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The purpose of this note is to extend the simplifications of [1] to the system R 
of relevent implication analyzed semantically in [2]. In [1], it was established that 
the system R +, which is the negation-free fragment of  R, could be furnished with 
a negation - ]  more classical in most respects than the preferred negation -- of [3]. 
This was rather astonishing, since an important motivating condition on relevant 
logics had been absence of the classical paradoxes of implication a. It turned out, 
however, that one could have the most objectionable of the paradoxes anyway, 
namely A&--A---~B and A-+B V T B ,  without the least interference with the positive 
ideas. 

It now turns out, however, that not only can classical negation be added to R +, 
producing the system CR of [2], but also that the original relevarl negation -- of R 
can be explicated directly as a certain kind of  classical negation. That is to say,. 
from a certain viewpoint classical negation is a more general kind of  negation than 
is relevant negation, the latter being subsumed under the former. (Meyer in par- 
ticular wishes to note that, in view of  his interest in systems that are not trivialized 
by the presence of  contradiction, he again finds these results disappointing; his. 
job here, however, is to report them, not to like them.) 

The subsumption of relevant -- under classical 7 is effected by the direct 
introduction of  a new, 1-place connective * into the language of [1], producing. 
a system CR*. The formal semantics of  CR* is then given by simplifying [2] on 
the plan of [1], in the following way. 

A CR* model structure (henceforth, CR*ms) is a quadruple (0, K, R,*), where K 
is a set, 0 e K, * is a I-place operation on K, and R is a ternary relation on K, 
satisfying the following definitions and postulates: 

dl .  R~ =dr a = b; and, recursively, for 0 ~ k < w, 

d2. R k+l Co ... Ckab =dr 3x(Rkco ... ctex&Rxab) 

d3. ao ... akRb =dr Rkao ... akb 

Under these definitions, R = R 1, and R z has the meaning 3 x  (Rabx&Rxcd)  assigned 
it in previous publications. But the present notation is more perspicous, and makes 
the essential point that R is profitably thought of alternatively, as in d3, as a binary 
relation between a finite sequence in K and a point in K; this facilitates algebraic 

i Other scholars, notably Urguhart and Gabbay, have thought independently about classical. 
negation in relevant logics. But [1], so far as we know, contained the first demonstration that the 
system R + does not collapse under the admission of such negation. 
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connect ions  and connect ions  with Gentzen-style consecut ion calculi, appl icat ion 

to R o f  these alternative modes  o f  logical analysis having been initiated in [4] and [5] 

respectively. The postulates  are 

p l .  OaRb iff a = b  (iff, by d l ,  d3, aRb) 

p2. abc R d iff acb R d 

p3. aa R a 

p4. a** -~ a 

p5. ab R c iff ac* R b* 

p 2 - - p 5  are taken f rom [2]; p l  is the simplification o f  [1]. 

Intuitive mot iva t ion  for  the postulates has been given in [1] and [2]. To  visualize 

algebraic connect ions,  think o f  R as a partial  order  relat ion ~>, and  o f  K as a subset 
of  a partially ordered commuta t ive  m o n o i d  ( K ; . ,  0),  partially ordered by ~>, in 

the sense that  if  a ~> b then a.c >~ b.c, that  �9 is associative and commuta t ive ,  and 

that  0 is a multipli~ative (!) identity for  .2. We cannot ,  however,  deal profi tably with 

the algebra K' ,  which is intuitively a calculus o f  theories, except at the price o f  

formal  ugliness 3. So we do no t  define the operation �9 on the subset K ___ K' ,  where K 

corresponds  intuitively to a collection o f  prhne theories'*. We save what  we need 

o f  it, however,  by  saving the relation ab ~ c; even when a .b r  the relat ion 

continues to make  sense. The mos t  interesting special proper ty  o f  K '  is the square- 

-increasing proper ty  a a ~ a, signalled by p3;  this corresponds  intuitively to the 

fact that  theories are closed under  modus ponens, and is on that  g round  well-mo- 

t ivated; p l  - -p2  express the underlying commuta t ive  m o n o i d  properties,  p l  mak ing  

the extra point  that  the elements o f  K itself shall Constitute a totally unordered 
set with respect  to ~ .  

