D. Vaxarerov  Lattices Related to Post Algebras
and Their Applications
to Some Logical Systems

Post algebras were introduced for the first time by Rosenbloom [6]
and investigated after that by many autors (for the full bibliography and
historical remarks see [4] and [5]). These algebras play such a role for
the m-valued logics of E. Post as Boolean algebras for the classical logic.
The first standard systems (in the sense of Rasiowa [4]) of m-valued pro-
positional calculi, complete with respect to the class of Post algebras,
were constructed by Rousseau [7], [8]. The logic corresponding to these
calculi was called by Rousseau classical many-valued logic. In [7] and
[8] Rousseaun introduced also the notions of intuitionistic many-valued
logic and pseudo-Post algebras as a semantic basis of this logic.

In this paper we define a class of generalizations of Post and pseudo-
Post algebras (called here D-N-algebras) and a class of relational systems
(called here D*-N*-spaces). We give some characterizations of these notions
by means of an algebraic version of the notion of forcing. As a consequence
we obtain, among others, a prime filters characterization of D-N-algebras,
an open sefs characterization of D*-N*-spaces, Stone representation theory
for D-N-algebras and its dual analogue for D*-N*-spaces.

These results are applied to some logical systems, generalizing classical
and intuitionistic m-valued logics of Rousseau. D-N-algebras are used
for defining an algebraic semantics for these calculi, while D*-N*-spaces
are used for defining a relational (Kripke-style) semantics for them. The
standard completeness theorems are proved, as well as some decidability
results are obtained.

Among algebras we will consider in this paper, except Post and pseudo-
Post algebras, there are two very important, called here quasi-Post
and quasi-pseudo-Post algebras respectively. Like Fukasiewicz algebras
[2] they do not contain the constant operations e;,...,e¢,_,. We prove
that any quasi-Post (quasi-pseudo-Post) algebra can be embedded in
a Post (pseudo-Post) algebra. This gives certain separation theorems for
the propositional calculi of Rousseau.

Let us note that another type Kripke-style semantics for the classical
m-valued propositional calculi of Rousseau has been given by Dahn [1].

1. Definitions of psendo-Post and Post algebras. D-N-algebras

DEerFINITION A. Let
(1) P =L, NV,AyYyny =, Dyyeee; Dy gy €0y ey €01 mz=2
be an abstract algebra, where \/, A, €p,...,€,,_; are zero-argument opera-
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tions. 1, Dy, ..., D,,_, are one-argument operations and U, n, = are two-
-argument operations in P. Following Rousseau we shall say that (1)
is a pseudo-Post algebra of order m if it satisfies the following conditions:

{p) (P, Ny, Ay, Y, n, =, is a pseudo-Boolean algebra, i.e.
N Py V, Ay Uy, iy a distributive lattice with the zero
element A and the nnit element \/,
(1) for any @,a,beP zna<b iff 2 < a=b,
(iii) a = a:>/\
For any a,beP and 7 =1,...,m—1

D) D (aLb) = D;(a)UD,(b)

D’}  D,(anb) = D,(a)nD,(b)

') D;(D;(a)) = Dy(a), j=1,...,m—1

) Dy(e;) =V fori<j, j=0,...,m—1
2) Di(ejy = Nfor i >j. j=0,...,m—1

Mr) @ = (D,(a)ne)V ... U(D,_ (a)ne,_,)

If we add the following axiom
(B) 1 DJa)uDya) =\, i=1,...,m—1
then we obtain the definition of Post algebra.

LevMmA 1.1, In any pseudo-Post algebra (1) the following conditions
are satisfied:
( If a<<b then D;(a)< D;(b), ¢ =1,...,m—1.
(1) If Di{a)<< Di(b), 4+ =1,...,m—1, then a<b
(M) D;. (a )<D,L( ), t=1,...,m—2.
(Lo) < D)(a)
(Le) D, (a)<a
(L) anD;(by <bUD;, (a) i=1,...m—2.

Proor. Conditions (2) and (I) folow easily from (D’) and (Mr)
respectively. Operating on a = (D,(a)ne,)u ... U(D,,_,(a)ne,,_,) with D,
and applying (D), (D”), (R), (C,), and (C,) we obtain D,(a) = D,(a)u
uD, (a)u ... UD, _,(a). Thus (M) holds.

It follows from (M) and (R) that for any ¢ D;(a) < D,(a) = D,(D,(a)).
S0 by (I) a < D,(a) and (L) is fulfilled. In the same way can be proved
(La). '

For (L) we shall verify first the following:

(3) D;(a)nD(b) < D;(byuD;  (a) for ¢ =1,...,m—2, j=1,...
m—1.

Suppose j < i. Then by (M) D,(b) < D;(b) and (3) holds.
Suppose j >4. Then j=i+1 and by (M) D;(a) < D, (a) and (3)
(

,

holds. Operating on (3) with D; and using (2), (D), (D), and (R) we
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obtain D;(a)nD;(D,(b)) < D;(b)uD;(D;,,(a)) and by (D) and (D)
D;(anD;(b)) < D;(buD;,,,(a)). From this we get anD;(b) <buD,,,(a)
which is (L).

For our later purpose we need a definition of pseudo-Post algebra
in which axiom (Mr) is replaced by several simple axioms. It was found
that instead of (Mr) we can use (M), (L), {(La) and (L). So we define:

DEeriniTION B. Let B be an abstract algebra similar to (1). P is said
to be a pseudo-Post algebra if it satisties the axioms (p), (D), (D), (R),
(M), (L), (L), (La), (C,) and (C,).

LeEMMA 1.2. In any pseudo-Post algebra in the sense of definition B
the following conditions are satisfied:

(i) if D@)<Dyb) i=1,...,5, j<m—1 then a<buD,(b),
(ii) if Dy(a) =D;b) i=1,...,m—1 then a =b,
(Mr)  a = (D,(a)ne)u ... (D, _,(a)ne,,_,)

ProoF. (i). By induction. Suppose j = 1. Then by (Lw) a < D (a)
< Dy(b) =buD,(b). Let j =k+1<m—1 and by inductive hypothesis
a < buD,(b). Since D, (a) < D, ,(b) by (L) we get a = ana < (anb)u
UlanDy(b)) = bu(bUD,(a)) < buD,,,(b).

