COMB'NATORICA COMBINATORICA 9 (1) (1989) 9—19

Akadémiai Kiado — Springer-Verlag

ON 3-PUSHDOWN GRAPHS WITH LARGE
SEPARATORS

Z. GALIL*, R. KANNAN and E. SZEMEREDI

Received March 17, 1987

For an integer s let /*(n), the s-iterated logarithm function, be defined inductively: I"(n) n,
Y (n)=log, (I*(n)) for s=0. We show that for every fixed s and all # large enough, there is an
n-vertex 3-pushdown graph whose smallest separator contains at least £ (nfF(n)) vertices.

1. Introduction

Let S: N—N be a monotone function. An n-vertex graph G=(, E) (di-
rected or undirected) has an S-separator C if there is a partition V=AUBUC,
j4l, {Bi=n/3, |IC|=S(m) and EN(AXB)=0. A family of graphs is S-separable
if every graph in the family has an S-separator. A family is separable if it is S-sepa-
rable for some S(n)=o(n).

For convenience, we restrict attention to nice functions S. A function S is
nice if for every a, O<a<1, thereis b, a<b=<1, such that aS(n)< S(an)<bS(n).

Remark 1, The planar separator theorem [10] can be restated as follows the family
of planar graphs is O()n)-separable.

Remark 2. The nonexistence of separators is closely related to expansion property
in graphs. For a graph G=(W,E) and ACYV, FG(A) is the set of neighbours of 4.
A family of graphs is expanding (with expansion constant d) if for every n-vertex
graph G=(V, E) in the family and every ASV we have |'g(d)—A|=d|A||V—A|/n.
It follows that every family of expanding graphs is nonseparable. Since expanding
graphs “expand” also small sets (that contain less than one third of the vertices),
the converse is not necessarily true.

Quterplanar graphs are graphs that can be embedded on the plane so that all
vertices lie on the outer face; equivalently, such a graph can be embedded on the
plane so that all vertices lie on one straight line and all edges can be embedded on
one of the half planes defined by the line. Formally, an outerplanar graph is a graph
G=(V, E) where V is the ordered set {1, 2, ...,n} for somenand E=SUR, where
the spine SC{(, i+1)li=1,...,n—1} and in R edges do not cross; specifically
for each pair of edges (i, /1), (i, /) in R with iy<i,<j, we have j,=j. A k-page
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graph is a graph which consists of k outerplanar graphs sharing the same ordered
vertex set ¥, k-page graphs can be considered as undirected graphs or as directed
graphs where an edge always goes from a small numbered to a large numbered
vertex. If every vertex has at most one incident edge in each page of a k-page graph,
the graph is called a k-pushdown graph (or k-pd graph in short).

Obviously, a 2-page graph is planar. Conversely, it was shown in [4] that
every planar graph can be embedded in nine pages. The number has been improved
to seven [7] and very recently Yannakakis [16] improved it to four and showed that
four pages are necessary. Computation graphs of Turing machines are k-pd graphs,
where k depends on the number of tapes of the Turing machine. This has been the
reason for substantial interest in such graphs. In [12] it was shown that k-pd graphs
(considered as directed graphs) contain nontrivial segregators. This graph property
was used to show that nondeterministic multitape Turing machines are strictly
more powerful than their deterministic counterparts, settling a longstanding open
problem. A family of directed graphs contains a non-trivial segregator if every n-vertex
graph G=(¥, E) in the family contains an o(n) set of vertices S (the segregator)
such that if we delete S and the edges incident with S from G, each vertexin V' —S
has at most o(r) (not necessarily immediate) predecessors in the remaining graph. It is
quite easy to show that if a family of directed graphs that is closed under containment
(i.e. if G is in the family then all the subgraphs of G are) has a nontrivial separator
then it has a nontrivial segregator.

k-page graphs also arise in connection with embedding of VLSI circuits [5]
and fault tolerant arrays of processors [13]. Intuitively, k-page graphs can be drawn
on a “book” with k “pages” with all vertices placed on the “binding”, all edges
placed on the pages, and no two edges on a page crossing. For this reason, the.
minimum k for which a graph is k-page embeddable is called the page number of
the graph [3]. See also [1], [14] for a discussion of outerplanar graphs.

The following problems are open:
Problem 1. Is the family of 3-pd graphs separable?

Problem 1*, Is the family of k-page graphs separable for any k=3?

