vr

holds, where p, g,r,v are integers, then p=¢=7r = v.

Consequently, the left hand sides of the equations (12) and (11) are of the form
a+3+~ and 2a+28+2~, respectively. Since the left hand sides of the equations (10},
(11), (12) contain N a’s, §’s and 7's (as they involve all the angles of the triangles
Ay, ...,Ap), this implies that the left hand sides of the equations (10) contain the
same number of a's, §’s and «’s. However, each of the equations (13) contains more
a’s than +’s. Hence the total number of a’s in the equations (10) is greater than the
number of 4's unless both are zero. In this case, however, the number of #’s will be
different. This shows that 74 = 2 is impossible.

Next we suppose that rp = 0 and ro = 1. Then é;,,..., §, are rational multiples
of m. We distinguish between two cases.

Case 1: equations of the form (13) do occur among the equations (10). Then the
total number of a’s is strictly greater than the number of s in the equations (10)
and hence there must be an equation (15) among the equations (11) or (12) such
that p < r (and v = 1 or v = 2.) Subtracting ra + 8+ ry = rr from (15) we obtain

(16) (p—r)at(g-r)f=(v-r)m.

Let ka + v = 6, k > 2 be an equation of the form (13). Subtracting a+ G+ v=w
we obtain

(17 (k-Va-=6-m.

If (16) and (17) determine o and 3 then, as § is a rational multiple of 7, « and 3
are also rational multiples of 7. This implies 7o = 0 which is not the case. Therefore
the equations (16) and (17) are not independent; that is, there is a number ¢ such
that

ek—-1)=p—r, —c=g—7, c(6—7)=(v—1)7.
Since p<rand k> 2, we have ¢ <0, ¢>r, v> 7 Hence,byv<2andp <r, we
obtain p =0, r =1, v = 2. This gives

r=@w-r)r=clf-m)=—-(6—m)/(k-1)

and (k — 1)m = & — §, which is impossible.
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Case 2: each of the equations (10) is of the form (14)., Let
(18) ka+mpB =26

be one of these equations. Then either k > max(m,2) or m > max(k,2). Suppose
the former. (The latter can be treated similarly.) Then following the argument of
the previous case we find an equation of the form (15) with p < 7. If p, ¢, 7 are all
positive then we can subtract & + § + v = = from (15) so that we may assume
min(p,q) = 0. As in the previous case, we find that the equations (18) and (16)
cannot be independent and hence there is a number ¢ such that

ck=p—-r,em=qg—r1, cbd=(v=r)m.

Then ¢ < 0 and, by m < k, we obtain p < ¢ and v < r. This gives, by min(p,q) =
0, p = 0. We also have
r r
(r—-v)rw ¢ = k:6< Pl
and k(r —v) < 7. Sincev=1o0r2, v <r k> 2, thisimplies k =2, v=2, r = 3.
Thus ¢ = —3/2 and § = 27/3.

Also, -3m/2=q-3andm<k=2yieldm=0,¢g=30orm=2, ¢ =0. In the
first case we have 2a = § = 27/3, a = 7/3 which is impossible since, in this case,
6 = m — a and we assumed that (i) does not hold. In the second case (15) implies
3y = 2r and v = 2w /3 = é contradicting the same assumption. This contradiction
completes the proof. |

4. Tilings of rectangles with similar triangles

In this section our aim is to find those triangles which tile a rectangle. Suppose
that the angles of A are o, 3, v and A tiles a rectangle P. If vy is the largest angle
of A then, by Theorem 21, one of the following statements is true.

N
(l) E € {a7 ﬂ, Y, TGy 7‘-_,67 ™=, 2’7}7
(11) rp =Ta.

Since 2y > 27/3 > 7/2, (i) implies that A is a right triangle. On the other hand,
as rp =0, (ii) implies ra = 0. We have proved the following.

Lemma 22. If a triangle A tiles a rectangle then either A is a right triangle or the
angles of A are rational multiples of .

