
Shock Waves (1993) 3:95-104 

�9 1993 

Propagation of blast waves with exponential heat release and 
internal heat conduction and thermal radiation 

W. Gretler and P. Wehle 

Institute of Fluid Mechanics and Gas Dynamics, Technical University of Graz, Inffeldgasse 25, 8010 Graz, Austria 

Received March 23, 1992; accepted August 25, 1992 

Abstract. The problem of reactive blast waves in a com- 
bustible gas mixture, where the heat release at the detonation 
front decays exponentially with the distance from the center, 
is analyzed. The central theme of the paper is on the propaga- 
tion of reactive blast into a uniform, quiescent, counterpres- 
sure atmosphere of a perfect gas with constant specific heats. 
The limiting cases of Chapman-Jouguet detonation waves 
are considered in the phenomenon of point explosion. In 
order to deal with this problem, the governing equations in- 
cluding thermal radiation and heat conduction were solved 
by the method of characteristics using a problem-specific 
grid and a series expansion as start solution. Numerical 
results for the distribution of the gas-dynamic parameters 
inside the flow field are shown and discussed. 
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1. Introduction 

Detonations can be initiated in unconfined fuel-air clouds 
by blast waves of sufficient energy. The pressure and veloc- 
ity induced behind such detonations can result in extensive 
damage. In the present paper, the propagation of reactive 
blast waves through a medium with a spatially nonuniform 
fuel concentration is analyzed. The blast wave consists of 
a single wave front in which combustion is completed and 
the energy instantaneously released. The chemical heat re- 
lease Q is determined by the chemical composition and the 
thermodynamic states of the reactants and products. In this 
analysis, Q is assumed to depend only on the initial chem- 
ical composition, which varies with the distance from the 
explosion center. 

The detonation is restricted to a zone behind the wave 
front where complex physico-chemical phenomena occur. 
For simplicity, these phenomena are neglected in the applied 
single surface model of a detonation wave (Fig. 1). The 

reaction front and the shock front have the same location 
and the change of the chemical energy with the distance 
from the explosion center is characterized by 

Q = Qoexp ( - / 3 ~ 0 )  , (1) 

where Q0, r0, and/3 are constants given a priori. 
Ohyagi and Ohsawa (1983) solved the blast wave equa- 

tions for the described simplified model but their quasi- 
similar technique based on the work of Oshima (1960) only 
gives an approximate solution. The purpose of the present 
paper is to find a more accurate solution by using the special 
method of characteristics for non-adiabatic explosion prob- 
lems developed by Wehle and Gretler (1991). The traditional 
method of characteristics associated with a problem-specific 
grid, as already shown in previous papers, is very accurate 
in the smooth parts of the flow field and resolves discontinu- 
ities such as shock and detonation fronts with zero width. In 
recent times other numerical schemes became meaningful, 
including those for hyperbolic systems with two indepen- 
dent variables as in the problem at hand. However, modern 
schemes are developed for specific purposes only and most 
of them have the disadvantage of smearing the shock, or are 
inclined to produce spurious oscillations at discontinuities. 
In the present paper the physically unrealistic features of 
infinite temperature and zero density at the center of sym- 
metry for all times are also avoided by taking convective 
and radiative heat transfer effects into account. 

2. Basic equations 

The basic conservation equations of mass, momentum and 
energy for the one-dimensional unsteady flow of a perfect 
gas, with heat conduction and radiation taken into account, 
may in Eulerian coordinates be expressed as 

ap cop o~ 
-b-/+,,~ + p ~  + a'-~ =o, 

~gu +u_~ru . lap  

(2) 

Correspondence to: W. Gretler (3) 
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Fig. 1. Scheme of a gas flow in the model of a single front 
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Here r and t are independent space and time coordinates and 
p, u, p, e, and q express the density, flow velocity, pressure, 
specific internal energy and the heat flux, respectively. 
and j denote the specific heat ratio and a geometric factor 
which takes the value of 0 in the planar, 1 in the cylindrical 
and 2 in the spherical case. 