(i1). Putting j = m—1 in (i) and using (Le) we obtain (ii).

(Mr). Observe that from (M) we obtain D;(a) = D;(a)U ... UD,,_,(a).
Applsinfr to this equality (C,), (C.), (R), (D), (D”) we have: D,(a)

(D (a )(\D €1) UDL(Dz( ))ﬁD (6) . UDi(Dm—l(a))mDi(emwl)
= D;(D,(a)ne;u ... UD( a)ne;U ... UD, | (a )mem_]). By (ii) we obtain
a =D ( )me1 c UD, s (a)ne, .

THEOREM 1.3. Definitions 4 and B for psendo-Post algebras are
equivalent.

Proor. By lemma 1.1. and lemma 1.2.
Let us mention that the axioms (C,) and (C,) in the definition B may
be replaced by the following two axioms:

(C,}) Di(ei) =V i = 1,...,m—1,
(C.}) D1+1(6‘) = /\ 7: =O, ...7m—2.

Now we turn to define some notions. Let P = (P, \VV, A, U, n, =,
a9, Dy,...,D,_,> be an abstract algebra in which all operations have
the same number of arguments as in (1), perhaps containing also the
constants ey, ..., €,_,. We shall call B a D-algebra if the axioms (p), (D),

’

(D) and the following two are satisfied:
(D(;) D(N) =N +=1,...,m—1,

(D)) Dy(V)=V i=1,...,m—L
It is easy to see that in any pseudo-Post algebra (D;) and (D,) are
satisfied. Thus any pseudo-Post algebra is a D-algebra.
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Let Ax be the set of axioms (R), (M), (Lw), (La), (L), (C,), (Cy), (B)
and (J), where (J) is the following axiom

(J) D;(D;(a)=a) =V, i=1,...,m—1.

Let N be a subset of Ax and P a D-algebra. We shall say that P is
a D-N-algebra if all of the axioms of N are satisfied.

Later we shall show that axiom (J) is satisfied in any Post algebra.
So D-N-algebras are generalizations of Post algebras.

A D-N-algebra is said to be a quasi- Post algebra if N = Ax\{C,, C,, J},
a quasi-pseudo-Post algebra if N = Ax\{C,, C;, B}. In both cases P does
not contain the constant operations ¢, ..., e, ;.

2. D*-N*-spaces

We shall examine D-N-algebras by means of some relational systems
which we shall call here D*-N-*spaces. Let

(4) S =<8, c,dyy..,8, ,Eyy...E, > m=2

be a relational system where < is an ordering relationin §,d,,...,d,,_, are
one-argument operations in § and E,, ..., F,,_, are subsets of 8. We shall
say that S is a D*-space of order m if the following conditions are satisfied
for any x, yeS:

(DY XM axcy then dixcdyy i =1,...,m—1,
(B*) if 2¢E; and z c y then yeE;, i =1,..., m—1.

We shall call D*-spaces (without subsets E;) systems S = (S, <,
dy,...,d,_,> m>= 2, where operations have the same number of arguments
as in (4) and satisfying axiom (D¥).

Let Ax* be the set of the following conditions, corresponding to the
conditions of the set Ax:

Y didjxg=dix i,j=1,...,m—1.

divcxworvcd @ t=1,.,...,m—2,

MY dwcdx t=1,...,m—2.
L:,) X c dll?.
L:) dm—lw < .
*
)
")

frcythendycocdie t=1,...,m—1.
J¥Y Ifdocythendycy i=1,...,m—1.
) If i<j then dzeE;, i=1,...m-1,j=0,...,m—1.
Cy) If i>j then d,x¢E, i=1,...m—1,j=0,...,m—1.
Let N* be a subset of Ax*. We shall say that the system (4) is

a D*-N*-space if it is a D*-space and all of the axioms from N* are satisfied
in 8.

(R
(
(
(
(L
(
(
(
(
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A D*-N*-space is said to be

i)  a Post space if N* = Ax*\{J*},

il) a pseudo-Post space if N* = Ax*\{J* B*},

ili) a quasi-Post space if N* = Ax*\{J* C7, C3},
iv) a quasi-pseudo-Post space if N* = Ax\{B* C}, C

*
43

(
(
(
(
Now we shall give an example of a D*-N*-space.

THEOREM 2.1. Let P be a D-N-algebra and S(P) be the set of all prime
filters in B. Define
(5) (ZV {aeP|D(a)eV}, V<P, i=1,...,m—1,
(6) B, (P) ={VeS(P)le;eV}, 7 =0,...,m—1.
Then the system

(7) S(P) = 8(P), €,dyy ey gy By(P)y ..., B\ (P))
where < is the set-theoretical inclusion is a D*-N*-space, where N* is the
set of conditions corresponding to these of the set N.

Proor. It is easy to see, using only the axioms for D-algebra that
the set S(P) is closed with respect to the operations d;. Axioms (D*)
and (&%) are true on account of (5) and (6). For the remaining part of
the theorem we shall use the following well known lemma (see [3]):

LeMMA 2.2. Let P be a pseudo-Boolean algebra and S(P) be the set of
all prime filters in P. Then for any V,e<S(P) and a, beP we have:

(i) a=belV, = (VF,eSP)((Vy €V, &aelVy)—>bel))

(ii) Nael, _(VVzeS( WV € Vy>agdls)

(iii) {VVGS(P))(aeV =bel)—> ((L =b)

Let X*eN*. As an example we shall take only the case X" = B*.
We have to prove that for any V,, V,eS(P): V', < V,implies d;V, < d,V;.
Suppose V, = V, and for the contrary d;V, £ d;V,. Then for some
aed,V,, a¢dV,, i.e. D{a)eV, and D;(a)¢V,. By axiom (B)71.D;(a)eV,.
Since V, < V, by lemma 2.2 (ii) we have D;(a)¢V, contrary to D;(a)eV,.

We shall call the system (7) D*-N*-space of sets over the D-N-algebra P.

