. GéSP?LE On Modal Logic
ISCHER SERVI  with an Intuitionistic Base

§ 0. Abstract. A definition of the concept of “Intuitionist Modal Analogue” is
presented and motivated through the cxistence of a theorem preserving translation
from MIPC (sec [2]) to a bimodal $%.89 caleulus.

§1. This paper is devoted to answering the following formal question:
can we find a general criterion that will give us “the” intuitionistic ana-
logue of some of the most usual modal systems? The problem as stated
is of a technical nature and therefore the philosophical issues relating
to the plausibility of an intuitionistic logic of modality will be in this
context ignored.

R. A. Brir in [1], following a suggestion of PRIOR, proposes an exten-
sion of the intuitionist propositional calculus (IC') with the following
rules:

R a‘_>ﬁ . P a—/—/)) .
! La—g’ e a—Mp'
a—f . . .
5 ——L—ﬁ, if « is fully modalized;
a—
a—fi . ) .
4 m, if g is fully modalized.

This system — which I call S°-IC' — turns out to be analogous to
Lewis’ S° in the sense that:

(1) adding the excluded middle to S°-IC' gives a logic cquivalent
to S%;

(2) collapsing the modal operators yields Heyting's ealeulus.

Conditions (1) and (2) are necessary but not sufficient to single out
unambiguously the “correct §° analogue”, for it is easy to find non equi-
valent systems which satisfy both conditions. Take, for instance, an
S°-thesis which is not derivable in S°-IC, e.g. '

L(av Lp) — Lav L.

It is casy to verify that S°-IC' on one hand, and S°-IC' plus this formula
on the other, are examples of two non equivalent caleuli! for which both
(1) and (2) obtain. Then, we¢ may reasonably ask which of these two
systems (or any others so constructed) is to be the “real 8° analogue”.

L Sec also Bunn [1].
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Actually, there is a result which in a certain sense settles the guestion
of analogy for $°. . A. BULL (see [2]) was able to show in fact that there
is a translation map 7 from S°-IC formulas to intuitionistic predicative
formulas (I-Pre) with one free variable such that

(3) beosea i brpee7a

Now it is well known that (3) holds if, in each system, I(' is replaced
by the ordinary classical calculus. Although condition (3) is discriminatory
cnough, it cannot be assumed as a general criterion for analogy since,
unlike (1) and (2), it depends upon a peculiarity of the S° modal operators.

For a more gencral approach we could follow this other strategy:
take JC' and simply add a classical modal axiom system?2 For example,
take L as a primitive symbol with the usual definition of M in terms of
L and add to IC, the necessity rule and the following axioms:

(1) Lu—a

(i) Lla—sp)—(La=Lp)
(i) Lu-—+LLa

(iv) L7 Lav Le

(v) La - TH a

This kind of procedure can obviously he applied to modalities of differing
strength but it faces the first objection noted in the beginning of this
paper. For, the intuitionistic modal system thus obtained depends, firstly
upon the connectives taken as primitive and secondly upon the modal
axioms chosen amongst the many alternative systems which are classi-
cally, — but not intuitionistically — equivalent. For instance, consider
the above system to be named P, replace (i) by its classical equivalent

(i) T La—a),

and call I the caleulus obtained. Then, although we have that b,s77(La
—~a), a simple example shows that non bys La—« and hence PP = I,
Again, we find that, in correspondence to a single classical modal system,
we have o family of non equivalent intuitionistic modal calculi.

The aim of this paper, then, is to define the concept of “intuitionistic
modal analogue” in such a manner as to avoid some of the difficulties
illustrated so far. The definition that will be proposed in §2 turns out to
be a natural byproduet of a result concerning S*-I('. What will be shown
is the existence, for S°-I(', of another theorem preserving translation
which does not depend upon the specific characteristics of the modal
systeny involved.

