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We prove that if a polygon P is decomposed into finitely many similar triangles then the 
tangents of the angles Of these triangles are algebraic over the field generated by the coordinates 
of the vertices of P. If P is a rectangle then, apart from four "sporadic" cases, the triangles of the 
decomposition must be right triangles. Three of these "sporadic" triangles tile the square. In any 
other decomposition of the square into similar triangles, the decomposition consists of right triangles 
with an acute angle a such that tan a is a totally positive algebraic number. Most of the proofs are 
based on the following general theorem: if a convex polygon P is decomposed into finitely many 
triangles (not necessarily similar) then the coordinate system ckn be chosen in such a'way that the 
coordinates of the vertices of P belong to the field generated by the cotangents of the angles of the 
triangles in the decomposition. 

I n t r o d u c t i o n  

We shall say tha t  a triangle A tiles the polygon P, if P can be decomposed into 
finitely m a n y  non-overlapping triangles similar to  A. The  following problem, which 
was the s tar t ing  point  of our investigations, was posed by L. P6sa  [4]: does the 
triangle with angles 30 ~ 60 ~ 90 ~ tile the square? As we shall see, the answer is no, 
and thus the quest ion arises, exactly which triangles tile the square? This problem 
proves to be surprisingly difficult, and  we only give a part ial  answer. 

In Section 5 we shall prove tha t  each of the triangles with angles (rr/8, 7r/4, 57r/8), 
@/4,  7r/3, 57r/12) or  (rr/12, 7r/4, 27r/3) tiles the  square. Apar t  from these,  only 
right triangles can tile the square. Moreover, as we show in Theorem 27, if a right 
triangle with acute angle a tiles the square, then tan  a must  be algebraic and such 
that  each of its real conjugates  is positive (these numbers  are called total ly positive). 
Since - v ~  is a conjugate  of t an  60 ~ = x/~, this shows tha t  the triangle with angles 
30 ~ 60 ~ 90 ~ does not  tile the square. 

Apar t  f rom the three triangles listed above, there is only one more which can tile 
a rectangle and has no right angle. This is the triangle with angles (7r/6, 7r/6, 27r/3), 
which tiles the  rectangles of  size a • b, where b/a = r v ~  and r is rat ional  (Theorem 
23). 

As for tilings of a rb i t rary  polygons,  we prove tha t  a triangle can tile a polygon 
P only if the cotangents  of  its angles are algebraic over the field generated by the 
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coordinates of the vertices of P (Theorem 14). This shows, in particular, that  the 
number of triangles tiling a given polygon is at most countable. 

The underlying results to the theorems above are two generalizations of the 
following theorem by M. Dehn (see [1] or [2], p. 77): if a rectangle R can be 
decomposed into finitely many non-overlapping squares then (i) the sides of R are 
commensurable, and (ii) the sides of the squares in the decomposition are also 
commensurable. 

We shall prove that  whenever a polygon P is decomposed into finitely many 
triangles (similar or not), then the coordinates of the vertices of the triangles belong 
to the field generated by the coordinates of the vertices of P and the cotangents 
of the angles o f  the triangles (Theorem 1). For example, if P is a rectangle with 
commensurable sides then we may assume that  the coordinates of the vertices of 
P are rational. Now suppose that  P is decomposed into finitely many isosceles 
right triangles. Since cot 45 ~ -- 1 and cot 90 ~ = 0, our theorem implies that  the 
coordinates of the triangles in the decomposition are all rational. Thus we obtain 
the second statement of Dehn's theorem by dividing the squares into isosceles right 
triangles. 

We also prove that  if a convex polygon P is decomposed into finitely many 
triangles (similar or not), then we can choose the coordinate system in such a way, 
that  the coordinates of the vertices belong to the field generated by the cotangents 
of the angles of the triangles (Theorem 2). If, for example, P is decomposed into 
isosceles right triangles, then, in an appropriate coordinate system, the coordinates 
of its vertices are rational. If P is a rectangle, then we obtain Dehn's theorem. 

As a further application of these results, we shall prove that  the square cannot 
be decomposed into finitely many non-overlapping triangles in such a way that the 
size of every angle of the triangles, when measured in degrees, is an even integer 
(Corollary 10). This also shows that  the triangle with angles 30 ~ 60 ~ 90 ~ does not 
tile the square. 

1. T i l ings  w i t h  a r b i t r a r y  triangles 

In this paper all polygons are supposed to be simple and to have all angles 
different from ~r. We begin with the generalizations of Dehn's theorem. 

Theorem 1. Suppose that a polygon P is decomposed into the non-overlapping trian- 
gles A1 , . . . ,  A N. Then the coordinates of the vertices of each Aj  belong to the field 
generated by the coordinates of the vertices of P and the cotangents of the angles of 
the triangles Aj.  

Theorem 2. Let the convex polygon K be decomposed into the non-overlapping trian- 
gles A1 , . . . ,  A N and let Fa denote the field generated by the cotangents of the angles 
of A j  ( j =  I , . . . , N ) .  

If  K has two vertices with coordinates in F~ then the coordinates of each vertex 
of K and of each triangle A j  belong to Fa. 

The proof of Theorems 1 and 2 is based on the following Lemma. 

Lemma 3. Suppose that a polygon P is decomposed into the non-overlapping tri- 
angles A1, . . . ,  A N and let X denote the set of x-coordinates of the vertices o] 
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Aj (j  = 1 , . . . ,  N ) .  Let  F be a subfield of  the reals such that the slopes of  the non- 
vertical sides of  the triangles A j  belong to F. Let  Xl E X ,  min  X < xl  < m a x  X,  
and suppose that whenever  V = (Xl, y) is a vertex o f  P then P has a convex angle 
at V and every open vertical segment containing V intersects the interior o f  P. 

Then there are points Yi E X (i = 1 , . . . , n ) ;  zi C X (i = 1 , . . . , m )  and 
t i ,s i  E F N  R + such that 

n m 

( 2 )   t (xl - = s (zi - X l ) .  

i=1 i=1 

Proof.  Since xl  E X,  there  is an x2 such t ha t  V = (x l ,x2)  is a ver tex  of one of the  
triangles A j .  T h e  condi t ion on xl  easily implies t ha t  one of the  following s t a t emen t s  
must  hold. 
(i) There  is a t r iangle Aj  with vertices V = (Xl, x2), B = (yl,  y2) and C = (zl,  z2) 

such t h a t  Yl < Xl < Zl. 
(ii) There  is a t r iangle  A j  having a vert ical  side on the line x = xl .  

I f  (i) holds then  there  is a point  D = (Xl,U) on the  segment  B C .  Let a , f~ ,3 ' ,5  
denote the  angles D V B ,  V D B ,  D V C ,  V D C ,  respectively,  then  the co tangents  of  
these angles belong to F. We have 

Ix2 - u[ -- (xl  - y l ) (co t  ~ + cot j3) = (Zl - x l ) ( co t  3' + cot ~f). 

This implies 

t(x  - y l )  = s ( z l  - 

where t = ( c o t s  + c o t ~ )  and  s = (cot3 '  + cotS) ,  and  hence the  s t a t emen t  of the 
Lemma is satisfied wi th  n -- m -- 1. 

Next suppose  (ii) and  let ~ -- {xl} • [b,c] be a max ima l  vertical  segment  
containing V and  conta ined  in the  union of the boundar ies  of the tr iangles Aj .  
Obviously, (xl ,  b) and (xl ,  c) are bo th  vertices of  some tr iangles Aj .  Let  L and  R 
denote the  sets of all t r iangles Aj  which have a side on the segment  g and lie to the 
left and to the  r ight  of g, respectively. 