We now give the interpretative machinery.  Let  ~(" ---- (0, K, R,*)  be a CR*ms, 
S the set o f  sentential variables o f  CR, and F the set o f  formulas  built up f rom 

members  o f  S and the connectives -->, &, -7, *. We also use T, F, the latter unam-  

biguous in context,  for  classical truth-values. Then 

( i )  Any  function v: S•  is a valuation of  CR* in SU. 

(2) A funct ion I :  F• F} is a possible interpretation of  CR* in 2U. 

2 Perhaps the time has come to start writing'0' a s ' l ' .  Since' I '  enters reasonably in section IV 
in another sense, however, we stick here to the old convention. 

3 This is our sole complaint about [6], which otherwise emphasizes exactly the technical ideas 
we think most important, with a couple of nice twists. Unfortunately, neither we nor Fine knew 
of the work of the other until our respective projects were far advanced. (Prof. Wolf suggests that 
those of us interested in relevant logics should have periodic conferences, to avoid this sort of 
unnecessary duplication. Right on, Bob!) On the main points, we add, we anticipated Fine by 
.about a year, and were ourselves partially anticipated by Urquhart; we greatly admire the con- 
.tributions of both Fine and Urquhart. 

4 This is necessary to get the natural truth-condition TV below, a fact also pointed out in [6]. 
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Let I be a possible interpretation of CR* in ,Yd. We shall write 

(3) Ata for l (A ,  a) = T. 

Where I is clear in context, we write simple 

(4) Aa for I(A,  a) = T. 

We also use ,~, &, v ,  ~ ,  (x), 3x  as intuitive quantifiers and connectives in the 
metalanguage. Given /, we may also write 

(51 Aab for ( x ) ( a b R x ~ A x ) .  

(5) may be generalized to an arbitrary number of arguments by 

(6) Aao ... an for (x) (ao ...  an R x ~ Ax).  

The advantage of  (5) and its generalization (6) is drawn from the algebraic remarks, 
and it brings our semantics closer in appearance to that of [6], where [6] is prettier; 
in contrast to [6], however, the move is a notational one only, and so the economies 
of  our basic approach form [2] on are retained 5. 

We come now to the key semantic notion of  interpretation. A possible inter- 
pretation 1 in JY" is an interpretation of 1 in oY(" provided that the following truth- 

-conditions are satisfied, for all B, A in F and a in K: 

T&. [A &B] a iff Aa&Ba 

T T .  [TA]a  iff ~ A a  

T*. [A*]a iff Aa* 

T-+. [A--~-B] a iff (y) (Ay ~ Bay) 

Given (5), only T* is new. Note that every valuation v uniquely determines an 
interpretation /, so that we may speak interchangeably of valuations and inter- 
pretations. We say also, for given /, Y ,  

(7) A is verified on I iff Ai0 

(8) A is valid #~ ~ iff, for all interpretations I in oU, A is verified on L 

(9) A is CR*-valM iff A is valid in all CR*ms. 

The connective * builds directly into the language of CR* the notion of weak 

assertion underlying the treatment of relevant negation in [2]. The idea was that ,4 
is to be true in a set-up a just in case A is false in a counterpart set-up a*; for 

s Thus the truth-condition T-+ coincides, in appearance, with those of [15] and [6]. The 
appearance is more than just appearance, since interpretation of the semantics in the calculus of 
theories--as e.g. in [2] and [6] -- is intended. But T-~- below is shorthand nonetheless. 

5 - -  Studia  Logica,  XXXLIII2 
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further motivation, consult [2]. Underlying all was the intuitive notion that what 
has not been refuted on certain evidence may in some sense be asserted on that 
evidence. Previous formal treatments of  negation have tended to pass over this 
point lightly, in that they take it for granted that, were all the evidence in, the 
propositions denied would be precisely those that had failed of  being asserted. 