§2. In order to state adequately this new criterien for analegy,
we need to introduce a few concepts. First, note that due to the well

® Modal intuitionistic systems based upon this idea ean be found in [3].
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known relationship between the propositional intuitionistic ealeulus and
Lewis’ §% it can be expected that S°-IC bears a close structural similarity
to a modal sentential calculus with two necessity operators, one of them
being a sort of S* operator and the other a sort of S° operator. Thus, let
(S', §%)«C be the “bimodal” caleulus with 7, -, L;, L, as primitive
connectives (M,a being defined by 7L,7a) and the following axioms
and rules:

{by) classical propositional base, incluling Modus Ponens and the
usual definitions for A and v ;
{by) S arioms and rules on Ly:  Lyu—ua,

L(u—p)>(Lya—L, ),

Lia—L, L,

Fa

b Lya’

{b,) S5 arioms and rules on L,: L,a—a,

Ly(a—f)—(Lya— L, f),
M,a~L, M,a,

Fa
L,a’
(bs) connecting arioms: M,Lia—>L; M,q,

LiLya—1L,L,a%

Now let T be the translation map from S*-IC to (S*, $°)-C which extends
the Godel translation from IC to S* in the following manner

for a propositional variable p,

T(p) = Lyp

and for arbitrary formulas « and g,

T(anp) = TarnTp

T(avp) = TavTf

T(a) = L,1T(a)
T(a—p) = L,(T(a)—T(B))
T(Ma) = M,T(a)

T(La) = L,L,T(a).

Using these notations we shall prove in §§ 3, 4+ the following

3 Aectually, the two axioms in (hy) cun be proven to be deduetively cquivalent.
Since the proof of this faet makes use of the full power of the 85 modality and as we
are alzo interested in capturing a general concept of “bimodal caleulus™, we include
them both. Caleuli eontaining two modalities have been studied by M. FirTiNG (sce
(5]}, who also considers an (8%, 8%) system but with connecting axioms different
from (by).
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THEOREM A. For every formula o of S°-IC,

Fssaca  iff F (s4,s;5y-(:T (a).

Now, if (x)=C' is a classical modal calculus, let (S', %)-C denote the
system obtained by generalizing (S*, $%)-C' in an obvious manner. In
particular we have that the well formed formulas of (S*, %)-C' are the same
as those of (S', §%)=C. Then Theorem 4 suggests that it is reasonable to
assume as a criterion for a general (#)-IC the following definition 4

(i) the language of (*)=IC is the same as that of S>-IC,

and, as T can rightly be considered a map from the formulas of (x)-IC
to those of (S*, %)-C,

(ii) the theorems of (x)}-IC arve those formulas whose T-translates are
theorems of (S, %)-C.

§3. The remnining two sections of this paper are devoted to the proot
of theorem A4, the latter being divided into two halves, theorem 4, and
theorem 4,. As theorem 4, can be proven semanticallv® once comple-
teness for S°-IC and (S*, $%)-C are scen to hold, we proceed to define
the structures with respect to which each of these calculi are complete.

Given a Heyting algebra 4 and two operators I, I on 4, we say that
the triple (4; K, I) iz a monadic Heyting algebra (HM), if:

(i) K, I are monotone,
(i1) Klr< Ie, IKr > Kz, for any z€ 4,
(iii) K [A4], the range of K, is a subalgebra of 4,

(iv) I <r < Ky, (red).
Using these notations and definitions ome can prove:

THEOREM 1. Fiven a Heyting algebra A and K, I: A4, the following
are equivalent®:

(i) (A; K, I) is a monadic Heyting algebra;
(ii) there is a subalgebra B of A such that, for every x € A,

Kr =min{y e B: x<<y} and Ir=max{yeB: y<r}.

1 Obviously some restrictions on the elass of eacluli to which this eriterion applies
are needed. For example, ()-C must be 1 modal system having the full propositional
caleulus as its hase. Morecover, it should be required that (x)-IC be a sub-system of
(#)-C such that adding the exeluded middle to the former system yields the latter
one. It ean be cheeked that these eonditions are satisfied by those modal ealculi
studied in (7] and [8] in which the rule of Substitution of Equivalents holds.

5 Actnally it is possible to prove theorem .1} by induetion ou the length of the
proofs in SP-7C. Although such a straightforward syntactical argument is available,
the algebraie tools involved in the above semantic proof provide a deeper insight
into some of the ideas connceted with an intuitionistic concept of modality.

S The full proof of thecorem 1 is to be found in [4].
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THEOREM 2. The S°-IC theorems are precisely those formulas which
are true® in all monadic Heyting algebras.

b

Proor. TUse theorem 1 and the proof in [17, §§2, 3.

