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TWO-DIMENSIONAL MODAL LOGIC* 

I. INTRODUCTION 

This paper arose in response to a problem posed, in conversation, by 
Lennart Aqvist. Working with ordinary Kripke-type semantics for 
propositional logic, Aqvist wanted to add to his language two new 
operators 0 and 0’ of an unusual kind. What made them unusual was 
that formulas in which they occurred could not be evaluated in a model 
at one point, as is usually done : such formulas would have to be evaluated 
at two points simultaneously. Suppose we are dealing with a certain 
model, and let us write, with reference to that model, W(A, X, y) for the 
tentative notion “The formula A is true at the point x with respect to 
the point y”. The semantical conditions Aqvist wanted to impose on 0 
and 0’ were these: 

WOA, x, Y) iff WA, Y, Y); 
W(O’A, x, y) iff W(A, y, x). 

On the other hand, for a formula B not containing 0 or 0’ we would have 

W(B, x, y) iff W(B, x, z). 

0 and 0’ are special cases of an operator C that satisfies, for some 
functions f and g, the condition 

WCA, x, Y) iff WA, f (x, ~1, g (x, ~4). 

Such operators provide simple instances of what may be termed ‘two- 
dimensional’ operators. More complicated examples are easily found, 
for instance, 

W(C’A, x, y) iff x =y; 
W(C”(A, B), x, y) iff for all z, if W(A, x, z) then 
WB, z, Y) . 

Are such operators of any philosophical interest? It has been argued that 
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at least some new operators of that vaguely delineated category are needed 
if one wants to give an account, within a post-Kripkean framework, of 
certain aspects of English. That thesis will not be defended here, but we 
shall offer one example to illustrate the alleged need. 

Consider the sentence 

It has always been the case that there will be a sea battle 
tomorrow. 

Here we shall take it for granted that to assert this sentence is not to 
assert that it was always true in the past that there would be a sea battle 
on the following day (and hence, since time has no beginning, that every 
day a sea battle has taken place). According to the reading we recognize, 
the word tomorrow refers to the day after the day the sentence is uttered; 
so in order to decide whether the sentence is uttered truthfully it is im- 
portant to know when it is uttered. In fact, unless the sentence is regarded 
as uttered at a certain time, or is associated in some other way with a 
particular time, its truth-value at a particular time cannot be determined. 
To bring this point out more clearly, let us think of time as the set of 
integers under the natural ordering. Letting X, y, z range over the set of 
integers, we now understand W(A, x, y) to mean “The sentence A, 
regarded as being uttered at y, is true at 2’. 

Consider the operators defined as follows: 

W(HA, X, y) iff for all z <x, W(A, z, y) . 
W(SA, x, y) iff W(A, x + 1, JJ) . 
W(TA, x, Y) iff WA, Y + 4 Y) . 

If A is a particular sentence, then HA, SA, and TA may perhaps be said 
to formalize, respectively, 

Every day in the past, A; 
On the following day, A; 
Tomorrow, A. 

Essentially, H is the well known operator introduced by A. N. Prior, and 
S, discussed for example in [5], is closely related to G. H. von Wright’s 
binary “and-next” operator. T, however, belongs to the new category. 
Now, it is easily seen that 

HS (a sea battIe takes place) 
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cannot be regarded as a formalization of the sentence under analysis - it 
yields the reading ruled out above as inadmissible. But 

HT (a sea battle takes place) 

is a rather good approximation to the given sentence. 
Crude as it is, this analysis shows why in ‘two-dimensional’ modal 

logic one wants to evaluate formulas at two points: at a point X, with 
respect to a pointy. Of course, he who insists that formulas be evaluated 
at one point only will achieve the same result by evaluating at points of 
type (x, r), thus endowing points with a structure. 

The history of the ideas expressed in the preceding paragraphs is not 
clear to the author. First to study operators of type 0 were probably 
Hans Kamp and A. N. Prior; our discussion of tomorrow was inspired 
by their treatment of now in [2] and [4]. Also of interest in this connection 
is David Lewis’s discussion of actual in [3]. As far as the author knows, 
the more complicated operator 0’ is new with Aqvist. However, it is 
worth quoting the anonymous referee who remarked on the penultimate 
version of this paper that “insofar as there is any one inventor of two- 
dimensional modal logic, it is Frank Mach”. When Vlach’s U.C.L.A. 
thesis becomes available it will be possible to evaluate this claim. 