Our theory of  relevant negation --, which it is still our principal business to 
explicate, remains a more dialectical affair, even at the limit. I.e., even when the 
evidence is in a certain sense complete (producing a prime theory), we do not identify 
ordinary (strong) assertion and weak assertion. So it makes sense to introduce the 
proposition A*, the weak assertion of  A, directly into the vocabulary via a primitive 
connective *. Then, in a certain sense, we can subsume relevant under classical 
negation, via the definitional scheme 

d4. A = df  --1A* 

It is interesting, incidentally, to see what now becomes of  such classical principles 
as the law 

(10) A v . 4  

of  excluded middle. It now takes the form 

(11) A v-TA* 

From this viewpoint, that (10) holds truth-functionally for R can no longer be strictly 
maintained, for (11) is now a substantive assumption 6. Accordingly, the opening 
confession of  motivational disappointment need not  be taken too seriously; 
although we show in a strong sense that relevant negation is classically explicable, 
there is no particular reason to prefer the classical point of  view on which it is 
explicable; for statements involving relevant negation, even when they have classical 
counterparts -- e.g., the counterpart  

(12) A v T A  

of  (10) -- are rarely simply derivable from those counterparts in CR*--e.g., (11) is 
by no means an instance of  (12), but results rather from substantive assumptions 
on *. And these, in the end, amount  to just the original assumptions on --, viewed 
from a different but essentially equivalent perspectiveL 

Motivational gain and loss aside, however, the detour through CR* illumines 
the system R technically in interesting and important  ways. In certain fragments 

6 Involved, among other things, is the principle v discussed in [3]. This is the question whether 
the inference from A and A ~ B to B is admissible in, say, R, where ~ is the material implication 
defined using -- in d7 below. The present semantics builds in an  affirmative answer, again, sub- 
stantively. Cf. p. 7, top. 

7 The reason for making such assumptions, according to [11], does not  lie in semantical 
analysis at all but in the theory of deduction. 
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of  R, for example, it has been known for a long time that, algebraically, the inten- 
sional complement -- amounted to the composition of Boolean cornnplernentation -] 
and a permutation *; these results rest mathematically on the investigation of so- 
-called DeMorgan lattices (quasi-Boolean algebras) conducted in the late 1950's 
by Biatynicki-Birula, Rasiowa, and Kalman (e.g., in [7] and [8].) The import of 
these results for relevant logics, both algebraically and motivationally, was first 
grasped by Dunn in [9], on suggestions of and in collaboration with Belnap; a partial 
account appears in [10]; a fuller one, in [3]; cf. also van Fraassen [12]. * is introduced 
semantically in [13], and is used in [6], [2], and succeeding papers. 

Nevertheless, there was a very important failure with respect to the application 
to the algebraization of  R via DeMorgan monoids in [9] and [3] of the algebraic 
ideas of  [7] and [8]. The problem is that if  one is to view -- as the composition --I*, 
one must be able to choose, or at least to embed, the DeMorgan monoids that 
algebraize R among such DeMorgan monoids as are Boolean algebras. Here an 
interesting situation developed. For it was known, on the one hand, that a DeMorgan 
monoid could always be embedded as a lattice in a Boolean algebra. But that was 
to lose their most interesting feature, preserving the operations that correspond 
to &, V, -- at the loss of  the operation one chooses to explicate the distinctive 
connective ~ of R. So, on the researches of [9] and [I0], Boolean algebras played 
an interesting role in the algebra of  R only in that fragment of  R which contains 
no occurrences of  ---~, properly speaking, as an operation -- i.e., the first-degree 
fragment of R investigated in [14]. Thus there is a tension in [9] between the formal 
explication of  --, which doesn't explain -% and the formal explication of ---~, which 
leaves -- unanalyzed save as one requires postulates on DeMorgan monoids that 
make all the axioms of  R true. 

It is this situation which was set right for R+in [1], and which will be set right for 
all of R here, with the added benefit here that, while it was merely of interest that 
the Dunn monoids of  [1] could always be embedded in Boolean monoids, our 
work here rests upon and in a certain sense completes the theory of  propositional 
negation proposed in [9]. 