I t  follows f rom the  choice of  xl  t h a t  the  segment  g, apa r t  f rom its endpoints ,  
lies in the interior of  P .  Therefore  b o t h  of L and R cover g (see Figure  1.) We m a y  
assume tha t  the  tr iangles Aj  are indexed in such a way tha t  

L =  ( A 1 , . . . , A n } ,  R =  { A n + ~ , . . . , A n + m ) ,  

and there are subdivis ions 

b =uo < ul < . . . < un = c, 

b =vo < vl < . .. < Vm = C 

such tha t  (Xl} • [ui- l ,ui]  is a side of A i for every i = 1 , . . .  , n  and  {Xl} • [Vi_l,Vi] 
is a side of  An+ i for every i = 1 , . . . , m .  Let  the  vert ices of A i be  A i = (Yi, Y~), 
Bi = (Xl ,Ui-1) ,  Ci = (Xl,Ui) (i -- 1 , . . . , n )  and  of An+ i be D i = (zi,z~) , E i = 
(X l ,V i - -1 ) ,  F i = ( X l , V i )  ( i  = 1 , . . . , / ' ( ~ ) ~  

(1) yi < Xl (i = 1 , . . . , n ) ,  Xl < zl (i = 1 , . . . , m )  

and 
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: N 
D2 

Yz 71 Y~ x~ z~ z 

Fig. 1 

Then Yi < Xl for every i = 1 , . . . , n  and z i > Xl for every i = 1 , . . . , m .  If  ~i 
and % denote the angles of A i at tile vertices B i and Ci then we have u i - u i_  1 = 
t i ( x l  - y i )  d where ti = c o t E / + c o t %  (i = 1 , . . .  ,n) .  Obviously, ti > O, ti E F and 
c - b ~'~i=1 t i ( x l  - Yi). We can see in the same way that  there are positive numbers 
si �9 F such tha t  c - b = ~-~m 1 s i ( z  i - x l ) .  Therefore (1) and (2) are satisfied and 
this completes the proof of the Lemma. I 

P roo f  of  Theorem 1. Let F denote the field generated by the coordinates of the 
vertices of P and by the cotangents of the angles of the triangles Aj (j = 1 , . . . ,  N) .  
Obviously, the slopes of the sides of P belong to F. Since the angles between the 
sides of any of the triangles Aj and of P belong to the additive group generated by 
the angles of the triangles Aj and ~', it follows that  the slopes of the sides of Aj 
belong to F. 

Let x0 < xl < �9 �9 �9 < Xp denote the x -coord ina te s  of the vertices of the triangles 
Aj  (j  ---- 1 , . . . ,  N).  It  is enough to prove that  each xi  belongs to F. Let L be the 
linear space over the field F generated by the numbers x i (i = O , . . . , p )  and let 
B be a basis of L containing 1. We have to show tha t  B = {1}. Suppose this is 
not true and let an element b0 E B \ {1} be selected. Each x E L can be writ ten 
uniquely in the form ~ tb, where t �9 F, b E B. Let c(x)  denote the coefficient of b0 
in this representation of x. By the definition of B,  c (x i )  ~ 0 holds for at least one 
i; we may assume that  c(x i )  > 0 for some i. Let m = m a x { c ( x i ) : i  = 0 , . . .  ,p}, then 
m > 0. Let r be the greatest  index with C(Xr) = m. Then 0 < r < p. Indeed, x0 
and xp  are the x -coo rd ina t e s  of two vertices of P and hence they belong to F. Thus 
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C(Xo) = c(xp)  = 0 and, consequently, 0 < r < p. By the same argument, xr cannot 
be the x -coord ina te  of any of the vertices of P. This implies that Xr satisfies the 
conditions of the Lemma 3 and hence there are numbers t i ,  s i and points Yi and zi 
satisfying (1) and (2) with xr in place of Xl. Since t i ,  si E F,  (2): implies 

n m 

(3) t (e(xr) - = - e(xr)). 
i = 1  {=1 

By the choice of xr, the left hand side of (3) is non-negative, while the right hand 
side is strictly negative. This contradiction completes the proof. | 

Proof  of Theorem 2. By Theorem 1, it is enough to show that the coordinates of the 
vertices of K belong to Fz~. 

First we suppose that  K satisfies the following conditions. (i) The origin is a 
vertex of K and is the lower endpoint of a vertical side of K, and (i i)  the greatest 
x -coord ina te  of the vertices of K is 1. Let 0 -  x0 <: xl < . . .  < Xp = 1 be the 
x-coordinates  of the vertices of the triangles Aj (j = 1 , . . . ,  N).  The convexity of 
K easily implies that  each of the points xi  (1 < i < p - 1) satisfies the conditions'of 
the Lemma 3. This implies, by the argument used in the proof of Theorem 1, that  
xi  E Fz~ for every i -- 1 , . . .  ,p. In particular, the x-coord ina tes  of the vertices of K 
belong to F~. 

w, 

K 

7,v2 ', 
I I , , /  / i  , 
I I 

0 m ),~ 1 =yo 

Fig, 2 

Since K is convex, its vertices can be listed in two sequences V0 = (Y0, z0), �9 �9 �9 Va = 
(Ya, Za) and Wo = (uo, vo) . . . .  , Wb -~ (Ub, Vb), where 0 -- Yo < . . .  <: Ya = 1, 0 = u0 < 
. . .  < u b = 1, and 0 = z0 < Vo (see Figure 2). It is easy to see that  the angles between 
the sides of K and the coordinate axes belong to the additive group generated by 
the angles of the triangles Aj.  Therefore the slopes of the sides of K belong to Fa.  
Since Yo, . .  , , Ya  belong to Fz~, this implies that  Zo . . . . .  , za  also belong to Fa.  Let 
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A~, , . . . ,  Ajs denote those triangles of the decomposition which have a vertical side 
lying on VoWo. Since the x-coordinates of the vertices, and also the slopes of the 
sides of these triangles are in Fz~, it follows that the y-coordinates of the vertices of 
Aj~, . . . ,  Aj~ also belong to Fa. This easily implies that v0 E F~. Therefore v0, . . . ,  Vb 
are in F~ as well and hence the Theorem is proved supposing that K satisfies (i) 
and (ii). 

Considering the general case, suppose that K has two vertices with coordinates 
in FA. Using a translation we may assume that one of these vertices is the origin. 
Since K is convex, there is a rotation R such that R(K) satisfies (i) and lies in the 
ha/f-plane x _> 0. Then there is a homothetic transformation H such that HR(K) 
satisfies both (i) and (ii). Therefore, the coordinates of the vertices of HR(K) 
belong to F~. By assumption, there is a vertex (x, y) of K such that x, y 6 F~, and 
x e + y~ ~ 0. The matrix of HR is of the form 

and hence we have ax+by e FA and -bx+ay 6 FA. This implies a, b 6 F~. Therefore 
the entries of the matrix of (HR) -1 also belong to F~. Since the vertices of K are 
the images of those of HR(K) under (HR) -1, their coordinates belong to F~. This 
completes the proof of Theorem 2. I 

Remark 4. The condition of convexity cannot be removed from Theorem 2. Indeed, 
the hexagon H in Figure 3 is decomposed into two isosceles right triangles and has 
three vertices with rational coordinates, but the other vertices of H have irrational 
coordinates. 

F(OJ) 

( n , l . o 1  

-< 

% 
H 

A(O.O) 

O (o: , ~-t~) 

B(LO) 

Fig. 3 

Our next theorem states that whenever a polygon is decomposed into triangles 
then the cotangents of the angles of the triangles have to satisfy a certain condition 
concerning the isomorphisms of the field described in Theorem 1. 
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Theorem 5. Let P be a polygon with vertices Vi = (ai,bi) (i = 1 . . . .  ,n). Suppose 
that P is decomposed into the non-overlapping triangles Aj (j = 1 , . . .  ,N) ,  and let 
~j,  ~j, 7j denote the angles of Aj .  Let F denote the field generated by the numbers 
ai, bi, co t~ j ,  cot~j ,  cot~/j (i -- 1 , . . . , n ;  j -- 1 , . . . , N ) ,  and let r  ~ R be a 
real isomorphism o f f  that leaves the numbers al, bl, (i = 1 , . . .  ,n) fixed. 
Then there is a j such that at least two of the numbers r (~j), r r ~/j) 
are positive. 

Lemma 6. Let A be a triangle with angles ~i (i = 1, 2, 3). Let the vertices of A be 
Vi -- (ai, bi) (i = 1, 2, 3) and let F be a field containing the numbers ai, b i (i -- 1, 2, 3). 
Suppose that r F --+ R is a real isomorphism of F and let the map ~: F • F --* R 2 
be defined by 

(4) y)) = (r r fix, y) �9 P • F).  