The topic of this paper is Aqvist’s problem, by which is meant the 
problem of tiding a way to handle operators of type 0’ within the frame- 
work of Kripke semantics. Before tackling this problem it is well to note 
one peculiarity of Aqvist’s new logic which is shared by few other systems: 
it is not closed under substitutivity. For example, whereas the formula 

op ++ O’p 

is valid, for each propositional letter p, the formula 

oop 4-b O’op 

is not. This fact already may be an indication that Aqvist’s problem has 
not yet been given a suthciently general formulation. A moment’s 
reflection will bear out the correctness of this observation. Naively we 
may think of an “Aqvist model” in the following way: its frame is made 
up of identical copies of an ordinary frame which are piled up on top of 
each other, with one particular element singled out on each level; and its 
valuation function treats each point the same regardless of its level. 
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Clearly the valuation condition is not an essential ingredient of the formal 
problem, and we shall dispense with it in the general treatment below. 

We shall now first formulate in exact terms a semantics of the sort 
outlined. Then - and this is the major effort of the paper - we shall 
axiomatize the resulting logic. At the end of the paper we shall return to 
Aqvist’s logic to give a brief examination of it in the light of the general 
situation. 

II. SEMANTICS AND SYNTAX 

Suppose that U is a set and that X and Y are functions defined on U. We 
shall say that (U, X, Y) is a frame if the following conditions are satisfied: 

Forallu,uEU,ifXU=XuandYu=Yvthenu=u. 
For all u, v E U there is some w E U such that Xu = XIV and 
Yu = Yw. 
For each u E U there is some v E U such that Xv = Yv = Xu. 
For each u E U there is some v E U such that Xv = Yv = Yu. 
For each u E U there is some v E U such that Xu = Yu and 
Yu=Xu. 

For u an element of U, Xu is the X-coordinate of u and YZJ is the Y- 
coordinate of u, and we shall say that (Xu, Yu) are the coordinates of u. 
The import of (i) is that every element of U is uniquely determined by its 
coordinates; in particular, the elements the existence of which is claimed 
in (ii)-(v) are unique. 

V is defined to be a valuation in (U, X, Y) if V is a function defined 
on Nat (the set of natural numbers including 0), taking values in !j3U 
(the power set of U). We call <U, V, X, Y) a model. 

Obviously, the present concept of frame is not the only possible one of 
its kind. Condition (i) is what makes the whole enterprise interesting, and 
the completeness proof below will show that there would be no point 
relaxing it. Conditions (ii)-(v) have a different status: one might want to 
drop any combination of them, and if this is done a slightly weaker 
logic may result. They are adopted here both because they seem natural 
and because they are motivated by Aqvist’s ideas. Moreover, the tiny 
bit of generality gained by omitting (ii)-(v) from the definition of frame 
has to be paid by an increase of tedious detail, and at the present time 
the price does not appear worth paying. 
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There are various possibilities of constructing a language suitable for 
our new concept of frame. The one we adopt here has infinitely many 
propositional letters P,, P,, . .., Pk, . .., some functionally complete set of 
Boolean connectives, and the modal operators 0, a, 8, a>, 0, and @. 
The following readings of the latter are tentatively suggested: 

0 A - everywhere, A. 
q A - everywhere on this longitude, A. 
0 A - everywhere on this latitude, A. 
(D A - at the diagonal point on this longitude, A. 
8 A - at the diagonal point on this latitude, A. 
@I A - at the mirror point, A. 

These readings are suggested as mnemonic devices only. Naturally, if one 
studies the above operators with some specific objective in mind, then 
very different readings may be chosen. 

Suppose (U, V, X, Y) is a given model. We now define the concept 
of truth at apoint in this model. Suppose u E U. Whenever Pk is a proposi- 
tional letter, then 

C, Pk iff u E V(k). 

If A is a Boolean compound the definition goes as usual. If A is of the 
form oB with o a modal operator, then we stipulate: 

C,OB iff foralluo U, k,B. 
t.m B iff for all u E U such that 2% = Xv, C,B. 
k.B B iff for all v E U such that YU = Yu, C,B. 
k,a)B iff for that o E U such that XU = Yu = XU, C,B. 
k&B iff for that u E U such that Xu = Yu = Yu, P,B. 
kV @ B iff for that u E U such that Xu = YU and Yu = XU, 

k,B. 