THEOREM 2.3. In any pseudo-Post space
(i) xeB;, iff dwocoe i=1,...,m—1. E, =3.
(ii) z¢B, iff vr<dip,x ¢=0,...,m—2. E, , =8.
(C*  dwnoncdy for i<ji=1,...,m—1, j=1,...,m-1
Proor. (i) Suppose that xeE,; but d;z ¢ = for some .
Case 1. i< m—1. Then by (L*) z < d;.,# and by (E*) d,, ,x<E,
which contradicts (C5).

Case 2. 4 = m—1. Then by assumption d,_,z ¢ = which coptradicts
(L}). Hence x<E, implies d,z < =. !
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For the converse suppose d,z < x. By (C)) d,z<E, and by (E*) xeE,
which completes the proof of (i).

In the same way one ean prove (ii).

For (C*) suppose the contrary : d;z < d;y for some x,y and i< j.
By (C]) d;weE; and by (E*) d;y<B,; which contradicts (C3).

Using this theorem we can eliminate subsets &, in the definition of
Posi-space and pseudo-Post space. Namely we have:

THEOREM 2.4. Let S be a D*-space (without subsets E;) and let us
define
(8) E,=¢, E,={xeSldixcwx} i=1,...,m—1.

Then: (i) S is a pseudo-Post space if and only if the arioms (R*), (M*),
(L), (LE), (L") and (C*) are satisfied.

(ii) S is a Post space if and only if the arioms (R*), (M™), (L}), (L2),
(Li*), (C*) and (B*) are satisfied.

Proor. In one direction this follows from theorem 2.3. For the
converse direction we have to verify (C}), (C}) and (E*). For (C}) let 1 < j.
Then by (M*) d;z = dyz which by (R*) is equivalent to d;d;x < d.
By (8) d;z<E;. In the same way one can verify (Cy) and (E*).

The proof of (ii) follows from (i).

THEOREM 2.5. In any pseudo-Post (Post, quasi-Post) space the axiom
{(J*) holds.

Proor. (For pseudo-Post and quasi-Post spaces). Let d,z <y and
suppose d;y ¢ y. If i = m —1 then this contradicts (L}). Let i< m—1.
Then by (L") ¥ = d;.,v and by the assumption we get d,» < d,,,y which
contradicts (C*).

In case of quasi-Post spaces d,v < y implies d;y = d;x which get
dy <= v.

INFERENCE. Ewvery pseudo-Post (quasi-Post, Post) space s « quasi-
-pseudo-Post space.

THEOREM 2.6. In any '_quasi-pseudo-Post space S the following holds:

(i) for any xe8 there erists i (1 <i<<m—1) such that @ = d;x;

(i) dx < y—=(FzeS)F)wv 2 &y = d;z &< ).

Proo¥. (i). Let M, ={j /1 <j<m—1 and dzcz}. By (L)
m—1leM,, so M, #o. Let ¢ be the minimal element of M.

Case 1: i = 1. By assumption d,x < z, by (L)) v < d,z, so d,z = .

Case 2: 4> 1. Since 4,z < « and since ¢ is a minimal element of
M, i—1¢ M_ and d,_, r non < . Then by (L") we get = < d;x. Thus
d;x = x.

(ii). Suppose d;x < y. By (i) there exist ¥ and ! such that v = d,x
and y = d;y. Put z =d,y. Then d,xcy implies x =dx = d,d;x
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cd.y =2 50 x < 2. We have also d;z =d;d,y =d,y =y. If 1 < i then
put j =1 and the theorem holds. If I > ¢ then by (M*) ¥y = d;y = d,y.
By (J) d;x = y implies d;y < y. Hence y = d;y. In this case put j = ¢
and the theorem also holds.

Now we turn to construct some examples of pseudo-Post and Post
spaces. Let {4, <> be an ordered set. Define

S = {<;l3, 7:> /;Eejl’ 1 = [: — ')n_]_} /)n> 2
d;{x,jy = {xyi> 1 =1,...,m—1
(wyiy e {y,j> it w<y and j<i.

THEOREM 2.7. The system S, thus defined, is a pseudo-Post space
of order m, and if the ordering < is identity relation then the system is a Post
space of order m.

Proor. Use theorem 2.4.

3. D-N-algebras of sets

THEOREM 3.1. Let S = (8, =,d,,...,dp_, Eyy ..., By > m =2 be

m—1/
a D*-N*-space. A subset A of S is said to be open if it satisfies the condition

(9) (V.’Zﬁ,_’l]éS)(a;CfI/ &xeA—-)-_?/eA)
Let P(S) be the set of all open subsets of S. Define for any A, B < §

(10) V =8,A=9,

(11) AUB = A\ JB = {weSfxed or reBj,

(12) AnB = A(B = {ae8/zed and reB},

(13) A=B ={reS|(VyeS)((r = y &yed)—>yeB),
(14) 14 = {zeS/(VyeS)(z = y—y¢4),

(15) D;(A) = {weS|d;xed} i=1,...,m—1,
(16) e, =FE, +=0,...,m—1.

Then the system
A7) PB(S) = P(8), Vs Ay Yy 00y =, 1y Dy ey Dy €0y oey Em

with operations defined by (10), ..., (16) is a D-N-algebra, where N is the
set of axioms, corresponding to these of the set N*.

Proor. It is well known that the set P(S) is closed with respect
to the operations defined by (10), ..., (14) and that the system (P(S),
V, A, Y, n, =, 1> is a pseudo-Boolean algebra (see [3]). By axiom
(E*) we have that E,eP(S) ¢ =1,...,m—1. Suppose AeP(S), v cy
and zeD,;(A). Then by (D*) d;x < d,;y, by (15) d;xz< A and by (9) d,yeA.
Thus by (15) yeD;(A) which shows that the set P(S) is closed under
the operations D,. The proof that (17) is a D-algebra is left to the reader.
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For the remaining part of the theorem suppose X*eN*. As an example
we shall take the case X* = B*. We have to prove (B): D;(4)u-1D,(4)
=\ = 8. Suppose z¢1D,{A). Then by (14) there exists y ¢S such that
z <y and yeD,;(A). By (B*) we have d,y c d;x, by (15) d.y<A and since
AeP(8) dixed. So by (15) wxeD,(4), which completes the proof.

