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For an integer s let l~(n), the s-iterated logarithm function, be defined inductively: /~ (n)= n, 
/'§ (P(n)) for s-~0. We show that for every fixed s and all n large enough, there is an 
n-vertex 3-pushdown graph whose smallest separator contains at least ~2 (niP(n)) vertices. 

1. Introduction 

Let S: N--N be a monotone function. An n-vertex graph tT=(I~,E) (di- 
rected or undirected) has an S-separator C i f  there is a partition V=AUBUC, 
IAI, IBl>--n/3, ICI<-S(n) and EN(A• A family o f  graphs is S-separable 
i f  every graph in the family has an S-separator. A family is separable i f  it is S-sepa- 
rable for some S(n)=o(n). 

For convenience, we restrict attention to nice functions S. A function S is 
nice if  for every a, 0 < a <  1, there is b, a<b< 1, such that aS(n)< S(an)<bS(n). 

Remark 1. The planar separator theorem [10] can be restated as follows: the family 
of  planar graphs is O(lfh')-separable. 

Remark 2. The nonexistence of  separators is closely related to expansion property 
in graphs. For  a graph G = ( V , E )  and dC=I~, F~(A) is the set of  neighbours of  A. 
A family of  graphs is expanding (with expansion constant d) if  for every n-vertex 
graph G = ( K  E)  in the family and every A __ V we have }Fc(A)-Al -~d  IAI [V-AI/n. 
It follows that every family of  expanding graphs is nonseparable. Since expanding 
graphs "expand" also small sets (that contain less than one third of  the vertices), 
the converse is not necessarily true. 

Outerplanar graphs are graphs that can be embedded on the plane so that all 
vertices lie on the outer face; equivalently, such a graph can be embedded on the 
plane so that all vertices lie on one straight line and all edges can be embedded on 
one of  the half  planes defined by the line. Formally, an outerplanar graph is a graph 
G=(I~,E) where V is the ordered set {1, 2 . . . . .  n} for some n and E=SUR,  where 
the spine SG{(i, i+1)1i=1 . . . . .  n - l }  and in R edges do not cross; specifically 
for each pair o f  edges (ix,J1), (i2,j2) in R with ix<i2<jl we have j2~_.h. A k-page 
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graph is a graph which consists of  k outerplanar graphs sharing the same ordered 
vertex set K k-page graphs can be considered as undirected graphs or as directed 
graphs where an edge always goes from a small numbered to a large numbered 
vertex. If  every vertex has at most one incident edge in each page of  a k-page graph, 
the graph is called a k-pushdown graph (or k-pd graph in short). 

Obviously, a 2-page graph is planar. Conversely, !t was shown in [4] that 
every planar graph can be embedded in nine pages. The number has been improved 
to seven [7] and very recently Yannakakis [16] improved it to four and showed that 
four pages are necessary. Computation graphs of Turing machines are k-pd graphs, 
where k depends on the number of tapes of  the Turing machine. This has been the 
reason for substantial interest in such graphs. In [12] it was shown that k-pd graphs 
(considered as directed graphs) contain nontrivial segregators. This graph property 
was used to show that nondeterministic multitape Turing machines are strictly 
more powerful than their deterministic counterparts, settling a longstanding open 
problem. A family of  directed graphs contains a non-trivial segregator if every n-vertex 
graph G =(V, E) in the family contains an o(n) set of  vertices S (the segregator) 
such that if we delete S and the edges incident with S from G, each vertex in V -  S 
has at most o(n) (not necessarily immediate) predecessors in the remaining graph. It is 
quite easy to show that if a family of directed graphs that is dosed under containment 
(i.e. if G is in the family then all the subgraphs of G are) has a nontrivial separator 
then it has a nontrivial segregator. 

k-page graphs also arise in connection with embedding of  VLSI circuits [5] 
and fault tolerant arrays of processors [13]. Intuitively, k-page graphs can be drawn 
on a "book" with k "pages" with all vertices placed on the "binding", all edges 
placed on the pages, and no two edges on a page crossing. For this reason, the  
minimum k for which a graph is k-page embeddable is called the page number of 
the graph [3]. See also [1], [14] for a discussion of outerplanar graphs. 