We read +,A’ as ‘A is true at U’ or ‘A holds at u’. Similarly, ‘Y,A’ (the 
denial of t, A) is read ‘A is false at u’ or ‘A fails at u’. Note that the notion 
of truth at a point is relative to a model, even though we have not brought 
the reference to the model explicitly into the symbolism. 

A formula is said to be true in a model if it is true at every point of the 
model. A formula is valid in a frame if it is true in every model definable 
on the frame. A valid formula is a formula valid in every frame. 
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We shall prove in the next section that the set of valid formulas is 
axiomatized by the following axiom system. There are two rules: 

Modus Ponens. From A and A+ B, infer B. 
Universal Necessitation. From A, infer 0 A. 

The axioms are divided into three groups. The first group is, simply, the 
set of all truth-functional tautologies. The second group is the set of all 
instances of the following schemata, where o is a parameter running 
over the six-element set of modal operators: 

#I. o(A -P B)+(oA -+ oB). 
#2. oA -P A, provided o is 0, q , or 8. 
#3. A+o~o~A,providedoisO,m,orQ. 
#4. oAt,TolA,providedoisa),e,or@. 
#5. OA c+ OOA, provided o is not 8. 
#6. A c) ooA, provided o is @ . 

The third group is the set of instances of the following schemata, in which 
the modal operators are interrelated: 

#7. 
#8. 
#9. 

# 10. 
#Il. 
# 12. 
#13. 
# 14. 

CIA++ IIIEA; q IAo q EIA. 
IllA-, (DA; q A-, 8A; OA+ @A. 
IllA- OEM; q A- 98A. 
OA- ma>& 8A* HeA. 
@Ah (De& 9A++ 9CDA. 
OA- CDC3A; 8A- 8c3A. 
OA*@0A; eA* @@A. 
q (UlAvEB) + ElAv q B. 

We hasten to remark that this axiom system is not independent. Note 
that 0, q , and q are Dmodalities, while 0, 8, and @I are very strong 
K-modalities of rather unusual kinds (where Kis the fundamental normal 
modal logic named in honor of Kripke). 

By a logic we understand, in this paper, any set of formulas closed 
under modus ponens and universal necessitation. The set of formulas 
provable in the preceding axiom system is a logic which we shall call B 
(for ‘basic’). As it happens, B is closed under substitution as well. How- 
ever, it is not required that a logic is thus closed; this point becomes 
important in Section 8. 



TWO-DIMENSIONAL MODAL LOGIC 83 

III. CANONICAL STRUCTURES 

Throughout this section let L be any tied logic at least as strong as B. 
Let U, be the set of all maximal Gconsistent sets of formulas. (A set ZJ 
of formulas is maximal L-consistent if all of these conditions are met: 
(i) L E u; (ii) ZJ is closed under modus ponens; (iii) for every formula A, 
AEU if and only if iA&) For each koNat we de8ne 

V,(k) = (UE u,: P$U}. 

Furthermore we define, for UE U,, 

XLu= {A: QAAEu}; 
YLu= {A: ~AEu}. 

We shall call E& = ( U,, V,, X,, YL) the cunoniculstructurefor L. Through- 
out this section, let t be any tied element of U,. By the canonical sub- 
structure for L generated by t we shall understand the structure GL(f)= 
= (U, V, X, Y) where U is the set of elements UE U, such that, for all 
formulas A, if 0 AE~ then AEU; and where V, X, and Y are the restrictions 
to U, in the appropriate senses, of V,, X,, and YL, respectively. It is worth 
observing that, for all u, VE U and every formula A, 0 AEU iff 0 AEU. 
HenceifBEu,forsomeuoU, thenlOlBEu,foreveryvEU. 

We introduce the following auxiliary definition: if up U, then 

u”= (A: @AEI(}. 

One readily verifies - here #4 is essential - that XLu, YLu, SE U,, for all 
UE U,. Hence, since 0 is an SS-modality, # #l-9 imply that Xu, Yu, 
U”E U, for all UE U. Using # # 5,6, 11, 13 one can show that, for all UE U, 

xu=xxu= YXu= Yil; 
Yu = YYU = XYU = xi?; 

u=z. 