Let A t denote the triangle with vertices 4~(Vi) (i = 1, 2, 3), and let (~ (i = 1, 2, 3) 
denote the corresponding angles of A' .  Let e = 1 i] the map �9 does not change the 
orientation of A, and let ~ = - 1  otherwise. 

Then we have cot a~ -- ~r (~i) (i -- 1, 2, 3). 

Proof. Suppose that the order of indices of the vertices (ai, bi) corresponds to the 
positive orientation of A. If the angle c~1 is at the vertex (al, 51) and bl ~ b2, bl r b3 
then we have 

[ ( a 3  - -  a l ) / ( b a  - b l ) ] .  [ ( a 2  - a l ) / ( 5 2  - b l ) ]  -{- 1 
( 5 )  c o t  o~ 1 - -  [ ( a 2  _ a l ) / ( b  2 _ 51) ]  - [ ( a a  - a l ) / ( b 3  - 51) ]  

so that cot al  �9 F. This formula also shows that if e = 1 then cot a~ = r ~1)- On 
the other hand, if the order of indices corresponds to the negative orientation of A, 
then in the right hand side of (5) the indices 2 and 3 have to be interchanged. This 
implies that in the case of ~ = - 1  we have cot a '  = - r  (~1). Similar argument 
applies if bl = b2 or bl = b3. | 
Proof  of Theorem 5. We may assume that the vertices 111,..., Vn are listed counter- 
clockwise. Let (ai, b~) (i = 1, 2, 3) denote the vertices of Aj listed also counter- 

clockwise. By Theorem 1, a~., b~ �9 F holds for every i and j. Let A~ denote the 

oriented triangle with vertices (r r (i = 1, 2, 3). 
If we consider the boundary OAj of the triangle Aj as a cycle (sum of oriented 

segments), we can see that  ~-~N=I OAj equals the cycle F -- V I . . .  VnV1. 
Since r is an isomorphism, the map (I)defined by (4) is a collineation on F • F. 

Therefore the sum of the cycles gj = OA~ equals the cycle F, as r leaves the vertices 
V k fixed. Since the cycle F is positively oriented, at least one of the triangles A~. must 
be positively oriented as well. Indeed, the integrals Ij -- f$j x dy and I -- fr  x dy 

' and P, respectively. Since ~':~N=I Ij = I and I is equal the oriented areas of Aj 
positive, at least one of the numbers Ij must be positive. 

If the orientation of the triangle A~ is positive and (~, f~j, "yJ. denote its angles 
then, by Lemma 6, we have 

cot c~- -- r ~j) ,  cot f~ = r f~j), cot "y~ -- r ~j). 
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Since at least two of ~. ,  ft~., 7~" are acute angles, at least two of their cotangents are 
positive, and this completes the proof. | 

Corollary 7. The square cannot be decomposed into finitely many non-overlapping 
triangles with angles 30 ~ , 60 ~ and 90 ~ . 

Proof. Suppose that  the unit square has such a decomposition. Since cot 30 ~ = v ~  
and cot60 ~ -- v~ /3 ,  we may apply Theorem 5 with F = Q(vf3). Let r be the 
automorphism of Q(v~)  with r -- -x/'3. Then r maps cot 30 ~ and cot 60 ~ into 
negative numbers, which contradicts Theorem 5. | 

--~i Lemma 8. Let n be a non-zero integer and put ~ = e2n . Then 
a 

cot-rr  �9 q(r 
n 

for every integer a not divisible by n. In addition, if k is prime to 2n then there is 
an automorphism r of Q(r such that 

a 
(6) r nrr) 

for every a not divisible by n. 

Proof. We have 

Now i = en, and hence 

(r) 

ak 
= " " ~ ( - 1 )  ( k - 1 ) / 2 c o t - r r  

n 

a e~ ~ri + e - ~  rri 
cot - r r  = i a �9 a ." 

n e~Trz _ e-~rrz 

a C r + r cot -~rn = r E Q(~). 

If (k,2n) = 1 then ek is a primitive 4n th root of unity and hence  there is an 
automorphism r of Q(~) such that  r = (k. Then (7) gives 

[ ,~ nk~:ak + ~-2ak ak 
r ~cot ag r )  = ~ ~ ' ~  ~ - 2 a k  = ~n(k-1) cot - - T r  ---~ ( - 1 )  (k-1)/2 cot  ak  

n n 

since ~n(k-1) = ik-1 = (_l)(k-1)/2. | 

Theorem 9. Suppose that each vertex of the polygon P has rational coordinates. Let 
P be decomposed into non-overlapping triangles A1 , . . .  , A N  in such a way that the 
angles of the triangles A j  are all rational multiples of rr. 

I f  the angles in question are a/rr (i = 1 , . . .  ,3N),  then 4In. 
n 

Proof. Let F denote the field generated by the numbers cot a/~r (i = 1 , . . . , 3 N ) .  
n 

By Lemma 8, F C Q(~). Suppose that  4r Let k = 2n + 1 if n is odd, and let 
k = n + 1 if n ~ 2 (mod 4). Then (k,2n) = 1 and hence, by Lemma 8, there is an 
automorphism r of Q(r such that  

(8) r a/rr) (-1)(k-1)/2 cot aik 7r 
n n 



TILINGS OF POLYGONS WITH SIMILAR TRIANGLES 289 

holds for every i. This: implies, in particular, that  the restriction of r to F is a real 
isomorphism. As k -- - 1  (mod 4) and k = 1 (mod n), we have aik -- ai (mod n) 

ai and hence the right hand side of (8) equals - c o t  --~r. 
n 

That is, if a is an angle of any of the triangles Aj then 

r a)  = - cot a. 

This implies, by Theorem 5, that there is a Aj such that two of the cotangents of its 
angles are negative. Since Aj has at least two acute angles, this is clearly impossible. 
This contradiction completes the proof of the Theorem. | 

Corollary 10. The square cannot be decomposed into finitely many non-overlapping 
triangles in such a way that the size of every angle of the triangles, when measured 
in degrees, is an even integer. 

Proof. Suppose that there is such a decomposition. We may assume that the 
vertices of the square have rational coordinates. If k is an even: integer, k -- 2n, 
then k ~ -- k~r/180 = n~r/90. Since all t he  angles are of this form, and 90 is n o t  
divisible by 4 ,  this contradicts Theorem 9. | 

Remark 11. We mention here the following theorem by P. Monsky [3]: the square 
cannot be decomposed into an odd number of non-overlapping triangles of the same 
area. In spite of the resemblance, there does not  seem to be a close Connection with 
Corollary 10. The proof of Monsky's theorem is based on valuation theory. 

2. C o n j u g a t e  tilings 

Let P be a polygon with vertices V1,. . . ,  Vn listed counterclockwise, and let P 
be decomposed into the non-overlapping triangles ~1 , - - .  ,~N" Let ?~ denote the 
set of the vertices of the  triangles Aj (j = 1 , . . . , N )  and let ~ :U  ~ R 2 be a 
map. If the vertices of the triangle zkj are Vj, i (i = 1, 2, 3) then we denote by/k~ 
the (possibly degenerate) triangle with vertices r (i = 1, 2, 3). We say that 

is degenerate, or the orientation of the r preserves the orientation of / k j  if /Xj 
vertices ~(Vj i) (i = 1, 2, 3) is the same as that of V.- i (i = 1, 2, 3) The map �9 is 

�9 , .7  . ~  

a collineation if, whenever three points of ?~ are colhnear then their images are also 
collinear (including the possibility that some of them coincide). 

Lemma 12. Suppose, with the notation above, that r is a collineation and preserves 
the orientation of each of the triangles /xj (j = 1 , . . . , N ) .  I f  the points r 

! (i = 1 , . . . , n )  are the consecutive vertices of a polygon pr then the triangles /kj 

(j = 1, . . . .  N )  are non-overlapping and constitute a tiling of PP. 