In [9], the second author showed that for any fixed k=3, the family of
k-page graphs is separable if and only if the family of 3-page graphs is. The equiv-
alence of problems 1 and 1* (derived below) is slightly stronger since in Problem 1
we have 3-pd graphs, which are special 3-page graphs.

Remark 3. One can similarly ask if there is an expanding family of 3-pd graphs (or
k-page graphs).

We relate these problems to an open problem from an entirely different
domain. Consider a real-time nondeterministic Turing machine with two working
tapes and a separate input tape. By “real time” we mean that the machine reads
a new symbol each step. We want to simulate it by an on-line one-tape nondeter-
ministic Turing machine. By “on line” we mean that the additional input tape is
one way. We refer to this as the simulation. It is well known that the simulation can
be done in time O(n?). But the following problem in still open:

Problem 2, Can the simulation be done in subquadratic (o(n?)) time?
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In [6) we showed that if 3-pd graphs have small separators then one can derive
a fast simulation:

Theorem A. If the family of 3-pd graphs is S-separable, then there is a simulation of
time t(n)=0(S(n/log n)n log n).

Corollary 1. If S(n)=o0(n) then t(n)=o0(n?.

Corollary 1 states that if the answer to Problem 1 is positive, then so is the
answer to Problem 2.

In {6] we introduced families F; of graphs. Informally, an n-vertex graph G
in F; is defined by a string x¢ of length at most kn. x4 is a sequence of instructions
for a 3-pushdown machine M. M manipulates the symbols 1, ...,n (the vertices
of G). Initially, the three pushdown stores of M contain 1,...,n. Each symbol
in xg is a triple which indicates from which pd to pop, on which pd’s to push and
whether the popped symbol is queried or not. If iy, iy, 73, is, ... is the sequence
of vertices queried during the execution of x4, the edges of G are (i, i), (i, is)s ... .
One can easily show that every k-page graph is in Fg. In [6] we defined a language
L which consists of strings associated with graphs in U, F,. L is recognizable by a
real-time nondeterministic Turing machine with two working tapes and a separate
input tape. We then showed:

Theorem B. Assume M’ is an on-line one-tape nondeterministic Turing machine
that accepts L in time t(n) and k=>0. Then there is a constant ¢=c(M’) such that if
t(n)=cn?lk, then F, is Sy-separable, where S,(n)=0(k2t(n)log (n*/kt(n))/n).

Corollary 2. If t(m)=0(n?) then S,(n)=o(n) for all k.

In particular (k=3) if the answer to Problem 1 is negative so is the answer
to Problem 2. Hence,

Corollary 3. Problems 1 and 2 are equivalent.
Corollary 4. If the answer to Problem 1 is negative, then L requires time £(n?.

In the case that S in Theorem A (S, in Theorem B) is not nice, the theorem
should be slightly modified (the corresponding expressions are uglier). But Corol-
saries 1—4 still hold.

Several examples where a graph property implies a theorem concerning com-
putation are known. One example of such a property is the existence of nontrivial
segregators mentioned above. Another well known example is from [8], where it
was first shown how to pebble an n-vertex directed acyclic graph of constant in-
degree with O(nflogn) pebbles; this then was used to prove that “space is better
than time”. In both examples an upper bound on a graph property implied an upper
bound on time or space complexity. In both cases it is unlikely that the converse
theorem holds. (The difference between space and time, and between nondeter-
minism and determinism is believed to be exponential.) On the other hand, there
are examples where lower bounds on the sizes of graphs satisfying certain connectivity
properties imply a lower bound on time for certain types of computations [15].
However, our results may constitute the first example where a graph problem is
shown to be eguivalent to a problem in computational complexity.

The following corollaries are easily obtained by using Theorems A and B.
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They state properties of graphs and they are proved via a detour through Turing
machines. All of them probably have direct proofs.

Corollary 5. For every k, F, is separable if and only if the family of k-page graphs
is separable if and only if the fumily of 3-pd graphs is separable.

The next corollary deals with different definitions of a separator and separa-
bility. For O<a<1, let us define an («, S)-separator as we defined an S-separator

except that we require |4|, |B|=on. Thus, an S-separator is a (—%—, S)-separator.

Corollary 6. The results above hold if we replace S-separaiors by («, S)-separators,
In particular, k-page graphs are S-separable if and only if they are (v, S)-separable
for some 0<a<1.