Since every right triangle tiles a rectangle, we may confine our attention to those
triangles which tile a rectangle, have no right angle and satisfy rn = 0. Our first aim
is to prove that one of the angles of these triangles is 7/6 or w/4.

Let

where a,b, ¢, n are positive integers and a+ b + ¢ = n. Multiplying all these numbers
by 2, we may assume that n is even. By Lemma &, the cotangents of «, 3, « belong
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to Q(¢), where ( is the first 4n*? root of unity. Suppose that A tiles the rectangle P
with vertices V1(0,0), V2(1,0), Va(1,y), Vi(0,y). Then, by Theorem 2,

b
y € Q(cot —,cot — el cot — 7r) e r

Let k be an integer prime to n. Then, by Lemma 8, there is an automorphism ¢ of
Q(¢) such that

a ak b bk ¢ ck
(19) ¢ (cot ;W) =ncot gt ¢ (cot ﬁﬂ') —ncot - @ (cot ;—Lﬂ-) =ncot P

where 77 = (—1)*~1/2, Then ¢ is real on F and hence ¢(y) = 3 € R. Let the map
@ bé'defined by

((z1,22)) = (¢(21), $(22)) (21,22 € F).

Using the notation of Section 2, we find that the points Vi, Va, VJ(1,¢), V4(0,y’) are
the consecutive vertices of a rectangle (listed counterclockwise or clockwise depending
on the sign of y/). Let £ = 1 if ® preserves the orientation of A and let ¢ = —1
otherwise. Since each triangle in the tiling of P is similar to A, it follows from the
results of Section 2 that ® induces a tiling of P/ with triangles of angles o/, 3/, ¥/
such that

k bk k
(20) cot o/ = encot 2—7T, cot B’ = encot —m, coty = encot %w.
n n

We note that € = 1 if and only if & preserves the orientation of P, and hence
¢ = sgny'. Now (20) implies that we have either

o i@ =¥ {2

or

n o= (- (2]) o= (- (2] 1+ (-(2)-

Suppose that the origin is the vertex of p + ¢ + r triangles of the tiling of P with
angles a, 8, , respectively; then pa + g8 + ry = n/2. If A has no right angle then
this implies r € 1 and max(p,¢) > 2. By symmetry we may assume p > 2. This
1mphes a<lTw /4 Also, the conjugate tiling mduced by @ has p triangles with angles
o ‘at the origin. Therefore pa’ < m/2 and hence o' < w/4. This yields, by (21) and
(22) that either {ak/n} < 1/4 or {ak/n} > 3/4, and this has to be valid whenever &
is prime to n.

We prove that this condition implies a/n = 1/6 or a/n = 1/4.

Let (a,n) =d, a =da;, and n = dn,. If k is prime to n, and ¢ is the product of
those prime divisors of n which do not divide & (or ¢ = 1 if there is no such a prime)
then &k + én, is prime to n. Hence we have either

- {25
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(2)- (2522) o1

If k runs through the reduced residue system mod n; then so does a;k, as (ay,m;) = 1.
Therefore either {k/n;} < 1/4, or {k/n;} > 3/4 holds for every k prime to n,. That
is,

or

(23) (n1, k) > 1 for every % <k< -3%1-
The only integers satisfying this condition are n, = 1, 4, 6. Indeed, if n; > 4 then,
by “Bertrand’s postulate”, there is a prime p such that ng /4 <p<mn /2. By (23),
this implies p|n, and thus n; = 3p. If p < i < 2p then (23) gives 3|i. Therefore p = 2
and n; = 6. Now it follows from 0 < a; < n;/4 and (a1,n;) = 1 that a; = 1 and
hence a/n = a1/ = 1/4 or a/n = 1/6, as we stated.

Thus we have proved

(24) {a, 8} n{.g %} £90.

In the following argument we shall use the notation of Theorem 21. Since A has
no right angle, each of the equations (10) .is of the form (13) or (14) with §; = =/2.
If (13) actually occurs among the equations, then

f=r—(at7)>7-(hatr)=1/2

contradicting the fact that v is the largest angle of A.