The following problems are open: 

Problem 1. ls the family of 3-pd graphs separable? 

Problem 1". Is the family of k-page graphs separable for any k>-3 ? 

In [9], the second author showed that for any fixed k->3, the family of 
k-page graphs is separable if and only if the family of 3-page graphs is. The equiv- 
alence of problems 1 and 1" (derived below) is slightly stronger since in Problem 1 
we have 3-pd graphs, which are special 3-page graphs. 

Remark 3. One can similarly ask if there is an expanding family of 3-pd graphs (or 
k-page graphs). 

We relate these problems to an open problem from an entirely different 
domain. Consider a real-time nondeterministic Turing machine with two working 
tapes and a separate input tape. By "real time" we mean that the machine reads 
a new symbol each step. We want to simulate it by an on-line one-tape nondeter- 
ministic Turing machine. By "on line" we mean that the additional input tape is 
one way. We refer to this as the simulation. It is well known that the simulation can 
be done in time O (nZ). But the following problem in still open: 

Problem 2. Can the simulation be done in subquadratic (o(n~)) time? 
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In [6] we showed that if 3-pd graphs have small separators then one can derive 
a fast simulation: 

Theorem A. I f  the family o f  3-pd graphs is S-separable, then there is a simulation o f  
time t(n) = O(S(n/log n)n log n). 

Corollary 1. I f  S(n)---o(n) then t(n)----o(n~). 

Corollary 1 states that if the answer to Problem 1 is positive, then so is the 
answer to Problem 2. 

In [6] we introduced families F k of  graphs. Informally, an n-vertex graph G 
in Fk is defined by a string xo of length at most kn. xa is a sequence of  instructions 
for a 3-pushdown machine M. M manipulates the symbols 1 . . . . .  n (the vertices 
of G). Initially, the three pushdown stores of  M contain 1 . . . . .  n. Each symbol 
in x~ is a triple which indicates from which pd to pop, on which pd's to push and 
whether the popped symbol is queried or not. If  ix,/2,/3, i~ . . . .  is the sequence 
of vertices queried during the execution of xG, the edges of G are (/1, is), (/3, i4), . . . .  
One can easily show that every k-page graph is in F6~. In1 [6] we defined a language 
L which consists of strings associated with graphs in U k Fk. L is recognizable by a 
real-time nondeterministie Turing machine with two working tapes and a separate 
input tape. We then showed: 

Theorem B. Assume M" is an on-line one-tape nondeterministic Turing machine 
that accepts L in time t(n) and k>0.  Then there is a constant c=c(M')  such that i f  
t(n)<-cn2/k, then F k is Sk-separable, where Sk(n)=O(kZt(n) log (n2/kt(n))/n). 

Corollary 2. I f  t(n)=o(n ~) then Sk(n)=o(n) for all k. 

In particular (k = 3) if the answer to Problem 1 is negative so is the answer 
to Problem 2. Hence, 

Corollary 3. Problems 1 and 2 are equivalent. 

Corollary 4. I f  the answer to Problem 1 is negative, then L requires time I2(n2). 

In the case that S in Theorem A (Sk in Theorem B) is not nice, the theorem 
should be slightly modified (the corresponding expressions are uglier). But Corol- 
saries 1--4 still hold. 

Several examples where a graph property implies a theorem concerning com- 
putation are known. One example of such a property is the existence of  nontrivial 
segregators mentioned above. Another well known example is from [8], where it 
was first shown how to pebble an n-vertex directed acyclic graph of constant in- 
degree with O(n/log n) pebbles; this then was used to prove that "space is better 
than time". In both examples an upper bound on a graph property implied an upper 
bound on time or space complexity. In both cases it is unlikely that the converse 
theorem holds. (The difference between space and time, and between nondeter- 
minism and determinism is believed to be exponential.) On the other hand, there 
are examples where lower bounds on the sizes of  graphs satisfying certain connectivity 
properties imply a lower bound on time for certain types of  computations [15]. 
However, our results may constitute the first example where a graph problem is 
shown to be equivalent to a problem in computational complexity. 