III  

In this section we show that the system CR*, characterized so that its set of 
theorems is exactly the CR* valid formulas, exactly contains the system R of relevant 
implication on the definition of -- by d4. We note that, by definition, -- has the 
truth-condition, 

T-- .  Aa iff ~-~A*. 

Other interesting connectives can be defined in CR* as follows: 

d5. A VB = ~  -I ( -1A&-IB)  

d6. A ~ B =dr---IA VB 
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d7. 

d8. 

d9. 

dlO. 

d l l .  

A ~ B =dt-.~VB 

A - -  B = , t f ( A  = B ) & ( B  = A) 

A+--+B =dr (A-~B) & (B--~A) 

A oB =dr A ~ B  

A +B =,if A-+B 

T V .  

T ~ .  

T _ .  

T----. 

T~--~. 

To.  

T + .  

Truth-conditions corresponding to these connectives are 

[A V B]a iff Aa V Ba 

[A ~ B]a iff A a ~ B a  

[ A~_ B]a iff Aa*=~Ba 

[A ~ B]a iff Aa iff Ba 

[A+-+B]a iff (x) ([Ax ~Bax]&[Bx=> Aax]) 

[AoB]a iff 3x3y(Ax&By&xyRa)  

[A+B]a iff (x) 0') (x*y*Ra* :>Ax VBy) 

Of these connectives, V, ~ ,  o, -+- are familar connectives of  R; their truth-conditions, 
together with T- - ,  are as in [2] (and as in [1] also, for V, ~ ,  o). ~ ,  ~ are extensional 
connectives, with straightforward meanings. _ is included for contrast;  it is not 
straightforwardly extensional, which made it for a while an interesting open problem 
whether B is an R-theorem whenever A, A ~ B are R-theorems. (Yes -- automatically 
for CR*, as the reader is invited to verify.) (Another interesting point is that had 
-- appeared everywhere in d5 for --l, we'd have an equivalent definition of  V.) 

To get our desired result, we must show that, for any formula A of  R, A is 
a theorem of  R iff its translation via d4 into CR* is a theorem of  CR*. (To handle V, 
either take it as primitive for R or use the suggested alternative definition just above; 
in any case, its truth-condition will be T V.) 

Our proof  procedure will be wholly semantic. The best result from [2] that we 

have to go on is the following: 

NORMALITY THEOREM. A is a theorem of  R iff A is normally valid. 
(PRoov in [2].) 

What the normality theorem means is explained as follows: a normal Rms is 
characterized like a CR*ms, as a quadruple (0, K, R, *), except that for pl  are 
substituted the weaker postulates, in the context p2--p5,  

p6. ROaa. 

p7. R2Oabc => Rabe. 

p8. 0* = 0. 

It's quickly verified that every CR*ms satisfies p2--p8,  whence every CR*ms 
is a normal Rms, though not  conversely. Let an interpretation be defined mutatis 
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mutandis as above, in a normal Rms, satisfying T&, T V, T--*, T-- .  An inter- 
pretation is hereditary provided that it satisfies also 

H. ROab&Aa => Ab 

Note that an interpretation in a CR*ms is automatically hereditary, as remarked 
above, but without pl  this isn't always true. Then the normality theorem states 
that A is a thorem of  R iff A is true at 0 (i.e., verified) on all hereditary interpretations 
in all normal Rms. Evidently, 

LEM~A 1. I f  A is a theorem of  R, then A is CR* valid. 

PROOF immediate from the normality theorem, and the observations that 
a CR*ms is an Rms and that interpretations therein are hereditary, since the truth- 
-conditions are the same for formulas of  R in Rms and in CR*ms. 

The converse of  lemma 2 is the main point. 

LEMMA 2. I f  a formula A of  R is CR* valid, then A is a theorem 

o f  R. 

PROOF. Let A be a formula of  R, and assume that A is not a theorem of R. 
We show that A is invalid in some CR*ms, whence the lemma follows by contra- 
position. 