For any D*-N*-space S we shall call the algebra B(S) a D-N-algebra
of sets over S.

THEOREM 3.2. If S 48 a quasi-pseudo-Post (pseudo-Post, quasi-Post,
Post) space then B(S) is a quasi-pseudo-Post (pseudo-Post, quasi-Post,
Post) algebra. Moreover in all four cases the following equations hold:

(18)  D;(A=B) = (D,(A)=D,(B))n ... n(D;(A)=D,(B)) i=1,.
., m—1.
(19) D;(14) =1D(4) +=1,...,m—1.

Proor. The first part of the theorem follows from the theorem 3.1.
For the second part suppose x¢D;(4 =B), i.e. d;x¢A = B. By (13) there
exists ¥ such that d,z = y, yed but y¢B. By theorem 2.6. (ii) there
exists zeS such that © = 2 and y == d,z for some k< i. So d,zed and
d,.z¢B, l.e. zeD, (4), ~<;D,‘( ). Since ¥ < 2z by (13) we have that x¢ D, (A4)
=D, (B). Thus z¢(D,(4)=D,(B))n ... " (D;(A) =D;(B)). This shows that
(D,(4) =D\(B))n ... r\(Dé(A):-D,A(B)) < D;(4 =-B). The convers inclus-
ion is easy to prove. The condition (19) follows from (18) by putting
B =g.

4. Forcing. Characterizations of D-N-algebras and D*-N*.spaces

Let P be an algebra similar to D-algebra, S be a relational system
similar to D*-space and I = 8 xP. Instead of (x,a)c I where zeS
and aeP we shall write = IF ¢ and read “r forces a”. We shall say that
the relation I+ is a forcing from S to P if the following conditions are
satisfied for any x,x,, r,e8 and a, beP:

(F1) 2V,

(F2) xnon - A,

(F3) xlk anb iff xlka and z+b,

{F4) zlFavb iff alka or xI+b,

(F5) zlFa=>b ifft (VyeS)((xcy &ylka)>y b,
(F6) xlFa itf (VyeS)(x = y—y non I+ a),

(F7) zl Dia) iff dixlta, i=1,...,m-—1,
(F8) z ke, iff zelH,, 1=0,...,m—1,

(F9) (, € @) (VaeP)(z, F a -, F a).

The forcing IF is said to be r-strong if it saitsfies the condition
(Fr) (Vze8)(2 Ik a = zIF b)—(a = b).
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The forcing IF is said to be l-strong if it satisfies the conditions

(F11)  (VaeP) (@, IF a—x, IF a)—>(z, = x,),
(F12)  (VaeP)(z F a =z, F a)—>(z; = X,).

We say that - is a strong forcing if it is simultaneously r-strong and
1-strong one.

THEOREM 4.1. Let P be an algebra similar to D-algebra, S be a relational
system similar to D*-space, and I+ a forcing from S to P. Then the following
holds :

(i)  If - is a l-strong forcing then S is a D*-space.

(i) IfIFds a r-strong forcing then B is a D-algebra.

(iii) If I+ is a strong forcing then the following two conditions are
equivalent:

(iiil) S is a D*-N*-space,

(iii2) P <s a D-N-algebra.

Proor. (i). It follows from (FI1) and (FI2) that the relation c is
an ordering in S. Suppose z = ¥, a<P and d;z IF a. Then by (F7) z IF D;(a),
by (F9)yIF D;(a) and again by (F7)d,yIFa. Since a is an arbitrary
element of P then by (Fll) d,# = d;y and axiom (D*) holds. Suppose
now zell; and x < y. Then by (FS) xz IF e, and again by (F8) yeF,;. Thus
(E") is fulﬁlled and S is a D*-space.

(ii). TFirst we shall prove that P is a pseudo-Boolean algebra. We
shall use the following axioms for pseudo-Boolean algebra [4]:

(dll) an(avb) = a, (dl2)  an(bue) = (ena)u(bna),
(phl) (a=a)nb =1, (pb2) an(a=>b) = anb,
(pb3) (a=b)nb =b, (pbd) (a=b)n(a=¢c) = a=(bne),
(pb5) a=7b =b="T1a, (pb6) T(a=a)Ub =b.

As an example we shall verify (pb2). Let xS and x Ik an(a=b). Then
by (F3)z Ik ¢ and x I+ a =b. Since ® < x then by (F5) #F b and by (F3)
z I anb. For the converse implication suppose x - anbd and x < y. By
(F3) we have zl-a, b and by (F9) y IFb. Then by (F5) xIF a=b and
by (F3) zlFan(a=b). Thus zlFan(a=>b) iff x = anb and by (Fr)
an{a=b) = anb.

In the same way one can verify the axioms (D), (D), (D) and (Dy).
Hence B is a D-algebra.

(iii). (iiil)—>(ili2). Suppose S is a D*-N*-space and let X*eN*. We
have to prove that X eN. As an example let X* = J", so we have to
prove that (J): D;(D;(a)=a) = \/ holds. Suppose D;(D;(a)=a) # \ for
some a<P. Then by (Fr) and (F1) « non I+ D;(D;(a) =a) for some z¢S. So by
(F7) d;x non I+ D;(a) =a and by (F5) there exists y<8 such that d;z < v,

7 — Studia Logica, 1—2M7
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y I+ D;(a) but y non I+ a. By (F7) d;y I+ a and by (J*) d;y = y. Applying (F9)
we obtain ¥ Ik a contrary to ¥ non - a. Thus (J) holds and by (ii) P is
a D-N-algebra.

(iii2)-—(iiil). Suppose P is a D-N-algebra. We shall treat of only the
case (J)eN. We have to prove that (J) holds in S. Since D;(D,(a)=a) = \/
by (F1) and (F7) we have d,x IF D;(a) =a for any ze8. Suppose now d,x < y
and d;y I+ a. By (F9) and (F7) we have y I+ D;(a)=a and y I D,(a). Since
y c y then by (F3) yIF a. Thus d,x < y implies: for any a¢P if d;y IF a
then 4 I a. By (FI1) this gives: “if d,» < y then d;y < %” which is (J*).
This completes the proof. The proof for other axioms is analogous.