As in the usual blast wave problem, the gas behaviour is 
expressed in terms of two thermodynamic properties, namely 
the specific internal energy 

1 p 
e = - - -  (5) 

~ r  

and the speed of sound 

a z P (6) 
P 

The total heat flux q, which appears in the energy equation, 
may be decomposed as 

q = qc + qR. (7) 

According to Fourier's law of heat conduction 

OT 
qc = - K - ~ r ,  (8) 

where K is the thermal conductivity of the gas and T is the 
absolute temperature. Assuming local thermodynamic equi- 
librium and using the radiative diffusion model for an opti- 
cally thick grey gas (Pomraning 1973), the term qR, which 
represents radiative heat flux, may be obtained from the dif- 
ferential approximation of the radiation-transport equation 
in the diffusion limit 

16 aT  3 0 T  
qR = 3 aR Or' (9) 

where a is the Stefan Boltzmann constant and CZR is the 
Rosseland mean absorption coefficient defined by Pomraning 

(1973). The thermal conductivity K and the absorption 
coefficient cza are assumed to vary as 

K = K,  ~ and c~n = c~p~ \~-~] , (10) 

respectively, where the subscript a denotes atmospheric con- 
ditions. In order to obtain a self-similar solution the tem- 
perature exponents in the above equations should satisfy the 
similarity requirements and are given by (see e.g. Abdel- 
Raouf and Grefler 1991) 

1 1 5 1 
t i c = 2  j + l  andfln=~+j+----~. (11) 

To obtain a solution valid regardless of the state of the 
surroundings, it is convenient to introduce a non-dimensional 
representation for the independent variables 

r t* aat (12) 
r0  r0 

and for the corresponding dependent variables 

u a* a p. p q ,=  q 
aa aa Pa paaa 

anO Q* = Q-- 
(13) 

which describe the structure of the flow field, r0 is the 
characteristic length of the field defined by Oppenheim et 
al. (1971) 

1 

r0 = (14) 

If one finally introduces non-dimensional heat parameters as 

K, Ta aT~ 
Fc - paa3r~ and FR = paa3roat G , (15) 

one may summarize (8), (9), and (7) together with the 
application of the power-laws (10) and the exponents (11) in 
a single equation for representation of the non-dimensional 
heat flux: 

q* = qb + q*R = -FT*~C OT* 
Or* (16) 

with F = Fc  + 3 FR. 

The necessary boundary conditions are given by the con- 
servation equations across the reaction front and symmetry 
conditions. With terms for total heat flux and chemical heat 
release included, the conditions behind the reaction front are 

u*=  t r  + W* 
(17) 

a * =  [ ( l + n u * W : ) ( 1 -  u * ~ ]  �89 W* ] J ' (18) 



Pn = 1 + n u n W  ~, (19) 

where the non-dimensional velocity of the reaction front 
W* is defined by 

dr* (20) 
W* = dr*' 

and n denotes the state immediately behind the reaction 
front. In the detonation center the symmetry conditions are 

u*(0, t*) = 0 and q*(0, t*) = 0. (21) 

The results of our numerical computations were checked 
by applying the laws of conservation of mass and energy in 
the following form: 

7" n 
_ - j + l  

Mj = 7; i '  n~ 
0 

(22) 

~J : f ('4--~) pT"jdr : Pa4+l 4- Pa'ar~+----i~l 
nj j +  1 

o (23) 
~'r/, 

" r~+_____~ 1 /3Pa f j+l 
4" I'~Pa n 4" - -  Q r  n d r n ,  

j + 1 (j + 1)ro J 
0 

where Mj is the total mass content inside the flow field, 
Ej the total energy of the blast wave and nj = 27rj + �89 - 
1)(j - 2) a geome~cal factor. 