LEMMA 1. Let u be any element of U. Then there exist elements of U having 
coordinates (Xu, Xu), (Yu, Yu), and (Yu, Xu). If v is also an element of U, 
then there exists an element of U having coordinates (Xu, Yu). 

Proof. The former part of the lemma is immediate from the remarks 
preceding it. To prove the latter part it will be enough to establish the 
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consistency of the set 

C={A: IJAE~}u{~B:~BEu} u {eC: ~CEV}. 

To do this, assume that Z is inconsistent. Then there must be formulas 
A, B, C such that q Aet, (DBEu, and OCEV, and the formula 

AAOBA@C+I 

is derivable in L. By universal necessity, OB A OC@v, for every WE U. 
Using # # lo,14 among the third group of axioms one may show that 

ZORBA 1 IJ-IC+~IJ~(~BA~C) 

is a theorem of L. Since u and u are elements of U, 1 q 1 B, 10 1 CE t. 
Consequently, 

lEll(cDB A OCkt, 

and consequently there must be some WE U such that (l)B A @CE w. This 
is a contradiction, so 2 must be consistent. 

IV. A DIGRESSION 

According to Lemma 1, E&(t) satisfies four of the five conditions on 
modelhood. Some reflection will probably make it plausible to the reader 
that the remaining condition is not in general satisfied. This impression 
is correct, and it may be instructive to exhibit a case in which it is violated. 

Consider the frame 3 = ( U, X, Y} where 

u= (oo,Ol, 10, ll}; 
X00=X01 = YOO= YlO=O; 
X10=X11 = YOI = Yll= 1. 

Let V be the valuation such that, for every kENat, 

V(k) = (00, ll}. 

Let ‘&II= (U, V, X, Y). Notice that for all A 

Define 
C,,A iff bIIA; koIA iff &,A. 

Z= {A:AistrueatOOin!UI}; 
Z’= {A:AistrueatOlin%R). 
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Both X and 2’ are maximal B-consistent sets. Thus G&Z), in particular, is 
well defined. Which are its elements? 

Suppose~oG~(.Z)andu#Z. Take any AEU-Z and any Bet;‘. It is easy 
to see that lJ(A+B)oZ, so since uoG;,(Z), A-+Bou. It follows that 
BEU. This argument shows that Z’EU. But Z’ is maximal, so Z’=u. In 
other words, G,(C) contains exactly two elements, Z and X’. Moreover, 
GB(Z) is not a model, for 

xz=xr, 
Yz= Yz’, 

as one easily verifies. 
If the reader is not familiar with the kind of Henkin proof we are 

building up to, he is advised at this point to go ahead and take a look at 
the proof of Theorem I. He will then realize that we should like to discover 
a way of transforming canonical substructures into models without 
changing them in any ‘essential’ way. For example, the model !IR above is 
‘essentially’ the same structure as GB(C); and given G#) and the prob- 
lem of tiding a model “essentially like it”, %II is probably the first model 
that comes to mind. This is, of course, a very loose way of speaking, but it 
will give the reader a reasonably good idea of what we are trying to do in 
the pages that lie ahead. 

What we shall do, then, is to define a procedure that can be applied to 
any canonical substructure and which eventually yields a model. Since 
finite structures are more easily handled than infinite ones, we shall begin 
by showing how any canonical substructure can be reduced to finite size 
by the filtration technique. The reduced structure will then be transformed 
into a model. 

V. FILTRATIONS 

Suppose, throughout this section, that G= (U, V, X, I’) is some fixed 
generated canonical substructure for L, where L is some logic at least as 
strong as B, also fixed throughout this section. Let Y be a set of formulas 
closed under subformulas as well as under 0, 0, and 8. (That a formula 
set % is closed under an operator o means that, for every AE 2, OAE 5.) 
Then the following defines an equivalence relation in U: 

u=uifandonlyifu n Y=o n I. 
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In fact, = is a congruence relation with respect to X, Y, -, and V(k), if 
Pkc Y, That is to say, if us v, then Xur Xv, YUE Yv, ii= 8, and, if Pko Y, 
UE V(k) if and only if DE V(k). Let [u] denote the equivalence class under 
E of u. In view of what was just said the following definitions are 
meaningful : 

v= ([u]:ueU). 
V”(k)=([u]sU”:u~~(k)andP~~Y). 
XO[u] = [Xu] . 
Y”[u] = [ Yu] . 