The following corollaries are easily obtained by using Theorems A and B. 
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They state properties of graphs and they are proved via a detour through Turing 
machines. All of  them probably have direct proofs. 

Corollary 5. For every k, Fk is separable i f  and only i f  the family of k-page graphs 
is separable i f  and only i f  the family of  3-pd graphs is separable. 

The next corollary deals with different definitions of a separator and separa- 
bility. For 0 < ~ <  1, let us define an (~, S)-separator as we defined an S-separator 

except that we require tat, IBl - n. Thus, an S-separator is a ( 3 '  S}-separator. 

Corollary 6. The results above hold i f  we replace S-separators by (~, S)-separators. 
In particular, k-page graphs are S-separable i f  and only i f  they are (cr S)-separable 
for some 0 < ~ < 1. 

The bandwidth of a graph G =(V, E) with respect to the naming V =  {1 . . . . .  n} 
is ~(r j) en li-j[ . The bandwidth of a graph is the minimum bandwidth with respect 
to all possible namings. The proof of Theorem A uses only the fact that the existence 
of  an o(n) separator implies that the bandwidth is o(n~). The latter is used to derive a 
fast simulation. Consequently, 

Corollary 7. k-page graphs have nontrivial separators i f  and only i f  they have a sub- 
quadratic bandwidth. 

Let IS(n), the s-iterated logarithm function, be defined inductively: l~ 
and P+l(n)=log2 (IS(n)) for s_~0. In this paper we define n-vertex graphs Gg in 
Fe~k+2) and derive a lower bound on the sizes of their separators : 

Theorem 1. Se(k+2) (n  ) = ~2(n/klO 2k(k+l) lk(n)). 

Theorem 1 is proved by induction on k. Towards this end, let {G~,}~_-I be a 
family of  graphs in Fetk+2j that establish the lower bound for k. G~+~ is constructed 
as follows: We choose the largest prime number p smaller than n/logan and let 
m=[log2p]. We arrange pm of the n vertices in a rectangular array with p rows 
and m columns. The remaining vertices never enter the picture-they are left as iso- 
lated vertices. In each row, we connect up the graph to be a copy of  G'~. Each pair 
of  adjacent columns of vertices is connected by a shifting graph, i.e., there are num- 
bers h,  t2, ..., t,~_~ so that the i-th vertex of  column j is adjacent to the 
i+t~ (modp)-th vertex of column j + l .  We show by a counting argument that 
the shifts tj can be chosen to be integers modulo p so that they satisfy a number 
theoretic property. We then show that this property of  the shifts together with 
the fact that in each row there is a copy of  G~ implies the required lower bound 
on the separator size. Establishing membership in F~tk+a) is easy. Since the dou- 
bring graphs provide the basis of  the induction (k=  1), this completes the proof. 

By using Theorem 1 together with Theorem B we derive the following 
corollary: 

Corollary 8. For any positive integer s, the time of  the simulation is at least 
12(n~/P(n)). 

It is possible to let s grow as a function of n and derive slightly stronger versions 
of  Theorem 1 and Corollary 8. These results yield the currently best lower bound 



ON 3-PUSHDOWN GRAPHS 13 

for the simulation. The graphs G~ are not k-page graphs. But one can modify them 
to get k-pd graphs that have large separators. 

Corollary 9. There are n-vertex k-pd graphs whose smallest separators have at least 
~2(n/(2k k lO2k(k+ l) lk(n) )) vertices. 

A stronger version of  Corollary 9 can be proved by combining Theorems A, 
B and Theorem 1. 

Corollary 10. For every fixed positive integer s and all n large enough, there is an 
n-vertex 3-pd graph whose smallest separator contains at least t2(n[P(n)) vertices. 

Proof. Fix k>0.  All the statements in this proof are valid for sufficiently large n. 
By Theorem 1, Se{k+s)(n)>--c(k)n]lk(n) and by Theorem B, S ~ { k + ~ } ( n )  ~ _ 

~_d(k) log . Combining the two we get t(n) ~-f(k)l~-l(n)" By Theo- 

n < n s log z n 
rein A, S(n) = t(n log n) <=g(k)lk-X(n) from which the corollary follows. 1 

In Section 21 we define the family Fk, in Section 3 we define the graphs G] 
and in Section 4 we prove Theorem 1. In Section 5 we list some open problems. 