3. Perturbation solution 

In order to perform the integration of the system of equations 
above, initial conditions are required besides the boundary 
conditions. A coordinate expansion for the limiting cases 
/3 = 0 and/3 = oo (see (1)) based on the reciprocal square of 
the front Mach number can be employed to obtain solutions 
for the initial stages of blast waves with non-zero coun- 
terpressure as discussed in our previous paper (Kailbauer 
and Gretler 1991). In the present detonation case the heat 
release is taken into account to first order, so that the basic 
similarity solution is unaltered in the conservation equations 
at the reaction front. A brief presentation of this modified 
perturbation solution, which also serves as an initial condi- 
tion for the integration in the transition case 0 < /3  < oo, 
now follows. 

The time and space coordinates are replaced by non- 
dimensional new independent variables, the similarity vari- 
able x = r/r,~(t) and the non-dimensional front radius 

= rn(t)/ro. With ~ and the reciprocal of the square of 
the reaction front Mach number y = a~/W~(t) a relation for 
the decay parameter can be formed: 

~,~ d l n y  
= -2/'2~/'------~ = d In ~" (24) 

The system of differential equations (2)-(4) expressed in a 
non-dimensional form is 

)~y~yy + ( f  - x)~--~x + h ~ + j  = 0, (25) 

97 

Of Of  10g A 
)~Y-~y + ( f  - x)-~x ~ h Ox 2 f  = 0, (26) 

[ oyOh] 09 Og ~g Oh ~y-x-- 
Ay-~y + ( f  - X)~x h ( f  - X)~x + 

(27) o0) 
- -Ag=- - (~ - - I )  + ~ x  " 

Here the dependent variables are defined as 

p *  . 3 
f=u*V'Y,  9 = - y ,  h =  /9 =p*, ?/=q Y~ 

t~ Pa  
(28) 

and the expression for the internal heat flux is given by 

r y�89 

16r. y,Sn-~ (_~)3-,8n] O 
(29) 

The boundary conditions (17)-(21) and the integral relations 
(22) and (23) may now be represented in the corresponding 
non-dimensional form: 

f~ = 0, ?h = 0, (30) 

1 
h~= 1 - f , ~ '  9,~ f,~+ n y (31) 

A = ~ + 1 { (  1 - Y) 
(32) 

1 
+ [(1 - y)2 _ 2(~2 _ 1)(77n + Q'y)] ~ }, 

1 

I =  Mj f 1 njpar~+l = ~ hxJdx = J + 1' (33) 
0 

1 

njparJn+Iw2n = ~ - 1 
o (34) 

= Y ~ - - ( j + l )  + 

( j + l ) ( n - 1 )  j + l ]  

Series expansions in y give 

f (x ,  y) = fo(x) + f l (x)y  + O(y2), (35) 

9(x, y) = go(x) + 91 (x)y + O(y2), (36) 

h(x, y) = ho(x) + hl(x)y + O(y2), (37) 

~(z, y) = go(Z) + ~l(z)y + O(yZ), (38) 

)~(y) = A0 + )bY + O(y2), ~j+l = ~lY + ~2Y 2 + O(Y3), (39) 

I(y) = Io + I ly  + O(y2), J(y) = Jo + JlY + O(YZ). (40) 

Since the energy released by chemical reactions is negli- 
gible compared with the blast wave energy E0, the Q~- 
term enters as the counterpressure only into the first order 
term. Solutions can now be found successively starting from 
the similarity (zeroth-order) solution. Substituting (35)--(40) 
into the non-dimensional governing equations (25)-(27), the 
boundary conditions (30)-(32) and the integral relations (33) 



98 

and (34) and then equating the coefficients of terms with 
the same power of y gives for the y0 terms 

(fo - x)h~o + h o f ~  = - ~  foho (41) 

(f0 , , : ~  
- x)f~ho + go = foho, (42) 