Now we define o bimodal algebra as a triple (B; I,, I,), where B is
a Boolean algebra, I, a topological interior operator and I,
a universal quantifier on B" such that:
(1) I 1e<I,I,x
(11) K, o< I,K,r, (e B)
where W,r =, —7I,—ux.

It is easy to verify that the following eompleteness result holds:

THEOREM 3. A formula a is a theorem of (84, 85)-C iff « is true in
all bimodal algebras.

Using theorems 2 and 3 we can proceed to prove theorem A, in the
following equivalent form:

THEOREM ;.  For each formula a of S5-IC, if a is true in every monadic
Heyting algebra, then T (a) is trie in every bimodal alyebra.

Before we get to the proof of 4, we give some definitions and prove
a few other theorems. Let ns recall the well known fact that if 2 = (B;
I,, I,)is a bimodal algehra, the set of those elements of B which are open
with respect to I, is a Hevting algebra (with the same unit element as B).
Thus, if we define

(1)

we can show that
Tnrorey 4. (A A, T) is a monadic Heyting alyebra.

Proor. (a) Note that by definition I is an operator on 4. Fur-
thermore, for wve 4, Kr = K, 1o <[, K,x = I, Kr and so Kre d.

(b) We prove that the operators defined in (1) satisfy (i)-(iv) of
the definition of HM. Condition (i) follows from (1), since IK,, I, and

7 As usual (sce [7]), a formula « = F (wherve £ is the algebra of formnulas of
S5.1C) is said to be true in o monadie Heyting algebra .1, if every homuomorphism
¢: =1 earries « into the mnit clement of (L A similar definition holds for (S84, $%)-C
and himodal algebras introduced below.

8 A universal quantifier I on a Boolean algebra B is an operator on B <uch that
for every oy e B, Io oo, 11 = 1 and IHauly) = Leuly (sce [G]).

s
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I, ave all monotone. For (i), if w e d, then Ale = K, I, 1,r < I, K, 1.»
= I, L,» = Irand, using part (a), Ko = K, = [, K,v = L1, N,o =1Ka».

As for (1), if w, v e AJA], ie. w = K,r and v = K,y {for some ., y
in A4), then:

wour = K,r U,y = Ky(ruy)e K{A];  wune = NK,enl,y —=
= K.,(rnlK.y)e K[A];
w=y =L (—HK,rUR.y) = 1 (K,— N,»UlL,y) =
=1, N,(—HK, 00Ky e K[A].

since [, K, = K1, ,; 0eA[A] since 0 e d und A,0 = 0. Hence, K[ 4]
is a subalgebra of A.

Finally, I, being monotone, inequalities (iv) follow from definition
(1) and similar inequalities for I,, I, and Al,.

From now on, ./, will denote the monadic Heyting algebra which,
according to theorem J, is associated with a himodal algebra 3. Using
these notations we prove

Leyya 1. Let .4 be a bimodal alyebra, let F\, be the alyebra of formulas
of (S', =€ and T the algebra of formulas of S*=1C. If T, is the sel of
propositional variables and r: Fo— A, w: F—-o/ , are Lo homomorphisms
such that

(2) wil, = Iv: T,
then
(3) wa) = v(Ta) (ae I

Proor. By induction on the height of «:

(1) If p 15 a propositional variable, given (1), the definition of 7 and
the fact that ¢ is o homomorphisi, we have »(Tp) = v(Lyp) = v (p) =
= 0 (p).

(ii) By the definition of 7 and the hypothesis on o, 2T (avp) =
= rT{a)urT(p); then using the inductive hypothesis, @ being o homo-
morphism, 2 (a)VeT (f) = w(a)Uw(p) = w{avf).

(ii1) Similarly for the case of anp.

(iv) For reasons similar to those in (i), ¢T(7p) = v(L,~T(B)) =
= Ilfv(_;T(ﬂ)) =1, —v1(p) =I,—w(p), but, by definition of ./,
I, — w(f) = w(Tp).

(v) Similarlv for the case of a—p.

(vi) ©(T(Mp)) = (M, T(B)) = K,0T(f) = K,w(B) by definition of T
and the inductive hypothesis. But w(p) e /4, so K,w(pf) = Kw(f)
= w(Mp).

