Roserto  Representation and Duality Theory
MAGART for Diagonalizable Algebras

(The algebraization of theories
which express Theor; IV)

Summary. The duality thecory established by Harwos in [2] for boolean hemi-
norphism applies of course to the diagonalizable algebra, because »ry is an hemi-
morphism.

For commodity in working on diagonalizable algebras we recall the basic
facts and give the characteristic conditions on the dual of vzv.

Introduction

Let P be the set of the sentences of the Peano arithmetic and I the
set of the theorems. It is well known that there exists a formula with
one variable, T (), which numerates T and satisfies useful further prop-
erties (derivability conditions, Léb’s theorem).

This formula gives an unary operation v in the Lindenbaum algebra
of Peano arithmetic. So we can obtain an algebra {4, +,-,» 0,1, 7,
in which:

(r90) JAy 4y, 0, 1> is o boolean algebra
(r1) 1l =1

(72) T(wy) = Ty :

(73) (o)< (v,yed, s>y =y 2)
(z4) if #<<y then e <ty (a<b iff ab = a)
(tH) (2->y) << Te--1Y

(76) RO o

(Sec also [1], [4], [BD

Previous results (especially the fixed-point theorem in BERNARDI [1])
ensure to us that many good properties of the Peano arithmetic (and
in general of the theories which express Theor.) possess an adequate
counterpart in every “diagonalizable algebra” (i.e. in every system
(A, +,+, 0,1, 7> which satisfies the previous properties).

In this paper, using the Jonsson-Tarski-Halmos representation theory
for hemimorphisms, we show that in every diagonalizable algebra z is
linked with a “relatively founded” partial order in the dual space of
CAy +, 57, 0,10,

In § 1 we discuss also the logical relation between various properties
of the diagonalizable algebras.
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§ 1. We rvecall that a diagonalizable algebra is a system {4, +, -,
r, 0,1, 7> in which:

A, +, v, 0, 1> Is a boolean algebra,
7 is an unary operation on A4 for which:

(z1) 1 =1
(v2) t(xy) =y (2,yed)
(3) r(rr—x) < o (a—b = ra+D)

In every diagonalizable algebra we have of course:

(r4) fao<<ythen e <ty (2,yed)(a<<d iff ab = a)
We have also:

(v56) T(2—>y) < @7y

In fact, using (72):
e r(w—>y) = t(r(ve+y)) = v(2'y) =wx-ry and hence: rwz+T(T—>Y)
=yt T T(r—y) = @1ty = vie -+ 1y = re—>1y and so ()
(z6) < te ("o = v"@)
In [5] we have assumed (76) as axiom, but, as G. SaaBIN has pointed
out it Is provable from (z1), (¢2), (3). In fact:
e < (0w +oriy) = r(mm—}—rr(mm)) = r(r(m-rar)~>m-r:v) < 7(2- )
£ e L e, Farther, as we have seen in [5]:
(7)) w+ry<t(@+y)
(8) 10 < 2
(79)  T(rr—=-) == Tr (v, yed, new, n>0)
(t10) =" = 70
(r11) if re << 2 then 2z = 1.

It is useful to observe that if (72), (¢6), (r11) hold then also (v3) holds.
In fact, using (72):

T = (@ +re) (- viw) = v(x+10) (P +rTH)

and hence, using (¢2), (rd) (which follows from (z2)): t{(re—a)->10
=1 +rr(x+vex) = v(®+ ) v(w+rrx) +rvo (@ +ve) = v(w+ @)+
+or(@--vrr) and, using (76) {and (75) which follows from (v2)}:

(e+te)+rr(etvrx) = vo o (g +vTe) = r((r(;v vte) - o
So, from (711):

t{re—w)—>1z =1 le. (13).
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It is often useful to use, instead of 7, ¢ = r7v. Of course for ¢ the conditions
given above become:

(6l) o0 =0

(62) o(m--y) = o+ oy
(63) o(®-vox) = ow

(o) if <y then ox < oy

(6b) o(z-vy) = o -voy
(66) oow < o (@, yed)
(67) o(xy) < oz oy
(c8) o'>= o
(69) o(z-vox) = ox
(¢10) ovo"z = ol
(611) if v < ox then » =0

¢ 13 an hemimorphism (terminology of [2]: an hemimorphism ix
a map o between boolean algebras, for which (¢1), (62) hold) for which
(63) or equivalently (o6) and (o11) holds. Terminology:

A 7 satisfiyng (71), (72), (z3) is a “Ldb operator”, o is a “co-Ldb
operator”. Since of course the category of the algebras <4, +, -, » 0,1, 7>
(with algebraic homomorphisms) is isomorphic to the category of the
algebras <4, +, -, » 0,1, o> (with algebraic homomorphisms) let us to
use in everybody case the name “diagonalizable algebras”. If we will
be pedantic we speak of “co-diagonalizable algebras”.

§ 2. Concrete diagonalizable algebras.