THEOREM 4.2. Let *P be an algebra similar to D-algebra. Then the following
two conditions are equivalent:

(i) B is a D-N-algebra
(ii) There exists a D*-N*-space S and a strong forcing I+ from S o P.

PROOF. (i)—(ii). Take S to be the D*-N*-space of sets S(P) over
B defined in theorem 2.1, where S(P) was the set of all prime filters in .
Define for any ["eS(P) and aeP: V'l a iff ael. It is easy to see, using
lemma 2.2 that this relation is a strong forcing from S(P) to P.

The proof of (ii)—(i) follows from theorem 4.1.

THEOREM +4.3. Let S be a system similar to D*-space. Then the following
two conditions are equivalent:

(1) S is D*-N"-space.
(ii) There exist a D-N-algebra B and a strong forcing I+ from S to P.

Proor. (i)--(ii) Take P to be the D-N-algebra of sets P(S) over
S, defined in theorem 3.1, where P (8) was the set of all open subsets of S.
Define for any xeS and AP (S): - 4 iff wed. Then it is easily seen
that iF is a strong forcing from 8§ to P(S). The proof of (ii)—(i) follows
from theorem 4.1. :

Theorems 4.2 and 4.3 can be formulated without using the notion of
foreing. Namely we have:

THEOREM 4.4. (Prime filters characterization of D-N-algebras). Let P
be an algebra similar to D-algebra. Then the following two conditions are
equivalent:

(1) WV is ¢ D-N-algebra.
(ii) There exists a system (S(P), =, dy, ..., A1y, E;(P),..., E,, (P)
similar to D*-space and satisfying the following conditions:
(ii1) S(P) is @ non empty set of subsets of P,
(ii2) each condition of the set N* (corresponding to N) is satisfied,
(i13) for any V,V, V,eS(P) and a, beP the following hold:
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(f1) Vel

(f2)  A¢V

(£3) anbel’  iff ael and belV

(f4) aVbelV iff ael’ or bel

(£5) a=bel iif (Vr’eb ))((V <V &aeV/)»beV,)
(£6) Nael iff (VP eSP)(V sV —a¢l)
(£7) Di(a)el #f aed;V, 1 =1,...,m—1
(£8) eV iff FeH, i=0,...,m—1
(£9) (Fy € V) =(VaeP)(aclF,—aely)

(fr) (VI eS(P))(ael =bel)—>(a = D)

(f11) (V(LeP)((lel’l—s—CLGVZ)%( V, < I,)

(ﬂ?) (V(leP (ae 171 = Qe 173)—>( '71 = Vz).

PROOF. (ii)—(i). Suppose (ii) holds. Then for any VeS(P) and aeP
define: V I+ ¢ iff ael’. Then by (f1), ..., (fI2) we obtain that I+ is a strong
forcing from S(P) to P By (ii2) and theorem 4.1. (i) S(P) is a D*-N*-space,
and by theorem 4.1. (iii) ‘B is a D-N-algebra. It is easy to see from (f1)-(f4)
that the set S(P) is the set of all prime filters in 5, from (f9) and (f11)
that the relation < is the set-theoretical inclusion, and that (£7) and
(£8) coincide with the definitions (5) and (6) respectively.

(i)—(i1). Suppose now P is a D-N-algebra and take the system S(P3)
to be the D*-N*-space of sets over J as in theorem 2.1, where S(P) was
the set of all prime filters in P. Then the condition (ii2) is fulfilled. Since
the elements of §(P) are prime filters we have (f1)-(f4) and by lemima 2.2
(£5), (£6) and (fr.) Conditions (f7) and (f8) are true by (5) and (6), and
since < is the set-theoretical inclusion we have the conditions (£9), (f11)
and (f12).

THEOREM 4.5. (Open sets characterization of D*-N*-gspaces). Let S
be a system similar to D*-space. Then the following two conditions are
equivalent:

(i) S is a D*-N*-space.

(ii) There exists an algebra <P(S), \/, Ay Y, 0, =,71, Dy, ...
vy D1y oy cvvy €y similar to D-algebra and satisfying the following
conditions:

(1) P(S) 4s a set of subsets of 8

(ii2) each condition of the set N (corresponding to N™)
is satisfied,

(ii3) for any x,x, 2,eS and A, BeP(S) the following hold:

(¢l)  xe/,

(p2) rd N,

(¢3) reAnB iff xed and zeB,
(p4) reAUB ff xed or xeB,
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(¢D) wved =B iff (VyeS)((.r cy &yeA)—>:l/eB),
(@6) wend it (VyeS)(x < y—yed),

(p7) veD;(4) Hf dixed 1 =1,...,m—1,
(¢8) ree; iff xel; i =0,...,m—1,

(¢9) () = @) (VAGP( ))(xﬁA—*‘rz‘A)’

(¢11) ( AeP () (2 e A—>wre d) (2, < x5),

(712 (8

) AEP ) leA = TZEA) (;L‘l = xz).

Proor. (i)—(i). Suppose (ii). Then the following is also true:
(gr) (VzeS)(vedAd = xeB)—>(4 = B)

Define for any ¢S and AeP(S): 2+ A iff xeA. Then by (¢l),..
ooy (99), (¢11), (¢12) and (gr) we obtain that I is a strong forcing from
S to P(S). By (ii2) and theorem 4.1. (ii) P(S) is a D-N-algebra and by
theorem 4.1. (iil) S is a D* N*-space.

(i)—(ii). Suppose S is a D*-N*-space. Take the algebra PB(S) to be
the D-N-algebra of sets over S, as in theorem 3.1 where P(S) was the
set of all open sabsets of § in the sense of (9), and operations, defined
by (10), ..., (16). Then (ii2) is fulfilled. Conditions (¢1), ..., (¢8) are other
notations of (10), ..., (16). (¢9) is true because A is an open subset of S.
To prove (¢l1) suppose r; non < x, and let A = {ye8/x, = y}. Obviously 4
is an open set and z,¢A4 but x,¢A. Then by contraposition we get (¢ll).
Since < is antisimmetric relation then (¢l2) follows from (@ll). This
cowmpletes the proof of the theorem.