(vii) ©(T(Lp)) = v(L1 L, T(B)) = I, 10T (p) = I, Lw () = Iw(f) = w(Lp)
for reasons similar to those in (vi).
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Let 4, Fy, Fand 775 be as in lemuna 1. We have then:

Lenva 20 For every homomorphism v: Fo— 4, there exists a homo-
morphism w: F—</, such that (3) holds.

Proor. Suppose that v is a homomorphism from £, to #. Let
T =0 T,; then I,7: V= ,. Since F is free on 17,°, there is a (unique)
homomorphism a: I'—s/ , such that w! V, = 1,7 = I,or¥,. Cla'm now
follows from lemma 1.

Leanis 3. Lor every homomorphism w: '—-/ , there exists a homo-
morphism v: I'y—# such that (3) holds.

Proor. Let w: I'—/,. Define @ =w ! 1,; then @ = I, % can be
considered as a map from T, to 7 and, F, being free on ¥, let v: Fy—2
be the homomorphism extending it. Then [0V, =1L # =& = 1w T,
and lemma 1 yvields the desived resalt,

From the above lemmas we cun now prove:

TurorveM 3. Let 4 = (B; I,, I,) be a bimodal alyebra. For erery
formula « of S*1C, T(a) is true in B iff a is true in /.

Proor. Suppose that T'(a) is true in A, Let w: F—</; we want
to prove that «(u) == 1. Now, by lemma 2, there is a v F,—2 such that
?(Ta) = w(a); hence, w(n) = v(Ta) = 1", The converse follows similarly
using lenima 3.

And finally for the Proor or Turores A,

Let 2 be any bimodal algebra and let o e o formuln of S*-IC, true
in each monadic Hevting algebra. In particular, thien. o is true in +/, and

hencee 7'(u) is true in A, by theorem 5.

§4. The remaining part of theorem W1 ean be proven ' through the
use of a combination of tranxlations. Consider aceordingly the following
diagran and definitions:

777 NG
’ i \_{
SiIc Pred-S?
"I'l‘ Y //7:_‘
I-Pre

P I the elass ol algebras whieh are similay to the monadie Ievting algebras.
Note also that £ s free on 1) in the elass of algebras sinilar to the bimodal algehras,

W Reeall that .#2 and o/ 4 have the saine unit element.

Ty complete the proof of theovem .1 through weans similar to those used
for theovem -1, the following “Representation theorem™ would do: For each monadiv
Heyting alyebra </, theve s « bimodal algebra # sueh that 4 — o/ 4. 1 have not as yvet
abtuined any rexult in this direction.
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DeriNITION 0f T,: Replace (in a 1 —1 fashion) propositional variables
by predicates of some one fixed variable », leave non-modal connectives
unaltered, replace L, M by V. and 3» respectively 2,

DerFiNiTION of T,: Take the Godel translation '

DeriNmtiox of T, (induectively):

(i) Like 7, for propesitional variables;
(11) Ts(av p) = Tyav Typ;

(iit) T(a) = 1Tha;

(iv)  Ty(Lya) = LT;a;

(v) Ty(Lya) = (V)T

With these notations and symbols we have the following theorems.
THEOREM G. For erery formula a of S*-IC, Vvogce ff Frprelha
Proor. To be found in [2].

THEOREM 1. For every fornuda y of I-Pre, trp..y tff FereasiTay

Proor. See [9].

-

THEOREM R. For every formula 3 of (S', 8°)-IC, if ki 508 then
F!’rml-h‘" [H ﬁ

Proor. It is sufficient to show that for every axiom g of (S', §%)-C,
]

. : p ; _
Fpredaost Dy gy a2d for cach rule of inference, sav 707, of (8%, S§°)-C, it
)

Frrea-s' Ly p then Fpeq.stlsp’. The easy proof rests on some well known
features of Pred-S*.

TueoreM 9. TyTa = T,T,a, for any formula a in S°-IC.

Proor. Straightforward, by induction on the height of the formulas
of S°.I(.

And finallyv:
THEOREM A,. For each formula a of S*-IC, if b 3 cTa, then Fgspca.

Proor. Let ki @).cTa. Then, by theorem 8, T;T'a is a thesis of
Pred-S', hence Fp,oq.s1T>T,a, by theorem 9. Using theorem 7, bpp,..T;a,
whenee Fgspeca by theorem 6.

12 8¢e Burny [2]. Note that 1, is the translation map .7 to which we referred
in §1.

13 See for instance [9], pp. 484-485.
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