Let R be a Dbinary relation on a set M and let us define a o: 2 (M)
—P (M) putting:

(1) oX = {we M: there exists a yeX for which yRx} (writing v for vov
we have of course:
(1') =X = {we M: for every yevX, non (y&wz)).

It is well known that ¢ is an hemimorphism i.e. satisfies (ol), (02).

Let us call concrete algebras (c.a.) every system (M, R, A> where
4 is a field of subsets of M and R is a binary relation on M. The “abstract”
of a c.a. (M, B, A) will be (4, U, N,°, @, M, o> where ¢ is defined by (1).
If A =2 (M) we will speak of the complete abstract of (M, I).

LemvA 1. Let M, R be as above and let A be an abstract. Let us consider
the conditions:
(1) R is transitive )
(i) R is founded (i.e. no sequence (®,)n., With =z, ,Rx, ewists or
equivalently every non void subset of M admit a minimal element)
(1) R is a (strict) partial order founded.
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Then:

(1) —=(06) (ii)—>(cll) (iii)—(a3)

Proor. (i)->(6). Let R be transitive and X < M, 1f weoaX then
there exist y, ¢ with z¢X, 2Ry, ylRw. So 2Rz and weoX.

(ii)-»(o11l). Liet be X < W and X 7 0. Let @ bhe minimal in X
Then wé¢oX and o' P2 Y.

(iif)—(63). Obvious because (itl) is equivalent to the conjunetion of
(i) (i1) and (¢3) (upon ¢2) is cquivalent to the conjunction of (06), (¢11)

CorROLLARY 1. [If R is a (strict) partial orvder founded then every,
abstract of <M, B> is a diagonalizable algebra.

Now suppose A = .#(3[). We have:

Lassna 20 If A is the complete abstract of (M, R> then:
(66)-=(i) (o11)—(ii) (03)-+(iii)

Proor. (ot)-+(i). Let be @Ry, yRz and xeX. So 2ec6X S oX, aR:.
(011} —(ii) Let be X 3 O. Then ¢X P X i.e. X has minimal elements,
(63)—(iii). Obvious from the recalled equivalences.

In general the implications (o6)—(i), (oll)—(ii) tail. Suppose for
example M = {z,: new}U{a}U{y,: new} with:

7 Bz, when @<

o Ry, (i, jew)
.Zl-R;I/j (i,jem)
2, Ra

y:Ry;  when j <
a Ry, when ¢ #0

and 4 be the algebra of the finite subsets of A/ excluding a and of the
co-finite subsets of M including a.

It is easy to see that 4 becomes a diagonalizable algebra but B is
not transitive nor founded.

§ 2. Representation.

Let 4 be a diagonalizable algebra. Is there a “representation” of
A, i.e. o couple (A, B> with a monomorphism of 4 in the complete
abstract of (M, B>?

An adfirmative answer can be found in the general theory of duality
for hemimorphism established in [27]§§ 8, 9%, but let us start with some
simple preliminary remarks.
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LemMA 3. Let (M, R, A> a c. a. and define a new relation on M
putting:
(2) y <@ iff, for every we A, if yeX then wesX.
Let o* the operator linked with <. Then o* = o (where o s the operator
linked with R) and << is the maximum of the relations linked with o.

Proor. Of course B < < and theretore for every Xed ¢X < o*X.
Let be XeA and weo*X. Then there exists an yeX with y << @ and, by
(2), zecX.

LEMMA 4. Let M, <<, A, o as over and let o be the relation on M
defined by:
(3) woy iff, for every XeA, X does not separe & and 1.
Then in a natural way we have a representation of {4, o> by (Mg, {jo).

Proor. Obvious because if x; 02, ¥,0Y., ;< y, then, using (2),
we found x, << vy,.

Now let us recall the basie facts on duality theory for hemimorphism
established in P. R. Harmos [2](1). Let A, B be boolean algebras and
X, Y be its dual spaces. Think 4, B as the algebras of the continuous
funetions from 4(B) to 2 equipped with the discrete topology. Then
for every hemimorphism f (normal and additive map) from A to B the
“dual” is the binary relation f* from Y to X defined by:

(4) o f* « iff, for every ped, p 2 <(f p) ¥y

This dual is a “boolean” relation i.e. the inverse image of a clopen
(closed and open) of X is a clopen of Y and the direct image a point of
Y is o closed set of X.
The “dual” R* of a boolean relation from Y to X is the map from
A to B defined by:

2
(5) (R*p)y = V{pz: yRa}.
P. R. Harmos shows that:

PrOPOSITION 1. If f is an hemimorphism then f* is a boolean relation
and f** =f. If R is a boolean relation then R* is an hemimorphism and
R* =R.

Now we have from prop. 1, lemma 3, lemma 4:

TaHEOREM 1. If A is a boolean algebra and o ts an hemimorphism
(6: A—>A), then (A, > admits a representation in (X, c*™'> and every
representation of (4, ¢) can be reduced via lemma 3, lemma 4 to a represent-

1 This theory extends the theory developped in [3] wheh should be sufficient
for our goals. See also [7].



310 Roberto Magari

ation in {Z, 6"~ where Z is a suitable dense subspace of X. In particular

every diagonalizable algebra is representable.
Proor.  Obvions.

