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Representation and Duality Theory 
for Diagonalizable Algebras 
(The algebraizatwn of theories 
which express Theor; IV) 

Summary. The duality theory established by HALMOS in [2] for boolean hcmi- 
morpbism applies of course to the diagonalizable algebra, because ~,rv is an hemi- 
morphism. 

For commodity in working on diagonalizablc algebras we recall the basic 
facts and give the characteristic conditions on the dual of vw. 

I n t r o d u c t i o n  

Let  P 1)e the  set of the  sentence~ of the  Pe~no a.rithmetic a,nd T the 
set of the  theorems.  I t  is well known tha.t there  exists ~ formulg with 

one v~ria.ble, T(x),  which numera.tes T a, nd satisfies useful  fu r ther  prop- 
erties (deriva.bility condit ions,  LSb's theorem).  

This fornmla, gives a.n una ry  opera.tion r in t.he Lindenb~mm a.lgebn~ 
of Peano  ar i thmet ic .  So we ea, n obta in  an a.lgebr~ <A, + , . ,  v, 0, 1, r> 
in which : 

(TO) <A, + ,  ", ~,, O, 1> is a, boolea, n a, lgel,r~b 

( r l )  r]. : 1 

(~2) ~(xy) : r x ' r y  

(r3) r ( rx-~x)  ~ rx (x, y e A ,  x->y = y + ~ x )  

(v4) if x ~ y then  vx-~ ry (a ~ b iff ab : a) 
(~5) v(: , , ,y)  < r:r, -:~ry 

(rt;) r;~ < rrx 

(See also [1], [4], [5]) 
Previous  results (especia, lly the  f ixed-point  theorem in B:EI~h-ARDI [1]) 

ensure lo us tha t  ma, ny good proper t ies  of the  Pea, no a,rithmetic (and 
in genera, l (>f the  theories which express Theor.) possess a.n adequa te  
coun te rpa r t  in every  "dia.gonalizable -flgebng' (i.e. in every  sys tem 
<A, -~ - , . ,  v, 0, 1, r> which s~tisfies the  previous  propert ies) .  

In  this paper ,  using the Jonsson-T~rski-]~Mmos representnt ion theory  
for hemimorphisms,  we show tha t  in every  dingonMiza, ble a lgebr,~ r is 
l inked wi th  a. "rela, t ive ly  founded"  pa.rtia.1 order  in the  dua,1 space of 
<A, + , . ,  ~,, 0, 1>. 

In  w 1 we discuss ,~lso the  logical relat ion be tween  wu'ious proper t ies  
of the  diagon~lizable algebras.  
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w 1. W e  recal l  t h a t  ~ diagona. l izable  a lgeb ra  is a s y s t e m  <A, + , . ,  
,., 0, 1.~ r ,  in w]lir.h: 

(A ,  + ,  ', v, 0, 11> is a b o o l e a n  a.lgebl'~ h 
r is an  u n a r y  o p e r a t i o n  on A for  w h i c h :  

(vl)  r l  = 1 
(v2) r(X'y)  = 3 x . r y  (x, y e A )  
(r3) V(TX---~X) <~ rX (a->b = ~,a+b) 

I n  e v e r y  di,%gon(~lizable a lgeb ra  we  h~ve  of cour se :  

I ry (x, y E A ) ( a  <~ b iff ab a) (r,t) if x -~.~ y t h e n  rx ._~ = 

W e  h a v e  a lso :  

(35) ~(x-+y) <~ rx-+3y 

I n  fa.ct, us ing  (v2): 

r x . v ( x - ~ y )  = ~ ( x ( v x + y ) )  = 3 ( x . y )  ~- 3 x . v y  a n d  h e n c e :  v~x+ 3(x-~y)  
= ~,r,r,+r,r,.r(x :~y) = ~ , v x + r x . 3 y  = v3x+'cy  = r x ~ 3 y  a n d  so (35) 

(3(;) rx 4 ~"-,,' (3~'+1x = T~"x) 

I n  [5] we h a v e  a s s u m e d  (v6) as ;~,xiom, b u t ,  a.s G. SA~I~I~ ha, s p o i n t e d  
ou t  it, is p r o v a b l e  h ' om (31), (32), (r3). I n  f a c t :  

w,.r" ,r  ~ v"x. Fro ' thor ,  as we  h a v e  seen in [5]:  

(37) 3x- '~ry ~ V ( x + y )  
(rS) r . 0 ~ T x  
(Tg) r(r.r.---;v) ==  TX (X, y e A ,  ',.co), n > O) 
( r l0 )  r J, r ' x  = 30 
(r11) if r x ~ x  t h e n  x = 1 .  