Hence each of the equations (10) is of the form (14). Since the total number
of a’s, ’s and +’s in the equations (10)-(12) is N, this implies that at least one
of the equations (11) and (12) is of the form (15) with p+ ¢ < 2r (and v = 1
or 2). Subtracting, if necessary, a + 8+ v = = from (15), we may assume that
min{p, ¢,7) = 0. This does not affect the validity of p + ¢ < 2r and hence we have
min(p,q) =0 < 7.

In the sequel we shall assume g = 0. (If p = 0 then we can interchange the roles
of o and B; the condition a < 3 will not be used in the argument.) Thus we have

(25) pa+ Yy = Uw

where 0 <p<2randv=1,2.

Suppose first v = 1. Since, by (24), ¥ > 7/3, this implies r < 2. If » = 1 then
p <1and pao+ry < @+ v < 7, a contradiction. If r =2, p =0 then y = 7/2, and
ifr=2, p>1then pa+ry>a+2y >, both 1mpossxble Ifr=2 p=1then
pe+7ry=a+2y>a++7v=n unless v = g. In this case (24) unphes a=n/6
or a = 7 /4, and we obtain

(o) = (5,579 o (T 37 37
BV =6 12" 12 12’8'8 /)"

Thus, for the triple (a/n, b/n, ¢/n}) we get

1 5 5 133
(26) (aﬁﬁ) or (z’g’g)-
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Next suppose v = 2. Then, by (25), v = (27 — pa)/r. If @ = /6 or & = /4 then,
taking 0 < p < 2r < 10 and v > § into consideration, we obtain the following triples
for (a/n, b/n, ¢/n):

113 112 1211 1 5 5

(671571) ’ (E’ gv §) ) (6:6, E) ’ (6)1_8'7"9') 3
1) (l KA é) (l 3 ll) (l 1 §) (l 1 Z)

6'18'9/° 6'8 24/’ 4’8’8/’ 4'12°3)°

LTy (115 (15 7y (172
96'12)° \1312) \116°16/)’ \3'20°5)"

If 3=n/6 or B = /4 then, using (r —p)y = (2 —p)wr + pB and v > a, it is easy
to check that no new triples arise.

This proves that whenever a triangle A with angles ax/n, br/n, cr/n tiles a
rectangle and does not have a right angle then (a/n, b/n,c/n) is one of the triples
listed in (26) and (27). Now some of these triples can be discarded by the following
argument. '

If k is prime to n then there is a conjugate tiling with a triangle A’ with angles
o, B, satisfying (21) or (22). Since A’ does not have a right angle and also tiles
a rectangle, the corresponding triple also has to be listed in (26) or (27). That is,
we can exclude the triple (a/n, b/n, ¢/n) if there is a k such that (k,n) = 1 and
neither ({ak/n}, {bk/n}, {ck/n}) nor (1 — {ak/n},1 — {bk/n},1 — {ck/n}) is listed
in (26) or (27). In this way the following triples can be ruled out:

15 5 133 121
(m)+=% (es) #=% (Fom) k=5
1 5 5 17 4 1311

@ (piws)t=m (Fws) k= (Gom) +=>

15 7 1 7 2
(4W6W6>'k_& (M2W5)'k"&

Next we show that the triples (1/6,1/4,7/12) and (1/12,1/6,3/4) are also im-
possible. Suppose that the triangle A with angles a = =/6, § = 7 /4, v = Tr/12
tiles a rectangle. Consider the conjugate tiling corresponding to k = 5. Since
cot(57/6) and cot(357/12) are negative, it follows from Lemma 6 that the map
® changes the orientation of A. With the notation of (20) this means ¢ = —1. Since
n = (—1)®~Y/2 = 1, this implies that the angles of the conjugate tiling satisfy (22)
and thus o/ = 7/6, ' =3n/4, v = n/12.