Proof. We give the positive orientation to each triangle Aj and denote by Oj the 
sum of the oriented segments of the boundary of ~ j .  Obviously, the sum of the cycles 
0j (j = 1 . . . . .  N)  equals tl~e cycle 0 = V1,. . . ,  Vn, V1. Let 03 and o ~ denote the images 

of 0j and 0 under r Since �9 is a collineation, we have ~]N=I ~ = 0 I. Now, as ~j is 
positively oriented for every j (or equals zero if/x~ is degenerate), this implies that 
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! 
the triangles Aj are non-overlapping and cover pt. The easiest way to prove this is 

to use complex line integrals around the cycles 4 "  We identify R 2 with the complex 
plane C and put 

for every z 6 C \ ~j. Then Ij(z) = 0 or 1 according to whether z is outside or inside 
i Since Aj. 

N 

j = l  

and l(z) = 1 for every z covered by pl  and I(z) = 0 for every z outside pi,  our 
assertion follows. | 

Remark 13. The tilings of P and P '  in the lemma above need not be topologically 
isomorphic. Consider the following example. Let the square ABCD be decomposed 
into the triangles ABF,  BCG, CDG, DAE, DEG, E F G  as shown in Figure 4. 
Let �9 map A . . . .  , G to A ' , . . . ,  G' shown in Figure 5. Then ~ is a collineation and 
preserves the orientation of the triangles A B F , . . . ,  EFG. Accordingly, the triangles 
AIB'FI , . . . ,  ErFIG ~ constitute a tiling of A'B'CID '. However, these tilings are not 
isomorphic topologically. In fact, even the graphs shown in Figures 4 and 5 are non- 
isomorphic, as one of them contains a point with valency 5, while the other does 
not. 

0 C 

A B 

D' c' 

A' 8" 

Fig. 4 Fig. 5 

Let F be a field containing the coordinates of the points of Y, let r F -~ R 
be an isomorphism and let the map q) be defined by (4); then �9 is a collineation. 
Suppose that  the points V/I -- q)(~) (i - 1 , . . . ,  n) are the consecutive vertices of a 
polygon P ' .  By Lemma 6, (I) preserves the orientation of Aj if and only if at least 
two of the numbers r (i = 1,2,3) are positive, where aj i  (i = 1 , 2 , 3 )  
denote the angles of Aj. If  this condition is satisfied for every j then, ~y the previous 
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I I Lemma, we obtain a tiling of p t  with the triangles Aj such that the angles a~, i of Aj 

satisfy cot a;, i = r aj,i) (i = 1, 2, 3). If, for every j, at least two of the numbers 
r aj,i) (i -- 1, 2, 3) are negative then @ changes the orientation of the triangles 
Aj,  Using a reflection we can reduce this case to the previous one, and obtain a tiling 

i such that c o t  a ; ,  i = - r  a j , i )  for every j = 1 , . . . ,  N and i = 1, 2, 3. of P '  w i t h  Z2kj 

In each case we may call this tiling of PP a conjugate to the original tiling of P. 

O(U) Cf3-2~3 ,1) 

A - 4_ 373~,0 } 

Fig. 6 

O'{U ) C'(3 . ~ -  , 1) 

7r 7r 

A'{O,O) g' O' 

Fig. 7 

Consider the following example. Let P be the trapezoid with vertices A(0, 0), 
B((12 - 2v/3)/3,0), C((9 - 2x/~)/3, 1), O(1, 1). Then P can be tiled with three 
triangles of angles 7r/4, ~r/3, 57r/12 (see Figure 6). The coordinates of the vertices of 
this decomposition belong to Q(v/3). Let r be the automorphism of Q(v~)  satisfying 
r  = - V ~ .  The image p1 of P under the map g2 is shown on Figure 7. Since 

r c o t ~  = 1 -- c o t ~ ,  r c o t ~  = r = - - - ~  -~ ,  r a o t - ~  = 

7s 
r - V/'3) = 2 + v/3 = cot ~ ,  the argument above applies and we obtain a tiling of 

pt  with three triangles of angles 7r/12, ~r/4 i 27r/3. This tiling, shown on Figure 7, is 
the conjugate of the tiling of Figure 6. 

3. Tilings of polygons with similar triangles 

We s~y that a triangle A tiles the polygon P if P can be decomposed into finitely 
many non-overlapping triangles similar to A. 
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T h e o r e m  14. Let A be a triangle with angles a, ~ and 7. I f  A tiles a polygon P then 
cot  a ,  cot  ~3, cot  7 are algebraic over the field F generated by the coordinates of the 
vertices of  P. 

Proof .  We fix a t i l ing of  P wi th  t r iangles  s imi lar  to  A.  F i r s t  we suppose  t h a t  cot a 
is a lgebra ic  over F and  prove t ha t  in th is  case cot  13 and  cot  7 are  also a lgebra ic  over 
F.  

Assume  t h a t  cot  13 is t r anscenden ta l  over F ;  then  cot  fl is t r anscenden ta l  over 
F1 = F ( c o t  a )  as well. Let  U deno te  the  set of those  real  numbers  which are 
t r anscenden t a l  over F1 and  let  u �9 U be a rb i t r a ry .  T h e n  there  exis ts  an i somorph i sm 
r F l ( c o t  ~) ~ R such t ha t  r leaves the  e lements  of F1 fixed and  r  = u. Since 
"~ = zr - a - fl, we have 

and  

cot~=-cot(a+~)= 

r - 

1 - cot  a cot/3 

cot  a + cot  p 
�9 E l (COt  Z)  

1 - cot  a �9 u 

cot a + u 

Since U is everywhere  dense in R ,  we can choose u in such a way t h a t  u and  
(1 - c o t  a .  u ) / ( c o t  a + u) a re  b o t h  negat ive.  However,  the  exis tence of  such an  isomor-  
ph i sm con t rad ic t s  T h e o r e m  5. Therefore ,  if one of the  numbers  cot  a ,  cot/3, cot 7 is 
a lgebra ic  over F then  they  are  all a lgebraic .  

Suppose  now tha t  cot a ,  cot fl, cot 7 are  all t r anscenden ta l  over F.  Let  V be  a 
ver tex  of P at  which P has a convex angle  & Then  there  are non-nega t ive  integers  
n, k, m such t h a t  n a + k / 3 + m 7  = & Since ~ < 7r, a t  least  one of n, k, m is zero; we 
m a y  assume tha t  m = 0. I f  k = 0 then  we have n a  = 5. Since cot  5 E F,  th is  implies  
t h a t  cot  a is a lgebra ic  over F which is impossible .  Therefore  k # 0 and,  s imilarly,  
n # O .  

We fix a real  number  u such t h a t  u < cot  ~ and  u is t r anscenden ta l  over F.  Let  
~' deno te  the  a lgebra ic  closure of F.  Since cot a and  u are b o t h  t r anscenden t a l  over 
_P, the re  is an  i somorph i sm r of  C into  i tself  such t ha t  r leaves the  e lements  of _P 
f ixed and  r  a )  = u. We show tha t  r  ~) and  r  3') a re  real.  

Let  x = e in, y = e i~3, z = ei~; then  n a + k / 3  = ~ gives x n y k  , = z. Since 
c o t 6  = i (z  + z - 1 ) / ( z  - z -1)  q F, we have z �9 ~' and  thus  

(9) 

For  every c E C,  
Therefore ,  by 

. r  + r  -1  = r  a )  = u e R ,  
- 

= z .  

i(c + c - 1 ) / ( c  - c -1)  is real  if and  only  if Icl = 1 and  c # 4-1. 

r  = i r  -4- r  
r  _ r  

This  gives then  r  3') = - r  + fl)) e R .  

E R .  

we have Ir  = 1 = Izl and  thus,  by  (9), Ir = 1. Hence 
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This implies that  the restriction of ~ to the field F(cot  a, cot ]~, cot "7) is real and 
hence, by Theorem 5, at least two of the numbers r (~), r fl), r 7) are 
positive. Let a l /~r ,  ?t �9 (0, ~r) be such that  

r c~) -- cot at, r f~) = cot B I, r 7) = cot ?t. 

Applying the results of the previous section we find that  the isomorphism r induces 
a tiling of P with triangles of angles a ~, ~ ,  ~/. At the vertex V this tiling has n + k 
triangles with angles c~ I and ~3 I, respectively. Therefore n~ t + kfl I = 5, from which 
we obtain c~ I < 5 and cot c~ ~ > cot 5. However, this contradicts cot a '  -- r a)  = 
u < cot 5, completing the proof. | 

Corollary 15. For every polygon P, the set of triangles which tile P is countable. 