I t  is useful  to ob.~erve tha.t if (r2), (r6), (~11) ho ld  t h e n  also (r3) holds.  
I n  fac t ,  using' (32): 

r,; = T((C, + r x ) ( x + v r x )  -- r ( ~ +  T X ) ' r ( X + r r X )  

and  ]wn('e, u.~ing (r:3), (r4) (which  folh)ws f r o m  (32)): 3(rx-~x)-->3x 
= rx  + ~,r (x + ,,3x) = r (x  + 3x)- r (x + ~,3x) -k ~ (x + ~3x) = r (x + rx) + 
+ v r ( x + v 3 x )  and,  us ing  (v6) (a:nd (35) wh ich  fol lows f r o m  (v2)): 

So, f rom (311): 

3(-ra~-px)-~rx = 1 i.e. (33). 
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I t  is of ten useful  to use, ins tead of ~, a = ,,r~,. Of course for ~ the  condit ions 
given above  become:  

(al) aO = 0 

(~2) (r(,v-l-y) = ~.x-t ,<~/ 
(~3) a(x.~,~x) ;z ~,x 
(~) if x ~ y  then  ~ w ~ y  
(~5) z(x.~,y) ~ zx .vay  
(~6) ~ x ~ w  
(~7) ~(xy) ~< z x ' a y  
(z8) z~ "- 
(~9) ~(x.v~x) = ~:v 

((~10) ~,z '~x = ~1 
(c~11) if w~<~rx then  x = 0  

(:v, y e A )  

is an hemimorph i sm ( terminology of [2]: an hen~imorphism is 
a map  ~ be tween  boolean  algebras,  for which (al) ,  (a2) hold) for which 
(~3) or equivMent ly  (~6) and  (~11) holds. Terminology:  

A ~ sat isf iyng (vl), (~2), (v3) is a "LSb opera tor" ,  a is a "co-LSb 
opera tor" .  Since of course the  c~tegory of the  algebras <A, - ? , . ,  v, 0, 1, ~> 
(with algebn~ic homomorphisms)  is isomorphic to the  ca tegory  of the  
algebras <A, + , . ,  v, 0, 1, a> (with algebraic homomorphisms)  let us to 
use in e v e r y b o d y  case the  name  "diagonal izable algebras" .  If  we will 
be  pedan t ic  we speak of "co-diagonMizable algebras" .  

w 2. Concrete diagonalizable algebras. 

Let  /? be  a b ina ry  rela t ion on a. set M a, nd let us define a a: ~ ( M )  
- ~  (M) lmtt i  ng: 

(1) a X  = {xE M:  there exists a y e X  for which yRx} (wri t ing ~ for ray 
we have  of course:  

(l ')  vX = {we M :  for every ye~,X, ,Jwn (yAw}). 

I t  is well k n o w n  tha t  a is an hemimorph i sm i.e. satisfies (aX), (a2). 
Le t  us call concrete algebras (c.a.) eve ry  sys t em <M, R, A> where  

A is a field of subsets  of M and  R is a b i n a r y  re la t ion on M. The "abs t rac t "  
of a c.a. <M, R, A> will be  <A, u,  c~, ', O, M, a> where  a is defined b y  (1). 
I f  A = ~ ( M )  we will speak of the  complete abs t rac t  of <M, R>. 

LEN~fA 1. Eet M, t?, be as above and let A be an abstract. Let ~ts consider 
the conditio,~ts : 

(i) R is tra,~sitive 
(if) R is founded (i.e. ~o seq~tence (x,~)n~o, with a%~+~Rxn exists or 

effttivalently every no~ void s~tbset of M admit a mini,real ele~ent) 
(iii) R is a (strict) partia~ order fo~tnded. 
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Then: 
(i)-+(a6) ( i i ) -+(~11)( i i i )~(a3)  

I']r (i)-+((i). Let  R be t rans i t ive  and X _c M. If  : c ~ X  then  
there  exist y, z with zeX ,  cRy, yRx,. So zRx and ,cecrX. 