The bandwidth of a graph G=(V, E) with respect to the naming ¥V={1, ..., n}
is >, perli—jl. The bandwidth of a graph is the minimum bandwidth with respect
to all possible namings. The proof of Theorem A uses only the fact that the existence
of an o(n) separator implies that the bandwidth is o(n%). The latter is used to derive a
fast simulation. Consequently,

Corollary 7. k-page graphs have nontrivial separators if and only if they have a sub-
quadratic bandwidth.

Let 1*(n), the s-iterated logarithm function, be defined inductively: [°(n)=n,
and F+(n)=log, (F(n)) for s=0. In this paper we define n-vertex graphs G} in
Fy.+2) and derive a lower bound on the sizes of their separators:

Theorem 1. S 0)(1)=Qn/k10%++D k().

Theorem 1 is proved by induction on k. Towards this end, let {GZ}:2, be a
family of graphs in Fy ., that establish the lower bound for k. G}, ; is constructed
as follows: We choose the largest prime number p smaller than #nflog?n and let
m=[log?®p]. We arrange pm of the » vertices in a rectangular array with p rows
and m columns. The remaining vertices never enter the picture-they are left as iso-
lated vertices. In each row, we connect up the graph to be a copy of GP. Each pair
of adjacent columns of vertices is connected by a shifting graph, i.e., there are num-
bers t,1t, ..., t,_1 SO that the i-th vertex of column j is adjacent to the
i+t; (mod p)-th vertex of column j+1. We show by a counting argument that
the shifts #; can be chosen to be integers modulo p so that they satisfy a number
theoretic property. We then show that this property of the shifts together with
the fact that in each row there is a copy of G implies the required lower bound
on the separator size. Establishing membership in Fgy .3 is easy. Since the dou-
bling graphs provide the basis of the induction (k=1), this completes the proof.

By using Theorem 1 together with Theorem B we derive the following
corollary:

Corollary 8. For any positive integer s, the time of the simulation is at least
Q(n?/15(n)).

It is possible to let s grow as a function of » and derive slightly stronger versions
of Theorem 1 and Corollary 8. These results yield the currently best lower bound
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for the simulation. The graphs G? are not k-page graphs. But one can modify them
to get k-pd graphs that have large separators.

Corollary 9. There are n-vertex k-pd graphs whose smallest separators have at least
Q(n/(2*k10*¢+D 1% (n))) vertices.

A stronger version of Corollary 9 can be proved by combining Theorems A,
B and Theorem 1.

Corollary 10. For every fixed positive integer s and all n large enough, there is an
n-vertex 3-pd graph whose smallest separator contains at least Q(n/I*(n)) vertices.

Proof. Fix k>0. All the statements in this proof are valid for sufficiently large n.
By Theorem 1, Seui5(m=c(k)n/l*(n) and by Theorem B, Sypig(m=
t(n) nt n® k—1
§d(k) n IOg t(n) . Wéf(k)l (n). By Theo
n__ nflog’n _ 51 .

St = i(nloz ) =g(k)I*-*(n) from which the corollary follows. [}

In Section 2iwe define the family F,, in Section 3 we define the graphs G}
and in Section 4 we prove Theorem 1. In Section 5 we list some open problems.

Combining the two we get

Tem A,

2. The family F

We define a graph G, of n vertices by the operation of a 3-pd machine M
defined by a “program” x. Initially the three pd’s contain 1, ...,n. Let I={l,2, 3}
be the index set of the pd’s and let F={(pop, push, query)|pop€ 1, push €2,
query €{7, F}}. A symbol y=(y;, 72, 7s)€I’ can be interpreted as follows: pop a
symbol from pd number y,, push it on top of the pd’s listed in y,, and if y;=T, then
y is a query symbol.

Consider a string x€I'*. x is executable by a machine M that pushes and
pops the symbols 1, ...,n in its pd’s. Let i, fs, i3, ... be the sequence of symbols
popped by a querry symbol y€I'. The graph G.=(V, E) is defined as follows.
V={l,...,n} and E={(i,, is), G, iy), ...}. We denote the set {G,: x€I'*, |x|=kn}
by F.

In the proofs below we consider “restricted programs” x€I™ in which (i)
whenever a symbol is pushed on a pd it is not the pd it was popped from; (ii) a query
symbol pops without pushing; and (iii) in x query symbols appear in pairs (corre-

sponding to edges) popping different pd’s. Formally, if y=(y:, ¥, ¥s) appears in
x, then (i) y,47,; (i) if y;=7T, then y,=0; and (iii) if y is the (2i—1)-th query
symbol in x for some i=1, then the next symbol in x, y'=(p}, s, ys) satisfies
ya=T and y{=7y,. Moreover, we assume that (iv) at the end of the ‘“execution”
of x the three pd’s are empty. We need the following definition for stating the last
restriction. Consider a query symbol y in x. It pops some pd symbol which was
pushed / times before. We define the parity of y to be the parity of I and assume
that (v) the parities of two query symbols that correspond to an edge are the same.
We denote by F/ the corresponding family of graphs. Obviously F £ F,.