Remark 16. The set of triangles tiling a given polygon can be infinite. For example, 
if P is a parallelogram, then we can divide P into nk congruent parallelograms and 
then, dividing each of these small parallelograms into two triangles, we obtain a tiling 
of P with 2nk congruent triangles. 

In order to formulate further necessary conditions on tilings with similar trian- 
gles, we shall need the following definitions. 

Defln~tlon 17. Let P be a polygon with angles ~I , . . .  ,~n and let 

Lp  = riSi: ri �9 Q ( i - -  1 , . . . , n  . 

We denote by dp the dimension of Lp  as a linear space over Q, and put 

rp  -- dp - 1. 

Definition 18. Let P be a polygon. Suppose that the polygon pt  is similar to P and 
has at least two vertices with rational coordinates. Then we denote by Fp the field 
generated by the coordinates of the vertices of pi.  (It is easy to check that Fp does 
not depend on pt ,  only on P.) The trancendence degree of Fp over Q will be denoted 
by tp. 

Lemma 19. For every triangle A we have tz~ <_ rh <_ 2. 

Proof. Let the angles of A be a, /~, % If the vertices of A with angles ~, f~ are 
placed at (0, 0) and (1, 0), respectively, then the coordinates of the third vertex of A 
are x = cos (~ sin f~/sin ff and y = sin ~ sin/3/sin 7. 

If r a  = 0 then a, /~, - /a re  rational multiples of 7r. In this case x, y are algebraic 
numbers and hence tz~ = 0. 

Suppose next rzx = 1. Then two of the angles of A generate La.  We may suppose 
that these are a and f~, and then rc~ + sf~ = 7r with some r, s E Q. This easily implies 
that any two of tile numbers s ins ,  cos c~, sin/3, s in7 are algebraically dependent 
and, consequently, ta  _< 1. 

As ta  _< 2 and rA < 2 hold in every triangle, the proof is complete. I 

In the sequel we shall only consider similar tilings of convex polygons. 
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Theorem 20. Suppose that the triangle A tiles the convex polygon P. Then we have 
(i) F p  C F,~, 
(ii) t p = t A  <_rA <_2, 
(iii) rp  < rA, and 
(iv) if  r p  = 0 then r~ <_ 1. 

Proof. We may assume that  P has two vertices with rational coordinates. Let a , /9 ,  
7 denote the angles of A. By Theorem 2, we have F p  C Q(cot  a,  cot/9, cot 7). Since 
c0t a ,  cot ;3, co t7  belong to Fa ,  this implies F p  C Fa.  

As we saw in the proof of Lemma 19, F~ = Q(cos a s in/9/sin 7, sin a s in/9/sin 7). 
Then, by Theorem 14, Fa  is an algebraic extension of F p  and hence t p  = t~.  Now 
(ii) follows from Lemma 19. 

Since each angle of P is a linear combination of a,  /9, 7 with integer coefficients, 
we have L p  C LA and (iii). 

Finally, suppose r p  = 0. Then each angle of P is a rational multiple of ~r. Let 
5 b e  an angle of P, then (~ = aa + b/9 + c7 with non-negative integers a, b, c. Since 
5 < ~r, one of a, b, c must  be zero. We may suppose that  c = 0. Let 5 = r~r (r 6 Q),  
then aa + b/9 = r ( a  + /9  + 7) and hence dim(Lz~) <_ 2. Thus rA < 1, which proves 
(iv). | 

Theorem 21. Let A be a triangle with angles a < 19 < 7, and let P be a convex 
polygon with angles 6i (i = 1 , . . .  ,n) .  I r A  tiles P then either 
(i) there is an i such that 5i 6 {a,/9, 7, ~ - a ,  = - / 9 ,  ~r - 7, 27}, or 
(ii) r p  = rA <_ 1. 

Proof. Let P be decomposed into the triangles A 1 , . . . ,  A N such tha t  each Aj  is 
similar to A. Let V be a vertex of one of the triangles Aj  and let { A j l , . . . ,  A j k }  
be the set of triangles having V as a vertex. Let ajs denote the angle of Ajs at 
V (s = 1 , . . . ,  k). If  V is a vertex of P with angle 5i then we have 

k 
(lO) 

8-=1 

If  V is not a vertex of P then we have either 

k 
~-~ O:js = 27c 
8 = 1  

(11) 

o r  

(12) 
k 

8=I 

In fact, (II) holds if V is in the interior of P and whenever V is on the boundary of 
a triangle Aj then necessarily V is a vertex of Aj; in all other cases we have (12). 

Since 37 >_ 27+/9 >__ 27+a >__ a +/9+7 = ~ and 7+2/9 >__ "/+/9 + ~ = ~, each 
of the equations (10) must take the form of one of the following equations: 

2"7 = 6i, /9 + 7 = ~i, k a  + 7 = ~i (k > 0) and k a  + m/9 = 6 i (k, rrt _> 0). 
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I f  any  of the  equat ions  29' = 6i , /3 + 9' = 6i, 9' = 6i, a + 9' = 6i, a = 6i , /3 = 6i, 
a + / 3  = 6 / o c c u r s  a m o n g  the  equat ions  (10), then  (i) is true.  

Therefore  we m a y  assume tha t  each of the equat ions  (10) is of the  form 

(13) k i a §  (ki ~ 2) 

o r  

(la) kic~ Jr mi/3 -= 6i (max(ki ,  mi) >_ 2). 

Now we suppose  t h a t  nei ther  of  (i) and  (ii) is t rue.  Since rp  _~ rz~ ~_ 2 by 
Theorem 20, this implies t ha t  e i ther  r a  = 2 or  rp  = 0 and  r a  = 1. 

Firs t  we consider the  case when rA = 2. Then  a ,  /3, 7 are l inearly independent  
over Q. Hence,  if 

(15) p a  + q/3 + r7  = vlr 

holds, where  p, q, r, v are integers, t hen  p -- q = r = v. 
Consequently,  the  left hand  sides of  the  equat ions  (12) and  (11) are of  the  form 

a + / 3 + 7  and 2 a + 2 / 3 + 2 7 ,  respectively. Since the  left hand  sides of  the equat ions  (10), 
(11), (12) conta in  N a ' s , / 3 ' s  and  7 ' s  (as they  involve all the  angles of the t r iangles 
A 1 , . . . ,  AN) ,  this implies t h a t  the  left h a n d  sides of the equat ions (10) conta in  the  
same n u m b e r  of a ' s ,  ~ ' s  and  9"s. However,  each of the  equat ions  (13) contains  more  
a ' s  t han  7 's .  Hence the  to ta l  n u m b e r  of  a ' s  in the equat ions  (10) is grea ter  t han  the  
number  of  9"s unless bo th  are zero. In  this case, however,  the number  of /3 ' s  will be  
different. This  shows t h a t  rA = 2 is impossible.  

Next  we suppose  t h a t  rp  = 0 and r~  = 1. T h e n  6 1 , , . . . ,  6n are ra t ional  mult iples  
of 7r. We dist inguish be tween  two cases. 

Case 1: equat ions  of  the  form (13) do occur  a m o n g  the equat ions (10). T h e n  the  
total  n u m b e r  of a ' s  is s t r ic t ly  grea ter  t h a n  the  n u m b e r  of 9"s in the equat ions  (10) 
and hence  there  mus t  be  a n  equa t ion  (15) a m o n g  the  equat ions  (11) or (12) such 
tha t  p < r (and v = 1 or v = 2.) Sub t rac t ing  r a  + r/3 + r9' = rTr f rom (15) we ob ta in  

(16) (p - r ) a  + (q - r)/3 = (v - r)lr.  

Let ka + 7 --- 6, k > 2 be an equa t ion  of the  form (13). Sub t rac t ing  a + / 3  + ? ---- 7r 
we ob ta in  

(17) (k - 1)cx - / 3  ---- 6 - 7r. 