(ii)-->(all). Let 1)4~ X c M and X J O. Let  x be minimal in ,u 
Then :,,r aml ~A; ~ Y. 

(iii)=da3). Obvious beeausc (iii) is e~tuivalent to the  conjunc t ion  of 
(i) (ii) and  (a3) (upon a ~ is equivalent  to lhe, ( ,onjunction of (a6), (a11) 

CO~OLLAnV 1. I f  R is a (strict) partial order .retarded the~, every. 
ab,~tract of (,M, R~ is a diago~t, alizable algebra. 

.NOW SllPl)ose A. ==-,]'(~]/). ~V(' ] laYf:  

L~3L~ 2. I f  A is the complete abstract of (M,  R ~ then : 

(~G)-~(i) (~11)->(ii)(~3)~§ 

l']'OOl, ~. (a(1)---(i). Lel be xRy, yRz and x~X.  ,So zEaaX ~_ aX, xRz .  
(all)- '~(ii) Let  be X ~ O. Then  aX ;~ X i.e. X has minimal  elements.  
(a3)-,~(iii). Obvious f rom the  recalled equivalences.  

In  generM the  implicntions (a6)-+(i), (all)-->(ii) fa.il. Suppose for 
example  M-----{z,,: ,a~o)}w{a}w{y,~: ,a~o)} with:  

ziRz j when  i < j  

iiRyj 
ziR:*# 

zeRa 

y~R? h when j < i 
a t~yj when i e e  0 

(i, j EoJ) 

(i, j ~ (,)) 

and  A be the  algebra of the  f ini te  subsets of M excluding a ~md of the  
co-finite subsets of M including a. 

I t  is easy to see t ha t  A becomes a diagonalizable algebra but  R is 
not  t rans i t ive  nor  founded.  

w 2. Representation. 

Let  A be a diagonaliza, ble algebra.. Is there  ~ " representa t ion"  of 
A, i.e.a, couple (,3s R)  with a monomorph i sm of A in the  complete  
qbs t rac t  of <M,_R}? 

An adYirmative answer can be found  in the  general  t heo ry  of dual i ty  
for hemimorph i sm established in [2J w167 8, 9 (1), bu t  let  us s ta r t  with some 
simple prelimin~.ry remarks .  
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Ln)r~.L~ 3. Let ( M, R,  A ) a c. a. and define a new reZation on M 
putting: 

(2) y < x iff, for every xEA,  i f  y ~ X  then x e a X .  
Zet or* the operator linked with ~ .  Then a* -= (r (where a is the operator 
~inked ,with R) and < is the maxim.u,m of the relatious linked with a. 

P~ooF.  Of course R _ < and therefore  for every  X E A  a X  ~_ a*X.  
Let  be  X E A  and  x e a * X .  Then there  exists an y e X  with  y < x a.nd, 1)y 
(2), x ~ a X .  

LE)L~rA 4. Let M, < ~ A ,  a as over and let ~ be the relatio.~t on M 
defined by : 

(3) x(Jy iff, for every X e A ,  X does ,~tot separe x atbd y. 
Then in  a natural way we have a represe~,tatio~ of  <A, a'? by /~M/~ ~/o~. 

PI~0OF. Obvious  because  if x~o~x2, yio~yo, x ~ y ~  then~ using (2), 
we found  x._. < y~. 