Let us observe that, roughly speaking, ¢ is precisely the maximum
of the lemma 2.

It is also useful to observe that in general not for every dense subspace
Z of X there exists an R with a representation of 4 on /7, R .

Ex. 2. Let 4 Dbe the algebra of the finite ov co-finite subsets of
m and define ¢ putting:

9] if X is finite
{0} if X is co-finite.

cdX =

It is easy to see that o is a (dual) Lob operation (and further ¢(XNY)
= ocXnNoY).

As dual space of 4 we can assume o-+1 when 4 is represented by
the algebra of the finite subsets of w and of the co-finite subsets of w41
including » as element.

w is obviously the only dense subspace and if an R exists for which
o Is representable in {w, R> then, by lemma 3, o is representable in
{w, ox}> i.e. in {w, < > where: =z <y iff, for every XeA4, if z¢X then
yeoX i.e. the void relation. Of course o does not coincide with the o
linked with <.

§ 4. Duality.
We have:

THEOREM 2. Let 4, 0, X as above, < = ¢*~'. Then:

(1): (a6) holds iff < is transitive.

(ii):  (011) Rholds iff << is “relatively” founded i.e. every clopen has
minimal elements.

(iii):  (a3) holds iff << is transitive and velatively founded.

Proor. Obvious.

Now let 4;, 4,, boolean algebras, ¢, 0, hemimorphisins on 4 ;,4,,
X,, X, the dual spaces of 4,, 4,.

As HarLMmos recalls in [2], f is an homomorphisms from 4, to 4,
iff f* is a (continuous) function with domain X. Now we have:
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LeMMA 5. [ is an homomorphism from {Ai, o1) to {(A,, a,) iff f* is
a (continuwous) function with domain z for which:

(3) (f*y, ) eor iff there ewists z
with f*c =x and (y, 2)eo).

Let us to call strict an homomorphism between relational structures which
satisfies (S) (or analogue).

Proor. TFrom the theorem 9 in [2] we have:
(fo" = olf" (o) =10}

so the equality fo, = o,f (i.e.: f is an homomorphism from {4,, ¢, to
(4,, 0,°) holds iff the equality off" = f*o; holds. The lemma follows.

S0 we have:

TiroREM 3. The category C of the boolean algebras equipped with
an hemimorphism (and of the algebraic homomorphisms) is equivalent to
the category S of the Stone spaces equipped with a binary boolean relation
(and of the continwous mappings which are strict homomorphism for the
relational structures). In particular the full subcategory of C given by the
diagonalizable algebras is egquivalent to the full subeategory of S given by
the objects which satisfies the condition:

Rt is transitive and relatively founded.

ProoF. Obvious.

Now let us observe that, when we have equivalent categories it is
" often convenient to construet a category of more rich objects and mor-
phism which form a category equivalent to the given categories. In this
case we can consider the structures:

(X, A, 7, 0, B, 0> where:

X is a Stone space

A is a boolean algebra

o: A x X2

T, 0 are unary operations on A v =voy o = rv

R is a boolean relation on X

the map Ax[pox] is continuous for every peA (where 2 has the
discrete topology)

the map Ap[pox] is in Hom (A, 2) (where 2 has the structure of
two-clements simple algebra)

2 — Studia Logica XXXIV/4
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every ultrafilter 7 of 4 has exactly one point z¢X for which, for
every pelF, pr =1

every clopen Z of X has exactly a ped for which p-2 =1 iff zeZ

R is transitive and relatively founded

(opyox = 1 iff there exists an y for which py = 1 and 2Ry
(zp)ox = 0 iff there exists an y for which py = 0 and 2Ry

xRy iff, for every ped, iff py = 1 then (op)y =1, i.e. for every
ped, iff py =0 then (vp)y =0
(1), (2), (73), (o1), (62), (03) holds

A morphism from (X,, 4,, 7y, 0y, By, 0> to (X,, 4,, 74, 05, By, 0> is
a couple (f, f*) for which

f is an homomorphism from (4., 7y, 6,)> to {4,, 7,5, 05>

f* is a continuous map from X, to X, which is a strict homomor-
phism from the relational structures (X,, B,>, (X;, B

With this redundant but useful definition the duality theory becomes
the adfirmation that <4, t), (4, o), (X, B> uniquely determine the
structure and that f(f*) uniquely determine f*(f). (these “uniquely” are
intended, obviously, cum grano salis).

Finally let us observe that often if we consider an hemimorphism
type on Boolean algebra, the same conditions which holds for the binary
relation naturally induced in the space of the atoms when the algebra
is complete and atomie, hold for the dual of the hemimorphism In
the dual space. So relatively to (o6) the condition given in lemmas 1,
2 is the same that in theor. 2, analoguous situation for guantifier
(the dual is an equivalence relation) and so on. This is not true
for (o11), (03).
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