Suppose that the tiling consists of NV triangles, and let P, Q, R denote the total
number of a’s f’s and ~’s in the equations (11) and (12).

Let pa+ g8+ rvy = /2 be any of the equations (10). Switching to the conjugate
tiling we can see that po/ + ¢8' + ry' = n/2 also has to be valid. With the given
values of the angles involved, the only possibility is p = 3, ¢ = r = 0. Hence we have

(29) N=P+12, Q=R=N.

Now let pa+ g8+ rv = vr be any of the equations (11) or (12), wherev =1orv =2.
Then the conjugate tiling gives pa’ +g0’'+rv' = v'w, where v’ = 1 or v’ = 2. The only
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possible triples satisfying these conditions are (6,0,0), (12,0,0), (5,0,2), (1,1,1),
(7,1,1), (0,1,3), (3,2,0), (2,2,2). Since each of these triples satisfies 3¢ < 2p+r, we
have 3Q < 2P + R. By (29), this implies 3N < 2(N — 12) + N, which is impossible.

This shows that the triple (1/6,1/4,7/12) does not give a tiling. The same is
true for (1/12,1/6,3/4), since any tiling by the latter would produce a conjugate
tiling (with k=>5) by the former.

Summing up: these two triples and those of (28) can be deleted from the lists
(26) and (27). There are four remaining triples and hence the following theorem is
proved.

Theorem 23. If o triangle A tiles a rectangle then either A is a right triangle, or its
angles are given by one of the following triples:

T T 2r T 7 5w T 7w 5w T T 2r
(30) (6,57"3—), (g,z,?), (Z’E’E)’ (12>4,'§)- 1

Corollary 24. If a rectangle of size a x b can be tiled with a triangle which has no

right angle, then b/a € Q(v2) U Q(V3). In particular, only a countable number of
rectangles can have this property.

Proof. This is an immediate consequence of Theorems 2, 23 and the relations

cot—g=\/§+1, cot%:\/l’:+2. |

5. Examples

In this section we show that each of the triangles listed in (30) tiles a rectangle.
As figure 8 shows, the triangle with angles /6, 7/6, 27/3 tiles the rectangle of size
1x /3.

In the sequel we shall prove that each of the remaining three triangles tiles the
square. Consider first the triangle A, of angles o = /8, § =n/4, v = 57/8.

£3

Fig. 8
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Fig. 9

We offer two tilings of the square with A,. The first contains several hundred
triangles, but hardly needs any calculation. The second uses 74 triangles and is based
on a particular construction. ‘

If a triangle A tiles a polygon P then we shall denote this fact by P € T(A).

Let P(a,b) denote the parallelogram of angle 7/4 and sides a and b. Since

siny/sina = v2+1, P(1,v/2+ 1) can be divided into two triangles similar to A,. If
r is a positive rational number then P(1,7(v/2 + 1)) can be decomposed into finitely

many parallelograms similar to P(1,v/2 + 1) and hence P(1,7(v/2 + 1)) € T(4A,).
Let T(a, b) denote the symmetrical trapezoid of angle 7 /4 with leg a and shorter

base b. As Figure 9 shows, T(1,v/2) € T(A,). Since P(1,2a + v/2) can be decom-
posed into two trapezoids of size T(1, a), this implies P(1,3v/2) € T(A,) and hence
P(1,7/2) € T(A,) for every r € Q, r > 0.

If a, b are positive rational numbers with a > b+ 1, then

T(1,av2 +b) = P(1,(a — 1 - b)v2) U.P(1,6(v2 + 1)) UT(1,V2) € T(4,).

Next we prove that T'(1,av/2+b) € T(A;) whenever a,b € Q and a > b > 0. Indeed,

let n be a positive integer with 1/n < a—b. We divide T'(1, ay/2+b) into n trapezoids
by n — 1 equidistant lines parallel to the bases, and obtain the decomposition

T(l,a\/§+b)=1DlT<%, (a+%) x/2'+b).