2. The family 

We define a graph Gx of n vertices by the operation of  a 3-pd machine M 
defined by a "program" x. Initially the three pd's contain 1 . . . . .  n. Let I={1,  2, 3} 
be the index set of the pd's and let F={(pop,  push, query)lpopC/, push s I, 
query ~{T, F}}. A symbol Y=(?I, Ys, Y3)~F c~n be interpreted as follows: pop a 
symbol from pd number 71, push it on top of the pd's listed in ?s, and if ?a=T, then 
7 is a query symbol. 

Consider a string xCF*. x is executable by a machine M that pushes and 
pops the symbols 1 . . . . .  n in its pd's. Let ix,/2,/3, ... be the sequence of symbols 
popped by a querry symbol ~EF. The graph Gx=(V,E) is defined as follows. 
V={1 .. . . .  n} and E =  {(i,, /2), (/3, i~) . . . .  }. We denote the set {G=: x(F*, Ixl~_kn} 
bye.  

In the proofs below we consider "restricted programs" x~l'* in which (i) 
whenever a symbol is pushed on a pd it is not the pd it was popped from; (ii) a query 
symbol pops without pushing; and (iii) in x query symbols appear in pairs (corre- 

sponding to edges) popping different pd's. Formally, if ?=(71, ~2, ~8) appears in 
x, then (i) 71{[Ta; (ii) if 73=T, then ?s=0;  and (iii) if T is the (2i-1)-th query 
symbol in x for some i_->l, then the next symbol in x, ?'=(?~', ?'~, ~)  satisfies 
?~=T and 7~#g~. Moreover, we assume that (iv) at the end of the "execution" 
of x the three pd's are empty. We need the following definition for stating the last 
restriction. Consider a query symbol T in x. It pops some pd symbol which was 
pushed l times before. We define the parity of ~ to be the parity of  l and assume 
that (v) the parities of two query symbols that correspond to an edge are the same. 
We denote by Fk' the corresponding family of graphs. Obviously F[ -----Fk. 

We will need the following graphs: A doubling graph is G,=(V,, E,), n is a 
power of  2, V ,={0 , . . . , n -1} ,  E,={(i, 2i(modn)), (i, (2i+l)(modn))liE~}. 
A shifting graphs is G~=(V~,/~), V~ as before and E~n={(i, (i+t) (modn))liEV,}, 
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where t is called the shift of the graph. The following proposition follows from the 
definitions: 

Proposition 1. k page-graphs are in F6k, doubling graphs are in F~, and shifting graphs 
are in F~. 

Remark. As can be seen by a simple counting argument, for ck< n, most k degree 
graphs are not in F~k. Hence in some sense F2k contains graphs with average degree 
at most k that have some simple structure. 

3. The Graphs G~ 

In this section we construct, for every k and all large enough n, the graph 
G?, of  n vertices and maximum degree 2k+7.  The graphs G~ are constructed in- 
ductively in k. 

Base ( k = l ) :  The graphs G~=(V~,E]UE~!J~) are obtained from the 
doubling graphs of  Section 3. V~ is as before. Let n' be the largest power of  2 not 
larger than n, and let V~ 1 (V~ ~) be the first (last) n' vertices of  V,. For i=  1, 2, we 
choose E~ so that the graph (V~ t, E~) is a doubling graph and 

E~ = {(i, n'+i) l i=l ,  2, ..., n -n ' } .  

(E~ connects the corresponding vertices in V~I-V~ ~ and V~2-V~I.) 
Inductive step: To construct G~+I we need the following number theoretic 

lemma. 

Lemma 1. Let p be a prime number, and let m=Ilog2p]. There is a set o f  m - 1  
integers T o { l ,  ...,p} such that for  every set Ac{1  . . . . .  p} with IAl=cp (c may 
depend on p), the number o f  triples (a, t,a*), a6 A, t6 T and a*E.~={1 . . . .  , p } - A  
with a+ t--a*(mod p) is at least c ( 1 - c ) p m - O ( 1 / c ( 1 - c )  pm/(log log p)~). (The 
constant in the 0 notation does not depend on c or p.) 