(fo - x)g6 + ~r + (to - 1)~6 

= -tC?gofo-- + Aogo - (a - 1) j~/---q 
(43) 

X X 

qo = - ( ~ J o )  3~ T' - -  , (44) 

where in (44) the relation ~1 = 1/l~Jo h a s  b e e n  u s e d .  T h e  

boundary conditions are 

f0i = 0 ~oi = 0 (45) 

1 
g0~ = ~ ,  ho~ = 1 _-- - : -~ ,  

fo~ ~ + 1  2 
~o,~ - ~  1 2~ ---"1) fdn' 

(46) 

1 

1 

f f l ~ 2 +  g0 ) x J d x  ' 
J~ = J ~,2 '~~176 t r  

(47) 

where the dash denotes the differentiation with respect to x. 
From the coefficient of yl terms one gets 

hof~ - ( x  - f o )h~  

= -  (h~~ h~J)  f l  - ( f ~  J f~  + A~ (48) 

(49) 
ho(fo - x ) f ;  + gl = - h o f l  fg + -~ 

[A~fo fg] Alfoho 
+ - -  + ( x - A )  hi + - - - - ~ ,  

~gof; -- (x -- fo)g~ + (~ -- 1)~/I 

+ Algo - (~; - 1) g/lj , 
X 

00I(g, ~11---- Lk~o ~o ( t i c + l )  

\ g o  To " 

From (34) follows 

(50) 

(51) 

1 + Q ; ' ~  
f2 = f ~  ~(j  + 1)(~ - 1) - J1 j - 7 - f / '  (52) 
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Fig.2. Coefficients of the first order solutions of f ,  g, and h versus the 
field coordinam x 

which with the relation for A1 gives 

1 E 1 ] ,~1 ---- ~ (j + 1)dl n(n -- 1) Q; . (53) 

The boundary conditions are 

fli = 0, (]1i = 0,  (54)  

1 fin 
gln = f in + - bin = (55) 

~ '  (1 " don) 2' 

1 
qln tr - 1 [fin - fo,~ - (to + 1)fort fin] (56) 

while the coefficients of the integral relations may be written 
as  

11 = = 0, 

O 1 

,]1 = /  (h1~f22~ +hoflf 0 
o 

+ gl ~ xJdx" 
~ - 1  ] 

(57) 

While the zeroth-order solution can be taken from Kailbauer 
and Gretler (1991), in the case of the first-order solution the 
set of linear nonhomogeneous differential equations (48)- 
(51) and the boundary conditions (54)-(56) specify a two- 
point boundary-value problem. To find the correct Ax value 
from (53), an iteration method similar to that described in 
the afore-mentioned paper is used. The reduced variables for 
velocity, pressure and density as functions of the similarity 
variable x are presented in Fig. 2, where the corresponding 
Ax = -88.672. 

4. C h a p m a n - J o u g u e t  detonat ion  

In contrast to the classical works of Jouguet (1917), 
Zel'dovich (1942) and Taylor (1950), where a Chapman- 
Jouguet CJ-wave is assumed to be initiated instantaneously 
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at r = 0 (y = 0) and propagates with a constant front ve- 
locity, the flow in the initial stage of the explosion will not 
follow the CJ-rule (cf., for example, Korobeinikov 1969). In 
the initial stage of the process un + a~ > W~, i.e. where the 
fight-running expansion waves meet the shock, an overcom- 
pressed detonation occurs. During the propagation of the 
shock wave the slope of right-running characteristics at the 
wave front ((dr~dr)Iv = u,~ + an) decreases, and the passage 
to the regime of CJ-detonation is possible (Fig. 13). 