Foreveryi 20, T (%, <a+ %) VZ+ b) is similar to 7(1,(na + i)v/2 + nb) and

hence, as na + 4 > nb+ 1, can be tiled with A,. Therefore T(1,av2 + b) € T(4,),
as we stated.
Now Figure 10 shows a decomposition of the isosceles right triangle A, into two

triangles similar to A; and three trapezoids of size T(vV2+4,4v2+4), T(4v2+3,
2v2+4) and T(V2 + 3,2 + 1), respectively. Since

4V2+4  6vZ+4  2v2+4  10vV2+4 VZ+1_ 2V/2+1
Va+4 T 4/2+3 23 V2+3 7
the argument ahove praves that these trapezoids can be tiled with A,. Therefore
Ag € T(A1) and thus the square can be tiled with A;.
The second tiling is shown on Figures 11 and 12. Figure 11 shows T(2, 2v/2+2) €
T(4;), and Figure 12 gives a tiling of A, using-four triangles similar to 4,, a
trapezoid T'(1, v/2), and three trapezoids. similar to T(2,2v/2 + 2).
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Fig, 12

Remark 25. It follows from Theorem: 2 that a rectangle R of size a x b can be tiled
with A, only if b/a € Q(/2). This condition is still not sufficient. If b/a = p+qv/2
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where p, q € Q, then another necessary condition is that

(31) p > lg|V2.
Indeed, we may assume that the vertices of R are V;(0,0), V5(1,0), V3(1,y), V4(0,%),

2
where y = p + ¢v/2 > 0. Since cot s and cot %r_ are positive, the map @ of the

conjugate tiling corresponding to k = 5 does not change the orientation of A;. This
implies that ® does not change the orientation of R; that is, ' = p — ¢v/2 > 0 and
hence (31) must hold.

We do not know if this condition is sufficient for R € T(A;). We remark that
p > 29 +2 > 0 is a sufficient condition. Indeed, let p’ = (p — 2)/2, thenp’ > ¢ > 0
and hence T(1,9'v2 + q) € T(A,). Thus T = T(v2,20’ + ¢v2) € T(4,), and we
can complete T' by two isosceles right triangles to a rectangle of size 1 x (p + ¢v/2).

Now we turn to the triangle A, of angles a = 7/4, = «/3, v = 57/12. Since

sin57r s'nz—ﬁ 1+£
12/ 3T 3/

P(1,v/2(3 + V/3)/6) can be decomposed into two triangles similar to A,.

Hence P(1,7v2(3 + v/3)) € T(A;) for every r € Q, 7> 0.

As Figure 6 shows, T(1,v/2(3 — v/3)/3) € T(A,). Since P(1,2a + v/2) can be
decomposed into two T'(1, a)’s, this implies P(1,v/2(9—2v3)/3) € T(A,). Therefore

P(1,3v3) = P(1, 2v2(3 + V3)/3) U P(1, V2(3 - 2v/3)/3) € T(Ay)

and thus P(1,7v/2) € T(A;) for every r € Q, r > 0.
If a, b are rational numbers such that @ > b+ 2 > 2 then

T (1, V2 (a+ b—?)) € T(A,).

Indeed,

T(l,ﬁ(a+b§)) -

P (1, (b+1)V3 (1+?)) UP(1, (a—b—2)V2)UT (1,\/5 (1—?)) €T(A,).

This implies, in the same way as in the case of A, that T (1, V2 (a + b?)) €

T(A;) whenever g,b€Q, a>b20. ’
Figure 13 shows that the isosceles right triangle Ag can be decomposed in-
to four triangles similar to A, and three trapezoids of size T | z + 1, —\g—q +y),
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Fig. 13

T (y, 1+ 2? + z), T (z, \/5 +§) respectively, where we choose z = 1 + %_5

and y = v/2(34 + 12v/3)/3.