If  (16) and  (17) de te rmine  c~ a n d / 3  then,  as 6 is a ra t ional  mult iple  of 7r, cx a n d / 3  
are also ra t ional  mult iples  of It. This  implies r~  = 0 which is not  the case. Therefore  
the equat ions  (16) and  ( 1 7 ) a r e  not  independent ;  t h a t  is, there  is a n u m b e r  e such 
tha t  

c ( k  - 1 )  = p - r ,  - c  = q - r ,  c ( 6  - = ( v  - 

S i n c e p < r a n d k > 2 ,  w e h a v e c < 0 ,  q > r ,  v > r .  Hence, b y v _ < 2 a n d p < r ,  we 
obta in  p -- 0, r - 1, v -- 2. This  gives 

= (v - r ) ~  = c(6 - ~) = - ( 6  - ~ ) / ( k  - 1) 

and (k - 1)~r ~- lr - 6, which  is impossible.  



296 M. LACZKOVICH 

Case 2: each of the  equat ions  (10) is of the  form (14),~ Let  

(18) k s  + m/3 = 6 

be one of these equat ions.  Then  ei ther  k > m a x ( m ,  2) or m :> max(k ,  2). Suppose  
the  former.  (The  la t ter  can be t rea ted  similarly.) Then  following the a rgumen t  of 
the  previous case we find an equat ion  of the  form (15) wi th  p < r. If  p, q, r are all 
posi t ive then  we can sub t rac t  a 4 ~3 + 0' = ~r from (15) so t ha t  we m a y  assume 
min(p,  q) = 0. As in the  previous case, we find t ha t  ~ the equat ions  (18) and (16) 
cannot  be  independent  and hence there  is a number  c such tha t  

ck -- p -  r, c m  = q - r, cS = (v -= r)Tr. 

Then  c < 0 and,  by m < k, we ob ta in  p <: q and v < r. This  gives, by rain(p, q) = 
0, p = 0. We also have 

( r  - v)Tr = - c ~  = - r 6  r 
k < ~Tr, 

a n d k ( r - v ) < r .  S ince v =  l or 2, v < r ,  k _> 2', this implies k = 2, v = 2 ,  r = 3 .  
Thus  c = - 3 / 2  and 6 = 27r/3. 

A l s o , - 3 m / 2 = q - 3 a n d m < k - - 2 y i e l d m = 0 ,  q = 3 o r m - - 2 ,  q = 0 .  I n t h e  
first case we have 2 a  = ~ = 27r/3, a = 7r/3 which is impossible since, in this case, 
/~ - ~r - a and  we assumed tha t  (i) does not  hold. In the second case (15) implies 
3"}' = 2~r and  0' = 2~r/3 = ~ cont radic t ing  the  same assumpt ion .  This  contradic t ion 
completes  the proof.  | 

4. T i l i n g s  o f  r e c t a n g l e s  w i t h  s i m i l a r  t r i a n g l e s  

In this section our  a im is to find those tr iangles which tile a rectangle.  Suppose 
t ha t  the  angles of  A are a ,  /~, "r and A tiles a rectangle P .  If  0" is the largest  angle 
of A then,  by T h e o r e m  21, one of the  following s t a t emen t s  is true. 

7r 
(i) ~ e {a ,  /3, 0", z c -  a,  7 r - / 3 ,  r c -  0", 20"}; 

(ii) r p  = rA.  
Since 20' >_ 2~r/3 > ~r/2, (i) implies t ha t  A is a right triangle. On the o ther  hand,  

as r p  = O, (ii) implies rz~ = 0. We have proved the following. 

] ' ,emma 22. I f  a triangle A tiles a rectangle then ei ther  A is a right triangle or the 
angles o f  A are rat ional  mul t ip les  of  ~r. 

Since every right t r iangle  tiles a rectangle,  we may  confine our a t t en t ion  to those 
t r iangles which tile a rectangle,  have no right angle a n d s a t i s f y  rz~ = 0. Our  first a im 
is to prove tha t  one of the  angles of these t r iangles is 7r/6 or 7r/4. 

Let  

a b c 
o~ ~- -Tr, /3 = -Tr, 0' = -Tr 

n n n 

where a, b, c, n are posi t ive integers and  a +  b + c = n. Mul t ip lying all these numbers  
by 2, we m a y  assume tha t  n is even. By L e m m a  8, the co tangents  of a ,  /3, 0" belong 
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to Q(() ,  where ( is the first 4n th root of unity. Suppose that  A tiles the rectangle P 
with vertices VI(0,0), V2(1,0), V3(1,y), Va(O,y). Then, by Theorem 2, 

y E Q(cot a b c deI -Tr,n COtn~r,- COtnZr) = F. 

Let k be an integer prime to n. Then, by Lemma 8, there is an automorphism r of 
Q(r such that 

= - -  = ~ COt  - - T r  
n n 

where ~/= (--1)(k-I)~ 2. Then r is real on F and hence :r = y' E R. Let the map 
r b6', defined by 

�9 ((x~, x~)) = (r r (z, ,z~ ~ F) .  

Using the notation of Section 2, we find that  the points 1/1, V2, Va'(1, yt), V4(0, y') are 
the consecutive vertices of a rectangle (listed counterclockwise or clockwise depending 
on the sign of y'). Let ~ = 1 if r preserves the orientation of A and let r = - 1  
otherwise. Since each triangle in the tiling of P is similar to A, it follows from the 
results of Section 2 that r induces a tiling of P' with triangles of angles a', /~', 7' 
such that  

(20) cot a t ak bk = ~r/cot --~r, cot/~, = ~ cot --~r, cot ~' = ~ cot CkTr. 
n n n 

We note that  r = 1 if and only if r preserves the orientation of P, and hence 
r = sgn y'. Now (20) implies that we have either 

o r  

Suppose that  the origin is the vertex of p + q + r triangles of the tiling of P with 
angles a , ~ , 7 ,  respectively; then pa  + q~ + r 7 = 7r/2. If A has no right angle then 
this implies r < 1 and max(p, q) > 2. By symmetry we may assume p > '2. This 
implies a <_ ~r/4. Also, the conjugate tiling induced by �9 has p triangles with"angles 
a '  a t  the origin. Therefore pa '  < 7r/2 and hence a '  < zr/4. This yields, by (21) and 
(22) that either { a k / n }  < 1/4 or { a k / n }  >_ 3/4, and this has to be valid whenever k 
is prime to n. 

We prove that  this condition implies a / n  = 1/6 or a / n  = 1/4. 
Let (a, n) = d, a = dal and n = dnl .  If k is prime to nl and i is the product of 

those prime divisors of n which do not divide k (or i = 1 if there is no such a prime) 
then k + inl is prime to n. Hence we have either 

n~ n - 4' 
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o r  

nl  ) n - 4  

If  k runs th rough  the reduced residue sys tem mod nl  then so does alk, as (al, nl) = 1. 
Therefore either {k /n l }  < 1/4, or {k /n l }  > 3/4  holds for every k prime to n~. Tha t  
is, 

n l  3nt  
(23) (nl, k ) > l  for every -~- < k <  . 4 - .  

The  only integers satisfying this condit ion are n~ = 1, 4, 6. Indeed, if n l  > 4 then, 
by "Ber t rand ' s  postula te" ,  there is a prime p such tha t  nl /4  < p < n l /2 .  By (23), 
this implies pin1 and thus n l  = 3p. I f p  < i < 2p then (23) gives 31i. Therefore p = 2 
and nl  = 6. Now it follows from 0 < al _< n l / 4  and ( a l , n l )  = 1 tha t  al = 1 and 
hence a/n  -- a l /n l  = 1/4 or a/n  = 1/6,  a s w e  stated. 

Thus  we have proved 

rt 7r 

In  the following a rgument  we shall .use'the nota t ion  of Theorem 21. Since A has 
no right angle, each of the equat ions (10) i s  of the fo}m (13) or (14) with ~i = zr/2. 
If  (13) actual ly  occurs among  the equations,  then 

Z = - + 3') > - 3") = 

contradict ing the fact tha t  3' is the largest angle of A. 
Hence each of the equat ions (10) is of  the form (14). Since the total  number  

of  a ' s ,  fl 's and 3"s in the equat ions (10)-(12) is N,  this implies tha t  at  least one 
of  the equat ions (11) and  (12) is of the  form (15) with p + q < 2r  (and v = 1 
or 2). Subtract ing,  if necessary, a + fl + "y -- zr f rom (15), we may  assume tha t  
min(p, q, r) = 0. This does not  affect the validity of p + q < 2r  and hence we have 
rain(p, q) = 0 < r. 