We will need the following graphs: A doubling graph is G,=¥,, E,), nis a
power of 2, ¥={0,..,n—1}, E,={(i2i(modn)), (i, 2i+1)(modn))lic v}
A shifting graphs is Gi=(¥;, E.), ¥, as before and Ej,={(i, (i+¢) (mod n))fic¥,},
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where t is called the shift of the graph. The following proposition follows from the
definitions:

Proposition 1. k page-graphs are in Fy,, doubling graphs are in F}, and shifting graphs
are in Fj.

Remark. As can be seen by a simple counting argument, for ck<n, most k degree
graphs are not in F,;. Hence in some sense Fy, contains graphs with average degree
at most k that have some simple structure,

3. The Graphs G}

In this section we construct, for every k and all large enough », the graph
G} of n vertices and maximum degree 2k+7. The graphs G} are constructed in-
ductively in k.

Base (k=1): The graphs Gi=(¥,, EXUE2\JE?) are obtained from the
doubling graphs of Section 3. ¥, is as before. Let n’ be the largest power of 2 not
larger than n, and let ¥t (V?) be the first (last) n’ vertices of ¥,. For i=1,2, we
choose E7 so that the graph (V}!, E') is a doubling graph and

E} = {(i, " +i)i=1,2,...,n—n"}.

(E3 connects the corresponding vertices in V!—V;? and ¥2—¥1)
Inductive step: To construct Gi;; we need the following number theoretic
lemma.

Lemma 1. Let p be a prime number, and let m=[log? p]. There is a set of m—1
integers TC{l, ..., p} such that for every set AcC{l,...,p} with |Al=cp (c may
depend on p), the number of triples (a,t, a*), a€ A, t€T and a*€A={l,...,p}—A
with a+t=a*(modp) is at least c(1—c)pm—O(Yc(1—c) pmf(loglogp)?). (The
constant in the O notation does not depend on ¢ or p.)

We now define G,;. Let p be the largest prime smaller than n/log®n and let
m=[log?p]. Since for sufficiently large n, p=n/log? n—% 3 (cf. [2]), pm=

= (n/log2 n——l% n2f3) log? [n/log2 n——1-16 n2/3]=n(1 ~o(n)). We arrange the pm

vertices in a pm-rectangle. The remaining o(n) vertices are isolated vertices. In each
of the p rows of the rectangle we connect the vertices by a copy of G*. Each pair of
consecutive columns are connected by a shifting graph. The m— 1 different shifts
are the elements of the set T of Lemma 1.

Lemma 2. Gi€ Fy..q)-

Proof Sketch. We use induction on k. GicFj since doubling graphs are in F
(Proposition 1). We now describe the restricted program x that “generates” G7.,.
We number the vertices of G, by numbering vertices in each column consecutively,
The first 3n symbols of x copy the three pd’s. The top copies are used to generate
the column connections and the bottom copies the row connections. By Proposi-
tion 1 each shifting graph is in F; and so is the union of the m—1 shifting graphs.
So the next substring of x of length 3n generates the column connections. Now, by



ON 3-PUSHDOWN GRAPHS 15

the induction assumption each copy of G is in F,;(Ha) But so is the union of p
copies of G because in the latter each vertex (each edge) is replaced by p consecutive
vertices (by p edges). The program handles each such p vertices as blocks. Each
non query symbol in the program that generates G is replicated p times. Conse-
quently, the p copies in each block are popped and pushed successively. Each pair
of query symbols corresponding to an edge is also replicated p times. As a result x
pops alternatively from each block. Finally, restriction (v) guarantees that the
two blocks are popped (and queried) in the same order (from the first to the last
or vice versa). It is easy to see that x is a restricted program that generates G7.4.
Since the row connections are generated by a string of length at most 6(k+2)n,
it follows that |x|=6(k+3)n and G}11€Fxrs- "B

Proof of Lemma 1. For two glven sets T, Ac{l,...,p}, we define the following
values for k=1,..,p: f ( ) et e2mitk/p, [ ) Daca emiaklp - g* [£J=

, D
— Za*EZ eama*k/p'
Claim 1. The number of triples (a, t, a*), ac A, t¢ T and a*€ A with a+t=a*(mod p)
-2 (e () ()

5 — —lg|— —.