Depending on the heat parameter/3 (Eq. (1)) when the 
limiting case of the CA-detonation is obtained at a certain 
moment (y > 0) and a certain distance from the center 
(r > 0), the expression in the root of (17) vanishes, and this 
leads to the following equations: 

(1 - ycj) 2 (58) 
?/n + Q*ycJ = 2(~2 _ 1)'  

f n = 1 - YcJ hn = 1 n + l ' 1 -  f,~' g'~ = fn  + ycJ~ (59) 

It is easy to see from (59) that for y = ycJ > 0 

fn  + .  ~/r~-ff,~ = 1 (60) 
g 

and 

u,~ + an = Wn. (61) 

The above equation confirms the CA-condition that the 
velocity of the wave relative to the heated fluid is identical 
with the local sound speed. Equation (58) differentiated with 
respect to ~ and the definition of )~, given by (24), expresses 
the decay parameter in the following functional form: 

= ( d l n y ' ~  

(t~ 2 - 1) (/3Q* dq*_~ ~/ycJ--'~) 

3 . 
1 - y o + ( m 2 - l ) ( Q * + ~ q n  y v ~ )  

(62) 

Taking into consideration that 

--~',] cJ ~ q,~cJ ~ O, (63) 

one can obtain 

(~;2 _ 1 ) ( 1  - y c l ) / 3 ~  
)~c.J = (64) 

1+ ycj 

From this expression one may conclude that only the case 
/3 = 0, ~ > 0 represents the limiting case Acj = 0 of the well- 
known solution for constant-velocity C J-detonation. This is 
the classical case in which a constant propagation speed 
associated with a uniform undisturbed medium leads to a 
homentropic flow field within the whole blast wave as a 
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Fig. 3. Rankine-Hugoniot-curves of the reaction fronts and location of the 
C J-states 

consequence of a constant entropy rise across the wave 
front. 

From (64) one may further conclude that for/3 > 0 the 
decay parameters ,~cJ > 0 and varies with the distance ~. 
These are the limiting cases of CA-detonations of variable 
velocity. In another context, the existence of solutions as- 
sociated with CA-detonations of variable velocity was first 
explored by Oppenheim et al. (1972). Within the scope of a 
single surface model with the shock wave together with the 
zone of chemical reactions behind, a CA-state with variable 
velocity would be of somewhat paradoxial nature. Therefore, 
this discrepancy indicates that the reaction zone (front) and 
leading shock front depart from this point. The possibility 
of detachment of the detonation wave in the phenomenon of 
point explosion was first deduced by Korobeinikov (1969), 
assuming a model with two fronts and a zone of induction. 

As a result of the computation with a single surface 
model it was found that in the regime 0 < /3 < 0.664, 
where the heat liberated at the wave front is large enough, 
the spherical shock wave approaches the CJ-state rather 
quickly. The corresponding CJ-Mach numbers can be called 
the local CJ-Mach numbers. For a further description it 
should be possible to use a flow model with two fronts 
together with the method of characteristics. The introduction 
of a discontinuity surface at some distance behind the shock 
wave where the total evolution of heat occurs may probably 
be incorporated without difficulties (but we must leave that 
to a coming paper). Here we only give the solution at 
near sm-roundings of the uncoupling of the front of an 
overcompressed detonation wave of variable velocity (cf. 
Fig. 14). From the point of uncoupling, the shock wave 
propagates through the unperturbed gas decaying to a sound 
wave. 

In the case when /3 > 0.664 the reactive blast wave 
starts to behave more like a nonreacting one (/3 = ~ )  and 
never reaches the CA-state. In this context it is instructive to 
consider Hugoniot-curves for different values of /3  plotted 
in Fig. 3. The plot shows the location of the CJ-states, 
the Rayleigh-lines, the overcompressed final states and the 
acoustic point. The dotted continuation of the curve 13 = 
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0 represents a branch of the solution (under compressed 
detonation), which is not meaningful for problem at hand. 