�9 let us recall t he  basic  f~cts on du,~lity t h e o r y  for hemimorph ism 
esta.blished in P. 1~. KAL~[OS [2](~). Le t  A,  B be boolea.n algebras a.nd 
X~ Y be  its dual  spaces. Think A,  B ~s the  algebra.s of the  cont inuous  
funct ions  f rom A ( B )  to 2 equ ipped  wi th  the  discrete  topology.  Then 
for eve ry  hemimorph i sm f (normal  and addi t ive  ma.p) f rom A to B the  
"dua l"  is the  b ina ry  relat ion f* f rom I7 to X defined b y :  

(4) y f*  x if/, for every  peA,  p x ~ ( f  p) y 

This dual  is a "boolean"  rela~tion i.e. the  inverse image of ~ clopen 
(closed and open) of X is a clopen of :Y and the  direct  image a poin t  of 

~ is ~ closed set  of X.  
The "du~l '~ R* of ~ boolean rel~tion f rom ]~ to X is the  m~rp from 

A to B def ined b y :  
2 

(5) (R*p)y  = V {px: yRx}.  

P. 1~. ]EAL~os shows t h a t :  

Pt~O20S~T~O~ 1. I f  f is an hemimo~'phism then f*  is a boolean ~'e~ation 
and f** = f .  I f  R is a boolean relation then R* is an hemimorphism and 
It** -= It. 

:Now we have  f rom prop.  1, l emma 3, lemm,~ 4: 

TKE0lCE~[ l .  I f  A is a boolean algebra and a is an hemimorphism 
(a: A-+A) ,  then <A~ a} admits a representation in <X, a*-~) and every 
representation of <A~ a} can be reduced via lemma 3~ lemma 4 to a represent- 

This theory extends the theory developped in [3] wheh should be sufficient 
for our goals. See also [7]. 
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atio,J~, ,in <Z, a *-~, where Z is a suitable de use s.ubspaee of X .  [,u particular 
e~,ery diagou, alizable algebra i,~ 'repre,~eMable. 

]hto(d,'. O])viotlS. 

Let. us observe  tha t ,  roughly  sl)ea.king , a* is precisely the  maxinmnl  
of the  l emma 2. 

I t  is also useful  to observe  theft in general  not for every de,use s.ubspace 
Z of X there  exists a.n R with ~L represent'dr ion of A on ,(Z, R .  

Ex. '2. Let  A be the a.lo'el)rn, of the  finite or co-finite subsets  of 
c,~ and define a pu t t ing :  

a X =  
O if X is f inite 

{0} if X is co-finite. 

I t  is e~sy to see t ha t  a is :~ (duo, l) LOb opera t ion  (a.nd fu r the r  G ( X n Y )  
= aXnaY). 

As du~l Sl)~ce of A we can ~ssume ~o + 1  when A is r epresen ted  b y  
the algebr,~ of the  finite subsets  of r a, nd of the  co-finite subsets  of co + 1  
including r as element.  

~o is obviousIy  the  only dense subspace  and if an  R exists for  which 
is representab le  in <r R). then,  b y  lemm~ 3, a is represent,~ble in 

<w, a.~-~z> i.e. in <co, < > where:  x <  y iff, for eve ry  X r  if x E X  then  
y s a X  i.e. the  void  relation. Of course a does not  coincide with the  a' 
l inked wi th  < .  

w 4. Duality. 

We have :  

TIt'EOREM 2. f~et A ,  a, X as above, < = a *-1. Then: 
(i): (a6) holds i f f  < is transitive. 

(it): (a l l )  holds "~f.f < is "relatively" founded i.e. e'very clope~t, has 
,minimal elements. 

(iii): (a3) holds ~:ff ~-. is t'ra, J~sitire a,ud relatit,el/I foltuded. 

]?]~oor. Obvious.  

h~ow let A~, A.,, boolean  algebra, s, a~, a.2 hemimorphisms  on A x,A2, 
X~, X2 the  dual  spaces of A~, A~. 

As ~I'A:L~0S recalls in [2], f is ~m homomorph i sms  f rom A1 to A2 
iff f*  is a (continuous)  funct ion with domain X.  N o w  we ha,re: 
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LE~.I~ 5. f is an homomorphism from <A1, (h> to <A2, r i f f  f* is 
a (conti,n, uous)function with domab~ x for which: 

(S) ( f ' y ,  x)Ea* i f f  there exists z 

with J'*z = x and (y, z) Ea,*. 

Let  us to call strict an honaomorphisnl between relational s t ructures  which 
satisfies (S) (or analogue). 