THEOREM 4.6. In any pseudo-Post (quasi-Post, Post) algebra P the
ariom (J) holds.

Proor. By theorem 4.2 there exists a pseudo-Post (qumsi Post, Post)
space S and a strong forcing from § to P. By theorem 2.5 the condition
(J%) is fulfilled in S and by teorem 4.1. (iii) (J) holds in ‘],3.

TusoreM +.7. Let B, P’ be two algebras similar to D-algebra, S be
a relational system similar to D*-space, h be a homomorhism from P into
P and I+, be a forcing from 8 to P’. Define for any weS and aeP: vk a
iff @k h(a). Then
(i) W is a forcing from S to P,
(i) for any aeP: h(a) =\ iff b a for any xeS.
The easy proof is left to the reader.

5. Set-theoretical represemtations for D-N-algebras and D*-N*.spaces
THEOREM 5.1 Let P be an algebra similar to D-algebra, S be a D*-N*-

-space and W+ a forcing from S to P. Define h and h* as follows:

(20) hia ) {weS [xlFa} for any aeP,

(21) ¥ (z) = {aeP |z a1 Jor any ze8.
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Then the following hold:
(i) h is a homomorphism from P into the D-N-algebra of sets P(S)
over S.

If I+ is a strong forcing then

(ii) B is a D-N-algebra and h is an isomorphism from P into the D-N-
-algebra of sets P(S) over 8.

(iii) A% is an isomorphism from S into the D*-N'space of sets S(P)
over P.

Proor. (i) Let xeh(a) and x < y. Then x I a and by (F9) y i a.
Thus yeh{e) and h{a) is an open subset of §. We shall prove that 2 pre-
serves the operations of P. As an example we shall take only the case
of =. We have: h(a=b) = {weS/rla=b} = {x<S/(VyeS)((rcy &
yIFa)=y ik b) = {zeS[(VyeS)(fz < y &fyeh(a))»yeh(b))} = h(a) = h(b).
We have used (20), (F5), (20) and (13).

(ii). Suppose now that I is a r-strong forcing. Then by theorem 4.1
P is a D-N-algebra. If h(a) = k(d) then for any zeS: zeh(a) if and only
if zeh(b), and by (20) for any zeS: z I a if and only if z IF . Consequently,
by (Fr) @ =& and % is an isemorphism from P into P(S).

(iii). First we shall prove that for any xeSh* (%) is a prime filter in .
By (F1) and (F2) h*(x) is a non-empty proper subsct of P. Further by
(21), (F3) and (21) we have:

anbeh*(@) =xlkanh =zka and ab =ach™(@) and beh™(r).

Thus A*(x) is a filter. In the same way it can be proved, using (F4), that
1* (@) is a prime filter. So 2" (2)eS(P). It remains to prove the following:

) wey iff B(@) = (),
(iii2) r*(d;x) = dh"(z) i =1,...,m—1,
) zeE, iff hW*(x)eB(P) i=0,...,m—1,
y it W(x) = h*(y) then =z =y.
Condition (iiil) follows from (F9) and (FI1). For (iii2) and (iii3) it

have to be used (F7) and (5), and (F8) and (6) respectively. Condition
(iii4) follows from (F12).

THEOREM. 5.2. For any D-N-algebra P there exists a D*-N*-space S and
an isomorphism h from P into the D-N-algebra of sets P(S) over S.

PrOOF. By theorem 4.2 there exist a D*-N*-space S and a strong
forcing I+ from S to P. Define & by (20). Then by theorem 5.1 (ii) 4 is
the required isomorphism.

THEOREM. 5.3. For any D*-N*-space S there erists a D-N-algebra T
and an isomorphism I* from S into the D*-N*-space of sets S(P) over P.
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Proor. By theorem 4.3 there exist a D-N-algebra 9 and a strong
forcing I from S to P. Define A* by (21). Then by theorem 5.1. (iii) 2*
is the required isomorphism.

THEOREM 5.4. In any quasi-pseudo-Post (pseudo-Post, quasi-Post, Post)
algebra the following equations hold:

(22) D;(a=b) = (Dy(a) »Dl(b))m ... 0 (Dy(a) :-Di(b)) i =1,...,m-1,
(23) D(7a) =1D,(a) ¢ =1,...,m—1.

Proor. By theorem 3.2 and theorem 5.2.

6. McKinsey-type embedding theorem for D-N-algebras

THEOREM 6.1. Let P =<P,V, Ay YU, ny, =,1,D,..., D, 1, €,-.
ceey by M= 2 be a D-N-algebra for whwh amom ReN but J ¢N, and let
{al, ,an, be a fzmte subset of P. Then there exists a fﬂnte D-N-algebra
P =PV, A\, V, 0, =, D, ., Doy ey, b > with the fol-
lowing properties:

. s . m4+n).m
i) P contains at most 2"

( elements,

() f{ay,...,a,} <P <P,

(iii) \/,:\/7 /\,:/\) 01,7:61‘ ©=0,...,m—1,

(iv) if a;na; = a, then a;n a; = a

(V) if a;va; = a, then a;V'a; = a,

(vi) if a;=a; = a, then ai:"aj = a,;

(vil) if Tla; = a, then 7 'a; = a,

(vill) if D(a;) = a, then Di(a;) =@, ¢ =1,...,m—1.

PROOF. Let Py = {€gy ey 1y Qryevvy @y Di(€)y oovy Di(€ni)s
Dl(al)? ey I)l(au)7 R Dm—l("’o), M Dm~1(em—])7 Dm—l("’l)’ M -Dm—l(a’n)}'
This set has at most (m 4 n)-m elements. Let B’ be the sublattico of P
generated by P, and containing \/ and A . Then P’ contains no more
than 22" clements and conditions (i), ..., (v) are satisfied. It is easy
to see by induction and using axiom (R) that P’ is closed under the
operations D;. Thus (viii) is fulfilled and the axioms (D'),. (D), (D),
(Dy) and all those of the set N are satisfied. Since § is a distributive
lattice so is P'. It is well known that every finite distributive lattice is
a pseudo-Boolean algebra with relatively-pseundo-complement = defined
as follows:

(24) a="b =max{c: cna<b &ceP'}.