Since
V6 V3
3 Y 5165+44V3 1+2'3—+m_‘/§96+30\/'3-
1+z 33 ' Y - 1448 '
and v
6
\/§+—§
,__5___=\/§,

these trapezoids can be tiled with A;. Therefore the isosceles right triangle and the
square also can be tiled with A,.

If we tile the unit square with A, then the conjugate tiling corresponding to k =
5 will produce a tiling of the square with the triangle A; of angles 7/12, = /4, 27/3.
Remark 26. The map ® of the conjugate tiling corresponding to & = 5 maps A, and
A; into each other, without changing their orientation. This implies that a rectangle
R of size a x b can be tiled with A, or Az only if b/a = p + ¢V/3, where p > |g|v/3.
We do not know whether this condition is sufficient for R € T(A,).

6. Tiling the square with similar triangles

In this section we address the following queéstion: which triangles tile the square?
By Theorem 23, such a triangle is either a right.triangle or its angles are given by
(30). As we saw in the previous section, the second, third and fourth of the triangles
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(30) do tile the square. The first, however, does not tile, since 6 is not divisible by 4
(see Theorem 9).
Thus we may confine our attention to right triangles. Let A(a) denote the right

i
triangle with acute angles a and 5~ Q.

Theorem 27. If A(«) tiles the square then cot a is a totally positive algebraic number.
That is, it is algebraic, and each of its real conjugates is positive.

Proof. We may assume that A(a) tiles the unit square. By Theorem 14, this implies
that cot a is algebraic. Let u be a real conjugate of cot o and let ¢ be an isomorphism
of Q(cot ) such that ¢(cot @) = u. Then, by Theorem 5, at least two of the numbers

¢ (cot g) =0, ¢(cota)=u, ¢ (cot (g - a)) = %

are positive and hence u > 0. (]

We do not know whether or not the triangles satisfying the condition of Theorem
27 tile the square. We show, however, that this condition is strong enough to
determine those right triangles which tile the square and whose angles are rational
multiples of .

Lemma 28. Let a,n be integers with 0 < a < n. If cot(%w) is totally positive then

8 1 1 5
n 4’12’ 12)°
Proof. We may assume that ¢ and n are coprime. Let

P,={ke€Z: (ksn)=1, k=1 (mod 4)}

and
Qn={k€Z: (k,n)=1, k= -1 (mod 4)}.

By Lemma 8, the numbers cot(kw/n) (k € Py) are conjugates of cot(w/n), and the
numbers cot(kn/n) (k € Q) are conjugates of cot(—m/n). Since cot(—n/n) < 0
and cot(am/n) is totally positive, it follows that the numbers a + in (i € Z) are not
congruent to —1 mod 4. This easily implies that 4|n and a € P,. Consequently,
cot(kmw/n) > 0 holds for every k € Fy.

If ¢ = 4i—1is prime and ¢ < n/2, then n—q = 1 (mod 4) and cot((n—q)r/n) < 0.
Thus n — ¢ ¢ P, and hence g|n. That is, n is divisible by every prime which is of the
form 47 — 1 and is less than n/2.

Let 3 = ¢; < g2 < ... be the sequence of primes of the form 4i — 1, and let
gs < n/2 < gsq1- Then we have

4q1G2...qs 1 < 2¢54,.

Now one of the numbers q;...gs + 2 and ¢,...gs + 4 is of the form 4i — 1 and hence
has a prime factor of this form. Therefore ¢s11 < q;...gs + 4 from which we obtain
4g1...q5s < 2¢1...qs + 8, q1...¢s <4, s<1, n < 14. Since n = 8 does not have the
required property, we have n = 4 or n = 12. Finally, a € P, gives the assertion of
the Theorem. ) (]
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75° 15¢
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%O

75° 159
4

Fig. 14

Now suppose that A(a) tiles the square and a is a rational multiple of =. Then
it follows from Theorem 27 and Lemma 28 that the angles of A(a) are 45°, 45°, 90°,
or 15°, 75°, 90°. Both triangles tile the square. As for the second, we refer to Figure

14.
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