At any rate, by the normality theorem, A is not verified on some hereditary 
interpretation I in some normal Rms ~ ---- (0, K, R, *). Following the recipe of  [1], 
we shall make ~ into a CR*ms by adding a new 0. So let 0' be a new element, and 
let K '  = Ku{0'} .  Let *' be like * on elements of  K, and define 

(13) 0'*' = 0'. 

Likewise, let R'  be like R on elements of K. And define, for all a, b in K', 

(14) R' O' ab iff a = b 

(15) R 'aO 'b  iff a = b  

(16) R'abO' iff a = b*' 

(14)--(15) are from [1]; (16) is new. Then, first, 

(17) o,Y" = ( 0', K', R', *' ) is a CR*ms. 

Verifi cation of  (17) is pretty trivial, pl  holds directly by (14), and the other postulates 
p2--p5 are verified quickly by the fact that the corresponding postulates hold in ~"  
and definitions (13)--(16). The only interest lies in the verification of  p2 for o~ ,~', 
which we leave to the reader for his amusement. 

Let now v be the valuation got by restricting the given interpretation I to sen- 
tential variables. Let v' be like v at all points of K, and set, for each p in S, 

(18) v'(p, o') = v(p, o). 
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Let now I '  be the interpretation in o,Y" determined by v' and the truth-conditions. 
We show, for all formulas B of R, and all a in K, 

(19) I '(B, a) = I(B, a), and 

(20) S'fB, 0') = S(B, O) 

Given the similar argument of [1], verification of  (19)--(20) can also be safely left 
to the reader. (Prove the conjunction of  (19)--(20) by induction on length of for- 
mula.) The normality postulate p8 enters into the argument ofr (20) in view of the 
case, on inductive hypothesis, where B is C', 

(21) G,0 '  iff ~ CO*', iff ~ C 0 ' ,  iff ~ CO, iff ,~ CO*, iff GO. 

But then in particular I ' (A,  0') = I(A, O) = F, for our chosen non-theorem A of  R, 
ending the proof  of  its CR* invalidity and so the proof  of  lemma 2. 

Our desired objective has been obtained. 

TRANSLATION TrmoRnM. The translation by d4 o f  R into CR* is exact; 
i.e., A is a theorem o f  R iff, on translation ', A'  is a theorem o f  CR*. 

PROOF. By lemmas 1 and 2. 
So the decomposition of  relevant negation -- into --] and * is accomplished. 

IV 

In this section, we extend to all of  R the algebraic conclusions drawn in [1] 
for R +. As in [1], a Boolean monoid shall be a structure & = (B ,  o, ---~, V, ', 1 ) 
such that ( B, V, ' ) is a Boolean algebra, and ( B, o, 1, A, V, -+ ) is a Dunn 
monoid, a Ab being defined as (a' V'b') ' .  A Boolean monoid is complete, it is recalled, 
if the following infinite distribution laws hold for a e B, arbitrary {bl}l, t ~ B, 
and if B is complete as a Boolean algebra: 

(22) a A  V i , l b i  = V i , l  (aAbl) 

(23) ao Via  bi = Via  (aobh 

A Boolean monoid is regular, again, provided that 

(24) 
Finally, 

(25) 

1 is an atom under the Boolean ordering of  ( B ,  V, ' ). 

is a Boolean set monoid if  & is complete, regular, and ( B, V, ' ) is 
isomorphic to the set of  all subsets of  some set C (under set union and 
complementation), where & is a Boolean monoid. 

An algebraic interpretation I of R + (or of  CR) in a Boolean monoid & is a function 
which assigns a member a of B to each formula A, and which respects the connectives 
in the obvious sense (i.e., is a homomorphism from the algebra of  formulas to &). 
A is verified on / iff 1 ~< I(A) in &. Then the best result of  [1] was, algebraically, 
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BOOLEAN ALGEBRA THEOREM FOR R +. A is a theorem o f  R + iff  A is 

verified on all interpretations in all Boolean set monoids. 

The theorem was welcome for many reasons. First, the regularity condiction (24) 
places 1 under rather firm control, which is important because 1 is the special 
element which figures in verification, as well as an identity for o. Second, the residual 
-+becomes superfluos, being definable by 

(26) a-+b = V{c: coa <~ b}, 

as is well-known given commutativity of o, completeness under infinite joins, and 
(23). Third, the condition (25) means that every element of ~ is a.join of  atoms 
(except 0, of course). 