PXOOF. F r o m  the  theorem 9 in [2] we have:  

(f~a)* = (~f* (a.,f)* = f* a* 

so the equal i ty  fa~ = g2f ( i . e . : f  is an homomorph i sm f rom <A1, ~ )  to 
<A.~, a2)~) holds iff the equal i ty  a~f* =f*a.* holds. The lemma follows. 

~ o  w e  h a v e :  

Tl[>r 3. The category C of the boolean algebras equipped with 
a~, hemimorphism (an, d of the algebraic homomorphisms) is equivaleJ~t to 
the category S of the Stone spaces equipped with a bi,n, ary boolean relation, 
(a,t~d of the contin't~ous mappi,~gs which are strict homo,morphism for the 
relation.al structures). In  particular the full s~.bcategory of C given by the 
diagonalizabIe algebras is equivalent to the fu, II subeategory of S given by 
the objects which satisfies the eonditio,u: 

R -1 is transitive a,ud relatively founded. 

P~ooF. Obvious. 

Now let us observe tha t ,  when we have  equivalent  categories it is 
often convenient  to cons t ruc t  a ca tegory  of more rich objects a.nd mor- 
phism which form a category equivMent to the given categories. In this 
case we can consider the s t ruc tures :  

( X ,  A,  r, ~, R, o) where:  

X is ~ Stone space 
A is a boolean algebra 
o: A x X-->2 
r , a  are una ry  operations on A v----ray a =vvv  
R is a boolean relat ion on X 
the map 2x[pox] is cont inuous for every pEA (where 2 has the 

discrete topology) 
the  map 2p[.pox] is in Hem (A, 2) (where 2 has the  s t ructure  of 

two-elements  simple algebra) 

2 - -  Stud.ta Log ica  XXXIV/4  
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every  ultra.filter 1;' of A h~s ex,~ctly one poin t  x , X  for  which, for 
eve ry  p EF, p x  = 1 

every  clopen Z of X ha, s ext~ctly a. p e a  for which p . x  = 1 iff x~ Z  
/2 -~ is tra n.~itive a.nd re la t ively  founded  

(~p)o~ ~ 1 iff there  exists a,n y for which p y  = 1 ~nd xR y  

( r p ) o x  ---- 0 iff there  exists a,n y for  which p y  = 0 a, nd  x R y  

xRy  iff, for every  p ~ A ,  iff  py  -~ 1 then  (ap)y  = 1, i.e. for every  
p e A ,  iff p y  = 0 then  (vp)y  = 0 

(rl) ,  (r2), (T3), (al) ,  (~2), (~3) holds 

A morphism f rom (X1, A1, r l ,  0'1, R1, O) to (X2, A_o, r2, a2, R,,, o} i.s 
~ couple (f, f*) for which 

f is a.n h o m o m o r p h i s m  f rom (A1, r l ,  a l)  to (A._,, r2, a2) 
f*  is ~ cont inuous  mgp f rom X~ to X1 which is n str ict  homomor-  

phism f rom the  relgtiona,1 s t ruc tures  ( X 2 ,  R~),  ( X 1 ,  R~) 

With  this redundant bu t  useful  definit ion the  dua.lity t h e o r y  becomes  
the  ,~dfirm~tion th,qt (A,  r ) ,  (A,  a) ,  (X ,  R )  un ique ly  de te rmine  the  
s t ruc tu re  ,qnd th,qt f ( f * )  uniquely  de te rmine  f * ( f ) .  (these "un ique ly"  a.re 
intended,  obviously ,  cure gr,qno sa.lis). 

Pin,Mly let us observe  thg t  of ten  if we consider  ,~n hemimorph i sm 
t y p e  on Boolc ' tn glgebr~, the  so.me condit ions which holds for the  b ina ry  
rch~tion n~tura.lly induced in the  sp~ce of the  a toms  when  the  ~lgebr~ 
is comple te  a.nd atomic,  hold for the  dural of the  hemimorph i sm in 
the  dual  spa.ce. So rel,%tively to (a6) the  condi t ion given in lemma.s l ,  
2 is the  sgme tha t  in theor.  2, ~.n~,loguous situ,~tion for qm~ntifier 
(the dugl is a.n equivulence reh~tion) ~nd so on. This is not true 
for ( a l l ) ,  (a3). 
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