2k=1f 4 7 g )
Proof. Each triple (a,t, a*), ac4, t€¢T and a*c4d contnbutes p to the sum if
a+t a*(mod p) and O otherwise. [ ‘

Hence, we have to estimate the sum of Claim 1. In this sum,

the term for k=p gives pilAHTHZI:c(l—c)pm. The other terms are

28 (Be Lo Gl )

estimated by | —

=maXisk<p|S (ﬁ) 1 f 1 g[i) (k] =(by the Cauchy—Schwarz ine-
. Py pz 1/2 k212
o oo (5 4 32, b (S 32 b (T
Note that 37 l‘g[——]l2= and 37 |g [ K ]l —(1=c)p™.

2
[2 =0 |8 (%]\ =218 [Ek—] g [p£)=2 abed Sheg€@—PHP=p|4] because the
2 -—
inner sum is p if a=b and O otherwise. Similarly 37_ ig* (pﬁ]l =_p|A|.]
It follows that the contribution of the other terms is =})c¢(l—-¢)-
k

-p MaXy=x<p f(—;]!

We show that if we choose the elements of T wniformly at random, then with

f (%)I =0(m/(log log p)?), which éompletes

probability greater than 0, max;<k«,
the proof of Lemma 1.

Let m'=m—1, T={t;,...,t,,} and xk=e**? Take g=[(loglogp)’],
and divide the unit circle into ¢ arcs Sy, ..., ;. (S, goes from ¥ -D/d g Zrir/a,)
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Let A=logp/(loglogp)®, and fix k, 1=k<p. For 1=r=gq, let 4* be the event
I[{ J: xke S,}[—-% =) I/ % Since x% S, with probability %, Probability

(114¥)=e—%*? by Chernoff’s bound on the tail of the binomial distribution (cf. [3]
Corollary 4). (For given k and r denote by X% the random variable which takes
the value 1 if x%€S, and O otherwise. Then 71A4¥ is the event that the sum (over j)

’

of Xkr differs from its mean [i) by at least A standard deviations

[ i(1-—l)], and A is not too large [A< i(l—l]]]
q q q q

Claim 2, For 1=k<p, if A* holds for all 1=r=gq, then
=0(m/(log log p)?).
Proof. Let n¥=|{j: x%S,}{. By our assumption

’

=1 I/ —’g—- Also, for

xkeS,, |xk—eiria=0 (%] .  Now, [2’}';1 x§|§ l23=1 n’,‘e2""’/‘1|+ o (%] =

q
. lZ :=1 ez"”/“l+qﬂ. I/ _rg_+ 0 (—Zl—) =0(m/(loglogp)?). 1

But the probability that 4% does not hold for some 1=r=q and 1=k<p
is at most gpe—*/*=o0(1). Hence, with probability greater than 0, A holds for

s (§]I =z, =

m
nk—

all 1=r=q and l=k<p, and by Claim2, maX;=zp
=0(m/(loglogp)?). 1

4, The Proof of Theorem 1

We prove that the separators of G} satisfy the lower bound of Theorem 1.
We will need the following definition : For a set 4 of vertices in a graph we denote by
#(4, A) the number of edges (v, v) with u€4 and v€A. Theorem 1 follows
immediately from the following lemma.

Lemma 3. For K>k and sufficiently large n, let A be any set of vertices of G} such
that 10*-X=|A|/n=1/2. Then 3 (4, A)=10"2K|4|/I*(n).

Doubling graphs satisfy a property stronger than the one needed in Lemma 3.
Lemma 4 below is due to Maass [11].

Lemma 4. Any set A of vertices of an n-vertex doubling graph satisfies # (4, A)=
=|A||A4l/(nlogn).

Proof of Lemma 4. Assume n=2". For all pairs of vertices e, d, let (d5=e, ..., d§=d)
be the unique path from e to d that changes the bits of vertex name one at a time.
We define G(e, r)={bcA|lb=d¢ for some d with d¢, €A}

Claim 3. |A]=>"'"1(G(e, r)|2'-" for every ecA.

r=0
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Proof. To each d in 4 associate 7, the last index r with d?€A. Since d and df have
the same F bits, at most 2'~*d’s in A have the same F and the same d¢. |}

Claim 4. For every index r and vertex b we have |{e|b€G (e, r)}|=2".
Proof, Each e in this set has /—r bits in common with 5. ]
By summing Claim 3 over 4 and by Claim 4,

Al = 3, 321G E N2 = 3322~ 3, (G =

= 312 22|, 6o n)| = n 32 |U, ., Gle 7))

Therefore there is an index 7 such that [\, ,G(e,r)|=14]4l/(n log n).