Since these are the benefits that we wish to reap for R (and CR*) also, we shall 
restrict our explicit generalizing to Boolean set mon.oids, our assertions automatically 
holding for wider natural classes of structures algebraizing R. So let (B, o, V', 1 ) = 
= 9~ be a Boolean set monoid, V being the infinite join and A, -+ being defined 
as above. (Special properties of o are given by requiring that (B ,  o, 1 ) be a com- 
mutative monoid, and that (23) and the square-increasing property a <~ aoa hold.) 

A Boolean set monoid is, as we have seen, a very natural structure, since it's 
just a power set with a continuous multiplication o defined on it, such that some 
atom (unit set) is the identity for this multiplication; a _ a 2 is thus the only really 

special property. It is also natural, following the algebraic work cited earlier, to 
define a unary operation * as an involution on B provided that it has the following 
properties: Let a, b be arbitrary members of B. 

(27) 1" = 1 

(28) a** = a 

(29) (a Vb)* ---- a* Vb* 

(30) a * '  = a '*  

Thus an involution here is just a permutation in the ordinary sense, with the 
additional requirements that * be of  period 2 (28), that 1 be a fixed point for * (27), 
and that * be a Boolean automorphism from B onto B (29), (30). Given ~ ,  *, we 
may then follow work cited by defining the relevant complement -- by 

(31) --a =a t  a*' 

Finally, letting (B ,  * ) be a Boolean set monoid with a permutation *, we call it 
a DeMorgan set monoid provided that the residual ~ given by (26) is alternatively 
characterized by 

(32) a-+b = - - (ao - -b )  

The effect of (32), we note, is alternatively got by Dunn's antilogism postulate, 
namely 

(33) aob <~ c iff a o - - c  <~ --b 
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We may now extend the notions of  algebraic interpretation, verification, etc., to all 
o f  R and CR*, finding as for R + in [1] a set algebra which will refute any non- 

-theorem. I.e., 

BOOLEAN ALGEBRA THEOREM FOR .R. .4 is a theorem of R iff A is verified 
on all interpretations in all DeMorgan set monoids. 

PROOF. As of  the analogous theorem of  [1]. First, a DeMorgan set monoid 
is evidently a DeMorgan monoid in the sense of  [3], whence by Dunn's  results all 
theorems are verified on all interpretations therein. 

Suppose, conversely, that A is a non-theorem of  R. By the translation theorem, 
A' is a non-theorem of  CR*. So there is a semantic interpretation I in a CR*ms 
( 0, K, R, * ~ such that N A'I0. Let fl(K) be the power set of  K. We wish to define 
the De Morgan operations on fl(K). ~ ,  ~_J are of  course set intersection and union. 
Moreover, for S ~ K, T ___ K, we define 

(34) S o T :  { c : 3 X 3 y ( x ~ S & y e T & R x y c }  

(35) S* = {c: c* e S} 

(36) 1 : {0} 

-- and -+ we may take as automatically defined on fl(K) by (31)--(32), set-theoretic 
complementation ' being of  course defined on fl(K) with respect to K; i.e., a' : K-a. 

We wish to refute our chosen non-theorem `4 in the DeMorgan set monoid 
fl(~') : ( fl(K),e, U, ', 1, * ) ;  evidently it will do to refute A', since the syntactical 
and algebraic definitions d4, (31) of  relevant negation mirror each other. In this, 
we have two tasks. First, we must show that fl(o,Y') really is a DeMorgan set 
m o n o i d - -  i.e., that it satisfies all our postulates on such structures. Second, we must 
use our semantical interpretation 1 that refutes A' in (0, K, R, *) to construct an 
algebraic interpretation 1 ~ that refutes A' in fl(,Y{). We turn to the first task. 