5. Numerical solution 

As discussed in our previous paper (Wehle and Gretler 
1991); the system of equations (2)-(4) in combination with 
(7)-(9) is of mixed parabolic-hyperbolic type. Assuming 
that the heat flux and the heat release are given prior to 
integration, the system (2)-(4) can be handled as a hyper- 
bolic system and this leads to the following three physical 
characteristic equations in finite difference form 

1 ( a ' )  [ ( u ' a ' ~  
Au* + - Ap * = - j  - -  

q* 
- ( ~ - 1 )  ( ; ) n  (~ + J T ) n ]  At*' (65) 

along \ a t*  J n = + a*, 

() a* (cgq* + J At*, (66) 

along \ At* J ~ = - a*, 

() Ap* 2~ p* Oq* + 3 7  T /g - -  1 7 W Aa* = tr ~r* a t* ,  
(67) 

along \ a t*  J T 

where A represents the difference between two adjacent 
points along a characteristic. The indexes r/, ~ and T denote 
the arithmetic mean values of the coefficients along the 
right- and left-running characteristics and along the particle 
path (Fig. 13). 

The numerical integration of the system (65)-(67) can 
be carried out with the technique described in our previous 
paper (Wehle and Gretler 1991). However in the present 
case of detonation the numerical integration is performed 
only for the spherical wave with ~ = 1.4 and with different 
heat release parameters ft. Q0 = 20a~ is used and the per- 
turbation solution for y = 0.001 is used as initial condition 
for the method of characteristics. As stop condition for the 
iterations an accuracy of 1 x 10 -5 was chosen. The number 
of gridpoints was increased during the computation from 
85 to over 300 for a wave propagation Mach number of 
Ms = 4.428. For each increase of gridpoints an adjuste- 
ment of the point distance AT* to the flow state was made 
according to a stability relation (cf. Wehle and Gretler 1991). 

The power expansion and the numerical solution were 
fitted at a distance of about one percent of the front radius. 
The dimensionless heat parameter, which describes the heat 
radiation and heat conduction, was in agreement with (Wehle 
and Gretler 1991) and (Kailbauer and Gretler 1991), and was 
chosen to be F = 2.5 x 10 -4. 
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6. Results 

The flow field of a spherical reactive blast wave propagating 
in a uniform combustible mixture is presented in Figs. 4-7. 
These show the variation of the non-dimensional particle 
velocity, pressure, density and sound speed as a function 
of the non-dimensional radius r/r0.  All the gas-dynamic 
profiles display typical wave features, they either decay 
from the explosion wave limit (fl = oo) to the limit of a 
CA-wave (/~ = 0) with the propagation Mach number equal 
to 6.354 (YcJ = 0.0247), or to a sound wave (dashed lines) if 
they have smaller Mach numbers. The decay parameter A as 
function of y (Fig. 8) expresses this as the non-dimensional 
deceleration of the wave front. 

It should be mentioned that the numerical calculation 
breaks down near the Ca-point where the root in (17) goes to 
zero, but one can observe the exact value of YcJ = 0.0247. If 
the front parameter y is small, the A-profiles for 0 </~ < 2.2 
immediately drop to a minimal value and then, when y grows 
larger, rise to a maximal value and for/~ > 2.2 the curve 
has an inflection point. Moreover, the graphs show that as 
the front parameter A grows larger all the transition curves 
intersect the curve fl = oo, which represent the non-reactive 
wave. 

The ratio r,~/ro as a function of the front variable y, 
which is a measure for the propagation Mach number, is 
illustrated in Fig. 9. 

It can be seen from the boundary conditions that the 
major deviation of the A-values of the reactive waves from 
the non-reactive one is caused by the term 

= a-~yexp -/~ , (68) 

which expresses the heat release at the front. Since this func- 
tion has two zero points (y = 0 and y -- 1) and a maximum 
in between, the A-graph can be completely understood in 
terms of those influences. 