We now define G~,+I. Let p be the largest prime smaller than n/log S n and let 

1 n213 (of. [2]), pm~_ m=[logZp]. Since for sufficiently large n,p~_n/log2n---~ 

1 (n/log Sn-~-~n2/a/=n(1-O(n)) .  We arrange the pm 

vertices in a pro-rectangle. The remaining o(n) vertices are isolated vertices. In each 
of  the p rows of the rectangle we connect the vertices by a copy of  G~'. Each pair of 
consecutive columns are connected by a shifting graph. The m--  1 different shifts 
are the elements of  the set T of  Lemma 1. 

Lemma 2. n , GkE F6~k+~). 

Proof Sketch. We use induction on k. G~EF/s since doubling graphs are in Fg' 
(Proposition 1). We now describe the restricted program x that "generates" G~,+I. 
We number the vertices of  G~+I by numbering vertices in each column consecutively. 
The first 3n symbols of  x copy the three pd's. The top copies are used to generate 
the column connections and the bottom copies the row connections. By Proposi- 
tion 1 each shifting graph is in Fa' and so is the union of the m -  1 shifting graphs. 
So the next substring of  x of  length 3n generates the column connections. Now, by 
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the .inducti~ assumption each copy of G~' is in F~(k+z). But so is the union of p 
copies of G~' because in the latter each vertex (each edge) is replaced by p consecutive 
vertices (by p edges). The program handles each such p vertices as blocks. Each 
non query symbol in the program that generates G~' is replicated p times. Conse- 
quently, the p copies in each block are popped and pushed successively. Each pair 
of query symbols corresponding to an edge is also replicated p times. As a result x 
pops alternatively from each block. Finally, restriction (v) guarantees that the 
two blocks are popped (and queried) in the same order (from the first to the last 
or vice versa). It is easy to see that x is a restricted program that generates G~,+~. 
Since the row connections are generated by a string of  length at most 6(k+2)n, 
it follows that Ixl<=6(k+3)n and G~;+IEF~(k+a). I 
Proof of Lemma 1. For two given sets T, Ac{1  . . . . .  p}, we define the folIowing 

k 
values for k= l  ..... p:f(~-)=~iCT e2:ukil', g(-ff-)=~,,~ctie 2"̀ <aqp, g * ( ~ ) =  

2 a* E ~ e2~ta*k / P" 

Claim 1. Thenumber of  triples (a, t, a*), aE A, tET and a*6A with a+t=_a*(modp) 
1 p k 

i s - ~ - ~ k = x f ( - F I g ( ~ - ) ~ * ( ~ -  ) . 

Proof. Each triple (a, t, a*), aEA, tCT and a*EA contributes p to the sum if 
a+ t=-a*(mod p) and 0 otherwise. 1 

Hence, we have to estimate the sum of Claim 1. In this sum, 

the term for k=p gives--~-IA[]T[]A[=c(1--c)pm. The other terms are 
r 

1 p-I k estimatedbyi__FZk=,f(7)g(~_),,'k"<l ,-, : -  

k 1 I.* the Cauchy--Schwarz ine- 

k 1 
"tT-J I quality) maxl~_k<p 

,~'k=l g* Note that z~k=l g -~- =cP ~ and P 

(pl l-Z,=, (~-)g(T)=.Z..bcA.~;=oe~"i<:->"i'=pin i because the 

inner sum is p if a=b and 0 otherwise. Similarly ~Y~=o g 1,41. 

It follows that the contribution of the other terms is -~ l /c (1-c) -  

We show that if we choose the elements of T uniformly at random, then with 
" 

probability greater than 0, maxl~k.~p f =O(m/(log logp)~), which completes 
the proof of Lemma 1. 