In  the sequel we shall assume q -- 0. (If p -- 0 then we can interchange the roles 
of  a and ~; the  condit ion c~ < / ~  will not  be used in the argument . )  Thus  we have 

(25) p a  + r3' = wr 

where 0 < p < 2r and v = 1,2. 
S u p p o s e  first v -= 1. Since, by  (24), 3" > lr/3, this implies r < 2. If  r = 1 then 

p < 1 and p a  + r3" < a + 3" < re, a contradict ion.  If  r = 2, p = 0 then  3" - 7r/2, and 
if r = 2, p > 1 then pa + r3' > a - F  23" ~ ~r, bo th  impossible. I f  r = 2, p -- 1 then 
p a  + r3" = c~ ~2 23' > a q-/~ + 3' = ~r unless "y = ft. In  this case (24) implies a = r / 6  
or  a = ~r/4, a n d  we obta in  

( a ,  z ,  3") o '  8 ' " 

Thus,  for the triple (a/n, b/n, c/n) w e g e t  

'12'12 or \ ~ , ~ , ~ ] .  
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Next suppose v -- 2. Then, by (25), ~ = (21r - pa)/r. If a = rr/6 or a = 7r/4 then, 
taking 0 _< p < 2r < 10 and ~ _> ~3 into consideration, we obtain the following triples 
for (a/n, b/n, c / n ) :  

(27) 

' 1 2 '  ' ' 6 '  ' ' 9 '  ' ' 1 8 '  ' 

( ~  7 4 ) ( ~  3 1 1 ) ( ~  1 5 ) ( 1  1 ~ )  
' ] -8 '9  ' ' 8 ' ~  ' ' 8 '  ' ' 1 2 '  ' 

( 1  1 7 ) ( ~  1 5 2 ) ( ~  5 7 ) ( ~  7 ~ )  
' 6 '  ' ' 3 '  ' ' 1 6 '  ' ' 2 0 '  " 

If ~ ---- 7r/6 or ~ --- 7r/4 then, using (r - p)q, --- (2 - p)Tr + pf~ and "7 _> a, it is easy 
to check that no new triples arise. 

This proves that whenever a triangle A with angles aTr/n, bTr/n, cTr/n tiles a 
rectangle and does not have a right angle then (a/n, b/n, c/n) is one of the triples 
listed in (26) and (27). Now some of these triples can be discarded by the following 
argument. 

If k is prime to n then there is a conjugate tiling with a triangle A' with angles 
a' ,  fl ' ,7'  satisfying (21) or (22). Since A l does not have a right angle and also tiles 
a rectangle, the corresponding triple also has to be listed in (26) or (27). That  is, 
we can exclude the triple (a/n, b/n, c/n) if there is a k such that (k, n) --- 1 and 
neither ( {ak/n), {bk/n), {ck/n} ) nor (1 - {ak/n}, 1 - {bk/n}, 1 - {ck/n} ) is listed 
in (26) or (27). In this way the following triples can be ruled out: 

(2s) 

' 12 '  : k = 5 ;  ,-~, : k - -3;  '9 '  : k = 5 ;  

( 1  5 5 )  ( 1  7 4 )  ( ~  3 11)  
' 18 '  : k = 7 ;  ' 18 '  : k = 5 ;  ' 8 '  : k- -5;  

' 16 '  : k = 3 ;  '20 '  : k - - 3 .  

Next we show that  the triples (1/6, 1/4, 7/12) and (1/12, 1/6, 3/4) are also im- 
possible. Suppose that the triangle A with angles a = 7r/6, ]3 = 7r/4, "r = 7~r/12 
tiles a rectangle. Consider the conjugate tiling corresponding to k -- 5. Since 
cot(57r/6) and cot(35zr/12) are negative, it follows from Lemma 6 that the map 
(I) changes the orientation of A. With the notation of (20) this means r = -1 .  Since 

= ( -1)  (6-1)/2 -- 1, this implies that the angles of the conjugate tiling satisfy (22) 
and thus a '  = 7r/6, ~' = 31r/4, 3" = 7r/12. 

Suppose that  the tiling consists of N triangles, and let P, Q, R denote the total 
number of a 's  ~'s and V's in the equations (11) and (12). 

Let pa + qf~+ r~ = lr/2 be any of the equations (10). Switching to the conjugate 
tiling we can see that ps I + qfl, + rv '  -- ~r/2 also has to be valid. With the given 
values of the angles involved, the only possibility is p -- 3, q -- r -- 0. Hence we have 

(29) N = P + 1 2 ,  Q = R = N .  

Now let pa+q~+r~/= wr be any of the equations (11) or (12), where v = 1 or v = 2. 
, l , , I ! Then the conjugate tiling gives pc~ +q~  §  = v It, where v = 1 or v = 2. The only 
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possible triples satisfying these conditions are (6, 0, 0), (12, 0, 0), (5, 0, 2), (1, 1, 1), 
(7, 1, I), (0, 1, 3), (3, 2, 0), (2, 2, 2). Since each of these triples satisfies 3q < 2p+ r, we 
have 3Q _< 2P + R. By (29), this implies 3N _< 2(N - 12) + N, which is impossible. 

This shows that the triple (1/6, 1/4, 7/12) does not give a tiling. The same is 
true for (1 /12,1/6 ,3/4) ,  since any tiling by the latter would produce a conjugate 
tiling (with k - 5 )  by the former. 

Summing up: these two triples and those of (28) can be deleted from the lists 
(26) and (27). There are four remaining triples and hence the following theorem is 
proved. 

Theorem 23. I f  a triangle A tiles a i'ectangle then either A is a right triangle, or its 
angles are given by one of the following triples: 

(30)  ' ~ '  ' ' 4 '  ' ~" ~ 5 7  ~ ~ 3 '  12 ' 12' 4 '  " un 

Corollary 24. I f  a rectangle of size a • b can be tiled with a triangle which has no 
right angle, then b/a E Q(x/'2) u Q(v/'3). In particular, only a countable number of 
rectangles can have this property. 

Proof. This is an immediate consequence of Theorems 2, 23 and the relations 
7r ~r = V ~ +  2. n cot ~ = v ~  + 1, cot 

5. E x a m p l e s  

In this section we show that each of the triangles listed in (30) tiles a rectangle. 
As figure 8'shows, the triangle with angles ~r/6, ~/6, 2~/3 tiles the rectangle of size 
l •  

In the sequel we shall prove that each of the remaining three triangles tiles the 
square. Consider first the triangle A1 of angles a = ~/8, ~ = ~/4, 9' = 5~/8. 

r 

Fig. 8 
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V~ 

Fig. 9 
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We offer two tilings of the square with A 1. The first contains several hundred 
triangles, but hardly needs any calculation. The second uses 74 triangles and is based 
on a particular construction. 

If a triangle A tiles a polygon P then we shall denote this fact by P E T(A). 
Let P(a, b) denote the parallelogram of angle Ir/4 and sides a and b. Since 

sin'y/sin a = V~ + 1, P(1, v~  + 1) can be divided into two triangles similar to A1. If 
r is a positive rational number then P(1, r (v~  + 1)) can be decomposed into finitely 
many parallelograms similar to P(1, V~ + 1) and hence P(1, r (v~  + 1)) E T(A1). 

Let T(a, b) denote the symmetrical trapezoid of angle 1r/4 with leg a and shorter 
base b. As Figure 9 shows, T(1, v~) E T(A1). Since P(1, 2a + v~) can be decom- 
posed into two trapezoids of size T(1, a), this implies P(1,3v/-2) E T(A1) and hence 
P(1,rv~)  E T(A1) for every r E Q, r > 0. 

If a, b are positive rational numbers with a > b + 1, then 

T(1, av"2 + b) = P(1, (a - 1 - b)v~) UP( l ,  b(v'~ + 1)) U T(1, v~) e T(A1). 