The non-dimensional particle velocity as a function of 
the non-dimensional distance r / ro  is depicted in Fig. 4 for 
two groups, corresponding to two different front parame- 
ters y = 0.0247 and y = 0.125 (dashed lines). One group 
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extends between/F = o~, corresponding to the non-reactive 
blast wave, and fl = 0, for which the heat released at the 
wave front is constant and the wave decays to the so-called 
local CJ-wave with constant front velocity, while the other 
extends between/~ = ao and fl = 1 (or fll = 0.664) only. 
There is already at the beginning a negative value of the 
particle velocity and it only increases very slowly with the 
radius in this region. The negative velocity in the inner 
region is generated by cooling of the gas that heat transfer 
(radiation and conduction) performs. Approximate solutions 
like those of the quasi-similar method, which is based on the 
assumption that the logarithmic derivatives of all dependent 
variables with respect to the front coordinate y are consid- 
ered constant in the whole flow field, can not describe these 
backward flow phenomena. 

The pressure, that is made non-dimensional by the outer 
pressure Pa, is shown in Fig. 5 as a function of r/ro for 
two values of the front parameter y and various values of 
the heat release parameter /~. Behind the wave front the 
pressure decreases rapidly to a nearly constant value in the 
inner region. On the other hand, it appears that the slope 
behind the wave front is largest for the non-reactive wave 

= oo) .  

The density distributions for two different front Mach 
numbers are presented in Fig. 6. If y is small, the density 
is very small at r = 0, and then only increases slowly with 
increasing radius and increases more rapidly first near the 
front. The major part of the mass is also concentrated to 
the front. At later times this changes and an inflexion point 
occurs, which approaches the center with time. The radius 
becomes larger for smaller ~, which indicates the same 
effect due to the heat release as mentioned above. 

In Fig. 7 the sound speed, from which one can determine 
the temperature with the relation T/Ta = a2/a2~, is presented 
as a function of the radius. The sound speed has its maximum 
at the center and decreases with increasing radius to the 
value at the wave front. With decreasing propagation Mach 
number and heat release coefficient/~ the sound speed is 
reduced and therefore also the temperature in the whole flow 
field. At large times the sound speed has taken the value 
of the undisturbed gas, with the inner region excepted (see 
also our previous paper Wehle and Gretler 1991). 

Figures 10-12 show the dependence of the non- 
dimensional density, particle velocity, and pressure as a 
function of the ratio rn/ro for fl = 0, 0.5, 0.663, 1, 2, 3 and 
oo. The dashed lines represent the local CJ-limit of constant 
propagation velocity or variable propagation velocity where 
uncoupling of the overcompressed detonation waves occurs. 
Comparing the transition waves at the same distance from 
the center it can be said that the peak pressure is largest for 
the CJ-wave, where the chemical energy is constant. Exactly 
the opposite is the case if we compare the transition curves 
of the density at a constant distance from the explosion 
center, as shown in Fig. 10. 

Another way to illustrate the characteristics of detonation 
waves is, as in Fig. 10, with the variation of the peak density 
ratio on the wave front as a function of the distance r,~/ro 
for fl = 0, 0.5, 0.663, 1, 2, 3 and oo. In the early stage, i.e. 
for small r,~/r• the peak value for small/3 (large chemical 
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Fig .  10. Non-d imens iona l  densi ty  at  the react ion f ront  as a funct ion o f  the 
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Fig .  9. Non-d imens iona l  f ront  radius rn/rO as a funct ion o f  the reciprocal  

square  of  the react ion f ront  M a t h  n u m b e r  y = (a~/Wn(t)) 2 

energy) is smaller than that for large /~ (small chemical 
energy). 

From Fig. 9, for example, it follows that for the same 
value ZJ or Mach number M,~ the distance rn/ro is larger 
for detonation waves than for the explosion wave, but Fig. 
10-12 then indicate that the peak values for large fl are 
larger than for small ft. Moreover, the peak densities for 
fl < 0.664 approach to the CJ-limit value (dashed lines in 
Fig. 10). 