Let m'=m-1 ,  r = { h  .... ,t,~,} and x}=e 2"ujklp. Take q=[(loglogp)~l, 
and divide the unit circle into q arcs St . . . . .  S~. (S, goes from e ~i('-~1~ to e2~trlL) 
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Let ). =log p/(log logp) 4, and fix k, l~_k<p. For l~r~=q, let A k be the event 

[ { j : 4 E S , } [ -  ~ ; t  . Since ~ C S ,  with probability 1 ,  Probability 
q 

(']Ak,)~_e -aslz by Chernoff's bound on the tail of the binomial distribution (of. [3] 
Corollary 4). (For given k and r denote by Xt, '" the random variable which takes 
the value l if x~/ES r and 0 otherwise. Then -1,~, k is the event that the sum (over j) 

of X~'" differs from its mean ( - ~ ) b y  at least ). standard deviations 

[V~-~  ( 1 - 1 ] ] ,  and 2 is not too Iarge { 2 < r  ( 1 - 1 ) - ] }  

i( )1 . 

Claim2. For l~k<p,  if A ~, holds for all l<-r~q, then f -~- 

0 (m/(log log p)~). 

Proof. Let n~=l{j: x~/ES,}[. 

~ E S , ,  I~-e~'"/ql  = O (11 .  

By our assumption nk, - -<). . Also, for 

~ "  k < ' S  '~ , , k , , ~ ' / g 4 . 0 k ~  m" Now, ~ j = l X j  = IZ-~ ,=l "',- - - -  ( q ) ~  q 

1 ;  m "  17/ 2 
�9 Iz~q=l e~t'/~i+q2 ~--~-+0 I T )  <- O(m/(loglogp)). I 

But the probability that A k does not hold for some l<-r~_q and l<=k<p 
is at most qpe-a~I4=o(1). Hence, with probability greater than 0, A k holds for 

all l~_r~_q and l~_k<:p, and by Claim2, maxl_ k.p[f[- l[=lZ =lX l=m" ~< 
i / 1 % 1  

~_ O(m](log logp)~). II 

4. The Proof of Theorem 1 

We prove that the separators of GT, satisfy the lower bound of Theorem 1. 
We will need the following definition: For a set A of vertices in a graph we denote by 
:~(A,A-) the number of edges (u,v) with uEA and vC.4. Theorem l follows 

immediately from the following lemma. 

Lemma 3. For K>k  and suJ~ciently large n, let A be any set of  vertices of  G~ such 
that l(r Then ~(A, 71)~_lO-~krlAl/lk(n). 

Doubling graphs satisfy a property stronger than the one needed in Lemma 3. 
Lemma 4 below is due to Maass [11]. 

Lemma 4. Any set A of  vertices of  an n-vertex doubling graph satisfies ~ (A, A)~_ 
-~IAI I,]l/(n log n). 

Proof of Lemma 4. Assume n = 2  t. For all pairs of  vertices e, d, let (d~=e ..... d~=d) 
be the unique path from e to d that changes the bits of vertex name one at a time. 
We define G(e,r)={bEAlb=d~ for some d with dg+xE,4}. 

-- l - - I  
Claim 3. IAI ~-z~,,=o IG(e, r)12 l-" for every eEA. 
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Proof. To each d in .~ associate ~, the last index r with d*,~d. Since d and dl have 
the same ~ bits, at most 2~-rd's in .~ have the same Y and the same d~. II 

Claim 4. For every index r and vertex b we have I{elbe6(e, 
Proof. Each e in this set has l - r  bits in common with b. II 

By summing Claim 3 over A and by Claim 4, 

_ ~ , , -x  'Gee r)12'-" ~ Z~-~ 2 ' - ' Z , ~ l G ( e , r ) l  < I - ' l 1 1 2 1  < , , - -  

< Z , = o ' - I  2 ,_ ,2 , [U, r  n '-1 - = 2 . = 0  Iu., C(e. r) I 
Therefore there is an index r such that [U,~A G(e, r)[_~ IAI I.~l/(n log n). 

This completes the proof of  Lemma3 since each vertex in U,~AG(e,r) 
corresponds to a unique edge of  the doubling graph with one endpoint in A and 
one in .~. II 

Proof of T.emma 3. We fix K, and use induction for k <  K. 
Base ( k = l ) :  Let A be any subset of  vertices of  G]=(Ka, E~,UE],tJEs,) 

such that lOX-K<=lAI/n<=l/2. Let a~=lAf-IKq, i = 1 , 2  and a=lAI. Without loss 
of generality aa~_a~. 

a 7 , a 
Claim5. Ei ther ( l ) there  is iE{1,2} with -~_at~_-~ n or (2) ax-a~m_ ~ .  