Next we prove that T(1, av~+b)  E T(A1) whenever a, b E Q and a > b > 0. Indeed, 
let n be a positive integer with 1/n < a -b .  We divide T(1, av/2+b) into n trapezoids 
by n - 1 equidistant lines parallel to the bases, and obtain the decomposition 

T t l , a V ~ + b ) =  U T , a+  v ~ + b  . 
i=O 

F o r e v e r y i > 0 ,  T n a+ v ~ + b  i s s im i la r toT (1 , (na+i ) v / -2+nb)and  

hence, as na § i > nb + 1, can be tiled with A1. Therefore T(1, av/2 + b) e T(A1), 
as we stated. 

Now Figure 10 shows a decomposition of the isosceles right triangle Ao into two 
triangles similar to A1 and three trapezoids of size T(v~+4,  4v~+4),  T(4v~+3,  
2V'2+4) and T(v~  + 3, v~ + 1), respectively. Since 

4 v q + 4  = 64 +4 = 10v +4 42+___A = 2vq+_____A 
V ~ + 4  7 ' 4 v ~ + 3  23 ' V ~ + 3  7 ' 

the argument above proves that these trapezoids can be tiled with A,. Therefore 
A0 E T(~I )  and thus the square can be tiled with A~. 

The second tiling is shown on Figures 11 and 12. Figure 11 shows T(2, 2v~+2) E 
T(&~), and Figure 12 gives a tiling of A0 using, fbtir.triangles similar to A1, a 
trapezoid T(I, v~), and three trapezoids, similar to T(2, 2v~ + 2). 
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V'2.3 

Fig. 10 

: /  \ 
Fi 9. 11 

Fig, I~ 

Ite~_~yk 25. It follows from Theorem, 2 that  a rectangle R of size a x b can be tiled 
with/xz only if b/a E Q(v~),  This condition is still not sufficient, If b/a = p + q v ~  
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where p, q E Q, then another necessary condition is that 

(31) p > Iqlv~. 

Indeed, we may assume that the vertices of R are 1/1(0, 0), V2(1, 0), V3(1, y), Va(0, y), 
257r 

where y = p + qv~  > 0. Since cot ~-~ and cot ~ are positive, the map �9 of the 

conjugate tiling corresponding to k = 5 does not change the orientation of A1. This 
implies that  v2 does not change the orientation of R; that is, yl = p _ qv~  > 0 and 
hence (31) must hold. 

We do not know if this condition is sufficient for R E T(A1). We remark that 
p > 2q + 2 > 0 is a sufficient condition. Indeed, let p~ = (p - 2)/2, then pl > q > 0 
and hence T(1,p 'v/2 + q) e T(A1). Thus T = T(v~ ,2p '  + qv~) E T(A1), and we 
can complete T by two isosceles right triangles to a rectangle of size 1 • (p + qv~). 

Now we turn to the triangle A~ of angles a = r /4 ,  /~ = 7r/3, ~/= 5~r/12. Since 

sin-~ s i n g = ~  1+ , 

P(1, v~(3 + V~)/6) can be decomposed.into two triangles .similar to A2. 
Hence P(1, rV~(3 + v~))  E T(A2) for every r E Q, r > 0. 
As Figure 6 shows, T(1, v~(3 - v~) /3 )  E T(A2). Since P(1, 2a + v~) can be 

decomposed into two T(1, a)'s, this implies P(1, v/-2(9 - 2v~) /3)  E T(A2). Therefore 

P(1,  3v~)  =- P(1, 2 ~(2(3 + x/'3)/3) U P(1, v~(3 - 2v~3)/3) e T(A2) 

and thus P ( 1 , r v ~ )  e T(A2) for every r E Q, r > O. 
If a, b are rational numbers such that a > b + 2 > 2 then 

Indeed, 

T(&~) whenever a, b e Q, a > b _> 0, 
Figure 13 shows that the isosceles right triangle ~,0 can be decomposed in- 

t o  four triangles similar t o  A2, and three trapezoids of size T x + 1,--~ + y , 
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u 

Fig. 13 

and y = x/2(34 + 12v~)/3. 
Since 

W + y ~ 165 + 44x/'3 
1 + x  33 ' 

and 

respectively, where we choose x = 1 + E ~ 
3 

1 + 2--~- + x  = + 3ov  

1448 ' 

- i f -  = 
X 

these trapezoids can be tiled with z~. Therefore the isosceles right triangle and the 
square also can be tiled with A2. 

If we tile the unit square with A~, then the conjugate tiling corresponding to k = 
5 will produce a tiling of the square with the triangle ,~a of angles 7r/12, 7r/4, 2v/3. 
Retook  26. The map �9 of the conjugate tiling corresponding to k = 5 maps A2 and 
A3 into each other, without changing their orientation. This implies that a rectangle 
R of size a x b can be tiled with A2 or Aa only if b/a = p + qV~, where p > Iqlv/'3, 
We do not know whether this condition is sufficient for R E T ( ~ ) .  

6. Tiling the square with  similar triangles 

In this section we ~ddress the following qUestion: which triangles tile the square? 
By Theorem 23, such a triangle is either a :rights.triangle or its angles are given by 
(30). As we saw in the previous section, the second, third and fourth of the triangles 
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(30) do tile the square. The first, however, does not tile, since 6 is not divisible by 4 
(see Theorem 9). 

Thus we may confine our at tention to right triangles. Let A(c~) denote the right 
7r 

triangle with acute angles c~ and ~ - ~.  

Theorem 27. If  A((~) tiles the square then cot (~ is a totally positive algebraic number. 
That is, it is algebraic, and each of its real conjugates is positive. 

Proof. We may assume that  A(~) tiles the unit square. By Theorem 14, this implies 
that  cot c~ is algebraic. Let u be a real conjugate of cot ~ and let r be an isomorphism 
of Q(cot  a)  such that  r a )  = u. Then, by Theorem 5, at least two of the numbers 

lr 1 
r  r  r  u 

are positive and hence u > 0. | 

We do not know whether or not the triangles satisfying the condition of Theorem 
27 tile the square. We show, however, that  this condition is strong enough to 
determine those right triangles which tile the square and whose angles axe rational 
multiples of lr. 

Lemma 28. Let a, n be integers with 0 < a < n. If cot(a i r )  is totally positive then 

a E  , 
n 12' 12 

Proof. We may assume that  a and n axe coprime. Let 

P n - - { k e Z :  ( k , n ) = l ,  k - 1  (mod4)}  

and 
Qn = {k e Z :  (k ,n)  = 1, k -  - 1  (mod 4)}. 

By Lemma 8, the numbers cot(kit~n) (k e Pn) are conjugates of cot(~r/n), and the 
numbers cot(kTr/n) (k E Qn) axe conjugates of cot(-Tr/n) .  Since cot ( -Tr /n)  < 0 
and cot(at~n) is totally positive, it follows that  the numbers a + in (i E Z) are not 
congruent to - 1  rood 4. This easily implies that  4In and a E Pn. Consequently, 
cot(kTr/n) > 0 holds for every k E pn. 

I fq  = 4 i - 1  is prime and q < n/2, then n - q  - 1 (mod 4) and cot((n-q)~r/n) < O. 
Thus n - q ~ Pn and hence qln. That  is, n is divisible by every prime which is of the 
form 4i - 1 and is less than n/2. 

Let 3 ---- ql < q2 < ... be the sequence of primes of the form 4i - 1, and let 
qs < n/2 < qs+l. Then we have 

4qlq2...qs <_ n < 2qs+l. 

Now one of the numbers ql...qs + 2 and ql...qs + 4 is of the form 4i - 1 and hence 
has a prime factor of this form. Therefore qs+l <_ ql...qs + 4 from which we obtain 
4ql...qs <2ql. . .qsq-8,  ql...qs < 4 ,  s <  1, n <  14. Since n -- 8 does not have the 
required property, we have n = 4 or n -- 12. Finally, a E Pn gives the assertion of 
the Theorem. | 
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2-'I'~" 2,q~ 

75 ~ 

4 

Fig. 14 

Now suppose tha t  A ( a )  tiles the square and a is a rat ional  multiple of ~r. Then  
it follows from Theorem 27 and L e m m a  28 tha t  the angles of A ( a )  are 45 ~ 45 ~ 90 ~ 
or 15 ~ , 75 ~ , 90 ~ . Bo th  triangles tile the square. As for the second, we refer to Figure 
14. 
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