It follows from (24) that a='b < a =b for any a, beP. Suppose now that
a,b,a=beP’. Since (a=>b)na<b then by (24) a=b< a="b. Thus for
a,b,a=beP a='b = a=b and (vi)is fulfilled. Putting 1a = a= A we
infer that (vii) follows from (vi). This completes the proof of the theorem.
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We shall use later this theorem to prove that some logical calenli
have the finite model property and are decidable. Since axiom (J)¢N
this theorem does not cover the case of pseudo-Post and quasi-pseudo-Post
algebras. In the next section we prove some theorems for these algebras,
which theorems also give some decidability results for the corresponding
logical systems.

7. Four special algebras

In this section we shall give another tipical example of quasi-pseudo-
-Post (quasi-Post, pseudo-Post, Post) algebra. In case of Post algebras
the construction is known (see [4], [5]).

THEOREM 7.1. Let U be a pseudo-Boolean (Boolean) algebra and
PlA] = {{a,, ..., T 1)/a1, ..., @, _eAd,a,>a,>...>a,_,}. Define for
(MI,:I/ (0/1, et a’m 1 (bU v m 1) Am 1

(25) \/:(\/’ \/7---9\/)/\:(/\’/\7'--,/\)
(26) @y eeny @)Uy ooy by ) = (@1 Ubyg,y ..oy @y Vb, )
(27) (@yyeeey @) N(Byy ey by 1) (@10by, ..oy @y 0Dy, )
(28) (@1 oovy Q) =(byy eeny bppy) (a'1:>b1;(aq=>b) (a,,:b )y -
M 'a(a’l:’b) (“zl*b) M ﬂ m 17 m 1)
(29) @y oovy Qpnog) = (Tag, @y ooy Tay)
(30) Di(ay, ...y, 1) =(a;,8,...,a;) T=1,...,m—1
(31) 6_(\/7- 7\/ /\7--’/\) ’5=07'--’m*‘1
- hmes

Then the system

(32) PLA] = PLAL, Vs Ay Yy 0y =, 1y Dy oo Dy

with operations defined by (253), ..., (30) 7s a quasi-speudo-Post {quasi- Post)
algebra and if we add the constants e, defined by (31) then it turns to «
pseudo-Post (Post) algebra.

Proor. By an easy verification.

THEOREM 7.2. For any quasi-pseudo-Post (quasi-Post) algebra B there
exists a pseudo-Boolean (Boolean) algebra A and an isomorphism h from
B into the quasi-pseudo-Post (quasi-Post) algebra B[A] of the type (32).
Any quasi-pseudo-Post (quasi-Post) algebra can be embedded into a pseudo-
-Post (Post )algebra.

Proor. Put A = {D,(a)/aeP, i =1,...,m—1},and h(a) = (D,(a
ey Doy (a)). First it has to be proved that A is a pseudo-Boolea,n (Boolean)

subalgebra of 3. The non-trivial case is the case of =-. By theorem 5.4
in both cases the following equation holds

(33)  Dia=b) = (Dy(a)=Dy(d)) ... n(D,(@)=D;(b)), i=1,...,m—1
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By (33) and (R) we have D;(D;(a ):,D, )) = (D (Dj )_>D1(Dk(b))) N
... 0 (Di{Ds(a) = D, (Du(®))) = (Dy(@) = Dy(B)) A ... 0 (Dyla) = Dy(h)) =
= D;(a)=D,.(b). So D;(a)=D,(b)ed.

The proof that A is a homomorphism is easy. Let us prove that h is
an isomorphism. First we shall prove the following:

(34) If D,(a) = D;(b) for i =1,...,m—1 then a =b.

Suppose D;(a) = D;(b) for ¢ = 1,...,m—1. Then D;(a)=D;(b) =
for¢ =1,...,m—1 and by (33) D, _,(a=b) =\. By (L)) D,,_,(a=b)
< a=b. So a—sb =V and a < b. From this it is easV to conclude (3 ).

Suppose now h(a) = kh(b). Then (D,(a),..., D, _,(a)) = (D,(b),.

D,, (b)) and by (34) a = b. Hence % is an 1som0rphlsm from *B mto
the quasipsendo-Post algebra PA]. If P is a quasi-Post algebra then by
axiom (B) we obtain that U is a Boolean algebra and P[4] a quasi-Post
algebra. The remaining part of the theorem follows from the fact that
P[A] is itself a pseudo-Post (Post) algebra.

§ 8. Some propositional caleuli based on D-N-algebras and D*-N*-spaces

In this section we introduce a class of propositional calculi named
here DNPC. As a special case we obtain the propositional calculi of
the classical and intuitionistic many-valued logics, infroduced by
Rousseau [7, 8]. The main purpose is to give the notions of algebraic and
relational validity and to prove its equivalence.

Any of the DNPC is based on a language containing the following
symbols:

(i) an infinite set V' = {p, ¢, r, ...} of propositional Variableé,

(i1) {A,V,eq, ..., €,_,} the set of propositional constants. \/ and A
are called truth and false respectively,

(iii) 7,Dyy...; D,y — the set of one-argument connectives; 71 is
the sign of the negation,

(iv) N, Y, = — the set of two-argument connectives —conjunection, dis-
junction, and implieation,

(v) ( ) — parentheses.

Note that we shall assume also languages without the symbols
807 RS ] 6m—l'

The notion of & formula is the usual one. The set of all formulas is
denoted by F and the algebra of formulas (¥, v, A, U, n, =, 1, D,
voiy Do 15 €0y oy €y Will be denoted by §. It is clear that § is si-
milar to D-algebra of order m.