Proof. Assume (1) and (2) do not hold. We must have a~> 7 n" and thus 

n" a 7 , a 3 
~_---ff-. Now by (2) a 2 ~ _ a ~ - - ~ = ~ n - - ~ _ ~ a  and by (1) ao.~_7n" and thus 

r P 

I~flV,~l_-<-~ -.  It follows that I~1_~-~--, which is impossible. II 

If  (1) holds, then since (K~, E~) is a doubling graph, we have by Lemma 4 
- , , , a t { / -  , 

and Claim 5: ~- (A ,A)=a~(n -aO/ (n  l o g n ) _ ~ - - ~ - , ( n  Iogr/)~_lAI/(lOOlogn). 

I f  (2) holds, then since there are a~-a~ edges in ~ which contribute to 
~(A, ,~), we have ~(A, 2)--~IAI/10. 

Induction step: We assume the lemma holds for k and prove it for k +  1. 
We color the vertices in ~4 black and those in 2 white. A row is called balanced if 
it has at least l & - r m  vertices of each color, and it is called unbalanced otherwise. 

1 10~_Xp of the rows are balanced. We apply First assume that at least -~- 

the induction hypothesis to each of  the balanced rows, choosing the set A 
in each row to be the smaller of  the two sets (of the black vertices or the 
white vertices) so that i.*s size is ~_ra/2. It follows that for sufficiently large n, 

(A, A--)_~ 10~-X-Xpl0 -~'x lOk-rm/lk(m)~_ lO-~+~t:n/l~+X(n), which completes the 
proof in this case. 

1 10~_xp of the rows are balanced. Call a We now assume that less than - ~  

row blaek if  it is not balanced and most o f  its vertices are black, and call a row 
white otherwise. Let f~( fw) be the fraction of black (white) rows and letf~ be the 
fraction of  white balanced rows. 



'18 Z. GALIL, R. KANNAN, E. SZEMERI~DI 

q 
In a black row, at least  (1--10k-K)m~--~om vertices are black. Hence, 

9 . _<5 
since IAl<=n/2, -~jbpm=--f-~n, fb~0.56, and 1--fv-->_0.44 for n large enough. 

In a white unbalanced row, at least (1 - 10k-r)m vertices are white. Hence, 
since [~l/n<= 1-10  k+l-r, f~(1-10k-K)= < 1 -- I0 k+l-K. But, since for 0 < y < x <  1, 
(1 --x)/(1 --y)< 1 --(x--y), 1 --f~> 9X 10 k-r  and fb= 1 --fw>8.9• 10 k-K. 

We now consider only edges connecting different columns. Since these con- 
nections were chosen according to the set T of Lemma 1, the number of edges con- 
necting a vertex in a black row to one in a white row is at least pm(j~(1 - j ~ ) -  o(1))_ -> 
_~3.5X 10~-Xn for n large enough. Subtracting edges connecting vertices in black 
rows to vertices in balanced (white) rows (-<_0.2X 10k-rn), and edges connecting 
vertices of the wrong color (white vertices in black rows or black vertices in white 
unbalanced rows), (<_-2X10k-rn) we get that the number of edges connecting 
black vertices to white vertices = # (A, A)> lok-Kn ~_ 10 -zkx IAI/lk+l(n). II 

5. Open Problems 

The main open problem left is Problem 1 (or equivalently Problem 2). Theo- 
rem 1 and Corollary 10 imply that even if the answer to the problems is positive the 
smallest separator of 3-pd graphs must be almost linear and the fastest simulation 
must be almost quadratic. Two other problems are the following 

Can the family of 3-pd graphs be replaced by a simpler family of graphs F such 
that F is separable if and only if the answers to Problems 1 and 2 is positive? 

- -  Theorems A and B provide upper and lower bounds (for the size of  the separators 
or the time of the simulation) that are tight only if the answer to problems 1 and 2 
is negative. Can the gap be dosed (even without settling these problems, or if the 
answer is positive)? 
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