This completes the proof of Lemma 3 since each vertex in U, ,G(e7)
corresponds to a unique edge of the doubling graph with one endpoint in 4 and
oncin 4.

Proof of Lemma 3. We fix K, and use induction for k<XK.

Base (k=1): Let 4 be any subset of vertices of G}=(¥3, EIUE2JED)
such that 101"K§|A|/n§ 1/2. Let a;=|ANV}|. i=1,2 and a=|4|. Without loss
of generality a,=

Claim 5. Either (1) there is i€{l, 2} with —Sat —=n' or (2) ay—a,= %.

8
Proof, Assume (1) and (2) do not hold. We must have al>z— n’ and thus |ANVY=

8
é——'g—. Now by (2) az_a1—~8—— g n ——S—zz a and by (1) az_%n’ and thus
1an ,ﬂé-"s—. It follows that |4|= -, which is impossible. i

If (1) holds, then since (V7', E') is a doubling graph, we have by Lemma 4
and Claim 5: (4, A=a(n’ —a)/(» log n’)zg-—';:- / (n" log ') =|A|/(100 log n).

If (2) holds, then since there are a;—a, edges in Ej which contribute to
#(d4, A), we have 3:(4, 4)=|A4]/10.

Induction step: We assume the lemma holds for £ and prove it for k+ 1.
We color the vertices in 4 black and those in 4 white. A row is called balanced if
it has at least 10*—Xm vertices of each color, and it is called unbalanced otherwise.

First assume that at least -1—0- 10*=Ep of the rows are balanced. We apply

the induction hypothesis to each of the balanced rows, choosing the set A4
in each row to be the smaller of the two sets (of the black vertices or the
white vertices) so that its size is =m/f2. It follows that for sufficiently large n,
3 (4, A)z=105-EX-1p10~*E10*~Em[I*(m)= 10—2*+MKp/*+1(n), which completes the
proof in this case. 1

We now assume that less than 5T0) 10*-Xp of the rows are balanced. Call a

row black if it is not balanced and most of its vertices are black, and call a row
white otherwise. Let f,(f,) be the fraction of black (white) rows and let £}, be the
fraction of white balanced rows.
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In a black row, at least (I—IOk‘K)nza—l-?()—m vertices are black. Hence,

since [A|=n/2, -1-96 fbpmé%n, fp=0.56, and 1—f,=044 for n large enough.

In a white unbalanced row, at least (1—10*-X)m vertices are white. Hence,
since |[A|/n=1-—10%+1-K f£/(1—10¢-%)=1--10%+1-K  But, since for O<y<x=<1,
(A=-x)/(1=y)<1l—(x—y), 1 —f,>9X10*% and fi=1—f,>8.9X 10*X

We now consider only edges connecting different columns. Since these con-
nections were chosen according to the set 7" of Lemma 1, the number of edges con-
necting a vertex in a black row to one in a white row is at least pm( f,(1—£;,)—o(1))=
=3.5X 10*-%n for n large enough. Subtracting edges connecting vertices in black
rows to vertices in balanced (white) rows (=0.2X10*~Xpn), and edges conmecting
vertices of the wrong color (white vertices in black rows or black vertices in white
unbalanced rows), (=2X10*~%Xn) we get that the number of edges connecting
black vertices to white vertices =4r(4, A)>10*-%n=10-%K|4|/I*+1(n). |

5. Open Problems

The main open problem left is Problem 1 (or equivalently Problem 2). Theo-
rem 1 and Corollary 10 imply that even if the answer to the problems is positive the
smallest separator of 3-pd graphs must be almost linear and the fastest simulation
must be almost quadratic. Two other problems are the following

— Can the family of 3-pd graphs be replaced by a simpler family of graphs F such
that F is separable if and only if the answers to Problems 1 and 2 is positive?

— Theorems A and B provide upper and lower bounds (for the size of the separators
or the time of the simulation) that are tight only if the answer to problems 1 and 2
is negative. Can the gap be closed (even without settling these problems, or if the
answer is positive)?
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