But (0, K, R, *) is of  course an Rms in the sense of  [2]. And, now that hereditary 
conditions have lapsed in the presence of  p l ,  for CR*ms, fl(,Y{') with operations 
as defined is an algebra of propositions in the sense of  [2]. So theorem 9 of  [2] applies, 
and fl(K) according to that theorem is a complete De Morgan monoid with operations 
as defined. This automatically takes care of  the underlying Dunn monoid conditions 
on e, ->, A, V, and the completeness conditions, including (22)--(23); moreover,  
it assures that -- as characterized by (31) and the alternative characterization of  -+ 
in (32), used definitionally here, tuna out right. Since we chose fl(K) as a power 
set, (25) holds; since we chose 1 as a singleton in (36), the choice we had to make 
to follow the policy of  [2], 1 is an atom in the ordering under _ ,  satisfying (24). 
And (27)- (30)  are immediate on our definition of  *, given (for (27)) that 0* = 0 
in all CR*ms. So fl(J,(') is a DeMorgan set monoid, as required. 

Next, we wish to define the refuting interpretation I ~ We do this by setting, 
f o r  all formulas B of  CR*, I~ = {x:Bix ), where I is the semantic interpretation 
that  refutes A. Straightforward verification, on appeal to the semantic truth-condi- 
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tions T&, etc., then establishes that I ~ is indeed a homomorphism from the algebra 
of formulas of  CR*, and derivatively of R, into fl(~F). Finally, our chosen non-  
-theorem A is indeed refuted on I ~ for ,~ At0, and so accordingly 1 = {0} _ / o  (A) -~ 
= {x: Atx}. This completes the proof  of the Boolean algebra theorem for R. 

We end this section with some incidental remarks. First, the technical benefits 
claimed for the Booleanization above of R + do in fact apply now to all of R; [11] is. 
a first attempt to collect on some of these benefits. Second, these results pave the 
way for the resuscitation of some old pet schemes of  Belnap and of Dunn. Belnap 
remarked some years ago, in conversation, that the lattices he had used to explicate 
first-degree relevant implication were just Boolean algebras that had got mixed 
up on complementation, and Dunn pointed out (cf.. references above) just how 
they had got mixed up. So long, however, as that fact couldn't  be squared technically 
with the overall analysis of relevant implication algebraically in [9], from the point 
of  view of  the enterprise entire it was an idle fact; it can now be sent back to work. 
Third, as pointed out in [i], one of the best ways to get concrete formal insights 
about a system is to have a look at its finite models, especially the small ones. Few 
subjects, of course, are under such firm control as the theory of finite Boolean 
algebras, and if we can only discover now the right way to multiply by 2, all will 
be revealed. Finally, the completion of the development of a relevantly acceptable 
theory of propositions, initiated in [14] and its predecessors, is now in sight. E.g., 
on the theory adumbrated in [14] by Belnap, things were said like, ,,We think the 
stronger assumption of  complete distributivity to be as true for complete pro- 
positional lattices as it is for complete fields of sets". Well, yes, since on the theorem 
just proved the completest complete propositional lattices overall acceptable for R 
are complete fields of sets s. 

In conclusion, it will be noted that we have neglected to axiomatize CR*. The 
reason isn't that it's unaxiomatizable or anything like that; indeed, we presume 
that just putting together the axiomatization of CR in [1] and of R in [2] or [3] one 
would have an axiomatization of CR*, near enough, reversing d4 by then defining 
A* as --1-4. Frankly, however, we can't at this point stomach yet another comple- 
teness proof  on ground that we have been over so often before; any readers that 
have stuck with us through the series of papers that began with [2] feel as we do, 
no doubt, letting the semantic characterization of CR* above suffice. But the case 
is now pretty strong that --1 was just left out of Anderson-Belnap formulations 
of their logics, and evidence is building that the entire project of relevant logic 
is unified and simplified when the semantic - l ,  with a different function from the 
deduction-theoretic -- that has been present from the start, is added. This paper 
is part of that evidence 9. 

While agreeing with the quoted statement, we pass here on the question whether it means. 
"equally true" or "equally false". 

9 Meyer gratefully acknowledges partial support from the National Science Foundation, U.S.A.,. 
grant GS-33708. 
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