Chemical healing from the detonation increases the ve- 
locity at the front but reduces or increases slightly the density 
in the near field or far field solution, respectively. 

Figure 13 shows the plane of the physical characteristics 
for /~ = 0. The end points of the curves correspond to the 
transition to the CJ-regime. We remark also that at the center 
of explosion the slope of the physical characteristics have 
finite values due to the influence of internal heat conduction 
and thermal radiation. 

Finally, Fig. 14 shows the dependence of the law of 
motion of an overcompressed spherical detonation wave on 
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Fig. 11. Non-dimensional velocity at the reaction front as a function of the 
non-dimensional front radius 

time r~(t) in the cases ~ ---0, 0.5, and 0.663. The end 
point fl = 0 corresponds to the limiting case of constant heat 
release with transition to the CJ-detonation wave of constant 
velocity. However, in the case of variable heat release, the 
end points/~ = 0.5 and 0.663 correspond to the above-noted 
detachment of the detonation waves and can be identified 
with the so-called local CJ-states of variable velocities. 

7. Conclusions 

The results of numerical calculations reveal the following 
significant facts: 
(1) The physical quantities such as velocity, density, pres- 

sure and temperature are strongly influenced by the heat 
release function. 

(2) A reacting blast wave decriebed by a single front model 
decays either to a sound wave or to the local CJ-wave. 

(3) Detonation waves reach the local CJ-state only if the 
heat liberated at the wave front is large enough, which 
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Fig. 13. Physical plane of a detonation wave in the single front model for 
/~=0 

requires that 0 < /~  < 0.664. For/3 > 0.664 the reactive 
blast waves start to behave more like a non-reactive one. 

(4) For 0 < /5 < 0.664 the single front model loses its 
validity at the local CJ-state (uncoupling point of shock 
front and reaction front). For further description of the 
problem a two front model should be used. 

(5) Including the thermal radiation and heat conduction 
remedies the basic flaw in the classical blast wave the- 
ory by yielding non-zero density and consequently finite 
temperature at the center of symmetry. 

(6) In contrast to Oshima's quasi-similarity approximation, 
using the present method the density profiles satisfy 
the mass integral and finally, the velocity profiles are 
accurate around the center of symmetry since in this 
region the particle velocity is negative as expected. 

Fig. 14. Non-dimensional front radius rn/ro as a function of the non- 
dimensional time att/ro 

Nomenclature 

Latin symbols 

a speed of sound 
e specific internal energy 
Ei explosion energy 
Ej blast wave energy 
f nondimensionaI particle velocity 
g nondimensional pressure 
h nondimensional density 
I mass integral 
j factor of symmetry 
a' energy integral 
K thermal conductivity 
Ka constant 
Mj blast wave mass 
Ms shock Mach number 
nj geometrical factor 
p pressure 
q total heat flux 
qc heat flux by conduction 
qR heat flux by radiation 
Q chemical heat release 
Q0 constant 
r space coordinate 
r0 characteristic length of flow field 
t time coordinate 
T absolute temperature 
u particle velocity 
W,~ front propagation velocity 
x similarity variable 
y front variable 
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Greek symbols 

aR Rosseland mean absorption coefficient 
c~/h constant 
/3c temperature exponent of thermal conductivity 
/3R temperature exponent of absorption coefficient 
F nondimensional heat flux parameter 
Pc conduction parameter 
FR radiation parameter 
A finite difference 

specific heat ratio 
), decay parameter 

nondimensional shock radius 
~- ratio between perimeter and diameter of a circle 
p density 
cr Stefan-Boltzmann constant 

Subscripts 

0, 1 zeroth, first order 
a undisturbed gas 
CJ Chapman-Jouguet 
i condition at the center 
n conditions immediately behind the shock front 
T particle path 
r] along characteristic r/= const. 

along characteristic ~ = const. 
, ,  ,-~nondimensional variable 
�9 "" differentiation with respect to time 
' differentiation with respect to z 
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