A pair A =P, k> is said to be an algebraic D-N-model structure
(briefly D-N-a.m.s.) if § is a D-N-algebra and k is a homomorphism from
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the algebra of formulas § into P. A is said to be an algebraic D-N-model
for a formula a, or a is algebraically valid in A if A(a) = V. U is a model
for a set of formulas A if it is a model for any formula a of A. A formula
a is said to be an algebraic D-N-tautology if it is valid in any D-N-a.m.s.

A pair & = {S,IF> is said to be a relational D-N-model structure
(briefly D-N-r.m.s.) if S is a D*N*-space and |- a forcing from S to the
algebra of formulas F. ® is said to be a relational D-N-model for a formula
a, or a is relationally valid in ® if for any xeS x Ik a. G is a model for a set
of formulas A if it is a model for any formula « of 4. 4 formula « is said
to be a relational D-N-tautology if it is valid in any D-N-r.n.s.

THEOREM 8.1. For any formula a and set of formulas A the following
two conditions are equivalent:

(1) any algebraic D-N-model for A is a model for a;

(il) any relational D-N-model for A is a model for a.

PRrROOF. (i)—(ii). Suppose not (ii). Then there exist a D-N-r.m.s.
® = {8, > such that & is a model for 4 but not for a. Let PB(S) be the
D-N- algebm of sets over S and let h(f) = {weS/x I g} for any Bel'.
By theorem 5.1. (i) A is a homomorphism from § into P(S), so the pair
A = P(S), I is a D-N-a.m.s. If is clear that A is an algebraic D-N-model
for A4 but not for a. Thus, by contraposition (i)—(ii).

(ii)—(i). Suppose now not (i). Then there exists a D-N-a.m.s. A = (B, 7D
such that A is a model for A but not for a, i.e. h(a) % V. Then by theorem
4.2. there exist a D-N-space S and a forcing I, from § to P. Define for
zeS and feF: x I g iff © Ik, R(B). By theorem 4.7. (i) F is a forcing from
8 to F. So the pair & = (S, > is a D-N-r.m.s. It follows from theorem
4.7. (ii) that ® is a relational D-N-model for A but not for a. Hence by
contraposition (ii)—(i).

THEOREM 8.2. For any formula a the following conditions are equivalent:
(1} a is an algebraic D-N-tautology;
(i) a is a relational D-N-tautology.

Proor. By theorem 8.1. with empty 4.

Now we shall axiomatize the set of all D-N-tautologies. As axioms
we shall use some of the following formulas and scheems:

(t) V

(f) A

(D)) D;(auf)=D(a)uD;(p) t=1,...,m—1
(D7) Dy anp)=Di(a)nD,B) i=1,...,m—1
(Do jDi(/\)’ Dc;l) -D1(\/) v = 1, 77'7'_1
(R) Di(Dj(a))éDj(a) i,j=1,...,m—1
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(M) D, . (a)=>D;(a) t=1,...,m—1

(L) a=D,(a)

(La) Dm—l ((1) =a

(L) (anD;(B)) = (BUD, ., (a)) i =1,...,m—2
(C,) Die;) i<y i=1,...,m—=1 j=0,...,m—1
(Cy) qD(¢;) i>j i=1,...,m—=1 j=0,...,m—1
(J Di(Di(a) =a) i=1,...,m—1

(B) AD(a)uD(a) 2 =1,...,m—1

(We use the same notations as in the D-N-algebras)
Axioms for DNCP:

I. The full set of axiom-scheems for the intuitionistic propositonal
calculus (see for example [4]) ’

IL (), (£), (D), (D), (Dg) and (Dy)
ITII. any of the (R), (M), (L), (L,), (L), (Cy), (Cy), (J) and (B) which
algebraic analogous ocecur in the set N.

The rules of inference are the following:

a, ad=0 o <=
! i — modus ponens and () P

) = (Dra) =D.(B)

i =1,...,m—1

The notion of a theory based on a DNCP is analogous to that of Post
logics (see [4]). If 7 is a theory with the set of axioms A then we shall
denote this by 7 (4).

THEOREM 8.3 (The strong completeness theorem). IFor any formula
a and D-N-theory 7 (A) the following conditions are equivalent:
(i)  ais a theorem in the D-N-theory I (A)
(ii)  any algebraic D-N-model for A is a model for a
(iii) any relational D-N-model for A is a model for a
Proor. The equivalence of (i) and (ii) can be easily proved using

the method of Lindenbaum algebras; (ii) is equivalent to (iii) on account
of theorem 8.1.

THEOREM 8.4. (The weak completeness theorem). For any formula
a the following conditions are equivalent:
(1) a 28 a D-N-theorem
(i) a is an algebraic D-N-tautology
(iii) a s a relational D-N-tautology

Proor. From theorem 8.3 with empty A.

THEOREM 8.5 Let L be a DNPC for which (R)eN and (J)¢N. Then
L has the finite model property and is decidable.
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Proor. By theorem 6.1 the set of all algebraic D-N-models ean be
restricted to the set of all finite models, which proves the theorem.

The propositional calculi corresponding to the quasi-pseudo-Post
(quasi-Post, pseudo-Post, Post) algebras will be called quasi-pseudo- Post
(quasi-Post, pseudo-Post, Post) propositional calcwli (PC). The language
of quasi-pseudo-Post and quasi-Post PC does not contain the constants
€, t=0,...,m—1

THEOREM 8.6. Pseudo-Post PC (Post PC) is a conservative extention
of quasi-pseudo-Post (quasi-Post) PC.

Proor. By theorem 7.2.

THEOREM 8.7. Quasi-pseudo-Post (pseudo-Post, quasi-Post, Post) PC is
decidable.

For the pseudo-Post PC and Post PC the proof is given by Rousseau
[8]. For the remaining calculi this is a consequence of theorem 8.6.

THEOREM 8.8. (A separation theorem for pseudo-Post and Post PC).
For any formula o not containing constants e, (i = 0,..., m—1) the fol-
loving conditions arve eqivivalent:

(i) a is a theorem in the pseudo-Post (Posty PC
(i) @ 28 a theorem in the quasi-pseudo-Post (quasi-Post) PC
ProoF. This is another form of theorem 8.6.

Let us note that, in view of theorem 2.4, the relational semantics
for pseudo-Post PC can be much simplified.
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