[Z] = [iI]. 

The structure 6” = <v”, V”, X”, Y”) is called thejiltration of G through !P. 
Note that the ranges of X”, Y”, and N are included in U”, and that, for 
all [u] E U”, 

X”[u] = X”X”[u] =x0 YO[u] = Y”[G]l; 
Y”[u] = Y” YO[u] = Y”X”[u] = XO[Gj; 

[u&J. 

We shall say that a subset KE U” is a coIumn in Go if there is some 
[U]E U” such that 

K= {[w]: xw = Xu}. 

Similarly, R c U” is a row in Go if there is some [V]E U” such that 

R = ([w]: Yw = Yv}. 

If K is a column and R a row in Go, then C= Kn R is a cluster in 6”. The 
notation 

co1 C=K, 
row C=R, 

should be self-explanatory. 
By Lemma 1, a cluster is always nonempty. Evidently, the set of clusters 

forms a partition of U”. It may be noted that Go would be a model if 
every cluster were a singleton. 

If Sz U”, then swill denote the set {[:]I: [u]ES). It is straightforward 
to verify that if Sis a column (row) then sis a row (column). Observe that 
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for any S, Tc U”, 

S:T=SnT. 

Hence C is a cluster if C is, and 

We say that a cluster C is on the diagonal if C= c, 08 the diagonal if 
C#C. 
LEMMA 2. If C is on the diagonal, then there is exactly one element [u]EC 
such that [u] =X’[u] = Y“[uu]. Furthermore, [U”] = [u]. 

Proof. Take any element u such that [U]E C. Since C is on the diagonal 
[&C, so Xu s Xi;. As Xi = Yu it follows that Xv E Yu. Let 

Z = (A: Q)AEu n !P} u {B:@BEu n Y}. 

Assume that X is inconsistent. Then there are formulas A and B such that 
0Amn'P and eBoun!P and AAB+I is a theorem of L. Hence 
0A A 0B + I is also a theorem of L. However, Xu E Yu, so ~BEu. This 
contradicts the consistency of u. Therefore X must be consistent. Let u be 
any maximal Gconsistent extension of X. Then [u] E C and u 3 XU s Yu. 
That [u] is unique among the elements of C with this property is obvious. 

The proof that u E u” goes as follows. Assume that AE ?P. Then 

Aoii iff @AEU 
iff @ AE Xu (since !P is closed under 8) 
iff ~)@AEu 
iff 0A- (by # 12) 
iff AEXU 
iff AEU. 

VI. RECTIFICATIONS 

We begin this section by deGning, for every even positive integer n, an 
(n+l)x(n+l)matrix 
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of natural numbers. The definition is recursive. The base step is trivial: 

l-,=(O). 

For the recursive step, assume that n is an even integer and that I’,-, has 
already been defined. Then r,(p, q) is defined by cases. 

(4 Ifp+q4n-2,thenr,(p,q)=r,-,(p,q). 
0-9 Ifp+qZn+2,thenr,Jp,q)=Z’,,,(p-2,q-2). 
(4 Ifp+q=n- 1, then 

r”(P, d = 

(4 Ifp+q=n+l,then 

r”(P, 4) = 
n- 1,ifqiseven; 
n, if q is odd. 

(e) If p + q = n, then 
‘n-2p,ifp<qandpiseven; 
n -2p - 1, ifp <q andp is odd; 

rh, d = 0, ifp = q; 
n-2q,ifp>qandqisodd; 
n-2q-l,ifp>qandqis even. 

The definition is forbidding, but this is due to the difficulty of describing 
matrices rather than to any complexity inherent in the matrices detied. 
As a short-cut to understanding how the r,,: s are constructed it may 
suffice to scrutinize the first few members of the family: 

5634120 
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As the reader may verify, each r, satisfies the following conditions : 
(1) For all i, p s n there is some q such that i = r,(p, q). 
(2) For all i, q&r there is somep such that i = r,(p, q). 
(3) Supposep, q, tin, with r#O and r,(p, q)=r. Then 

r,GA P) = 
I 

r+l,ifrisodd; 
r-1,ifriseven. 

We now return to the subject of structure transformations. It will be 
assumed, throughout the section, that L, Y, G, and 6” are as in Section 5, 
with the exception that from now on we shall assume that Y is logically 
finite. It is important to observe that the latter assumption implies that U” 
is finite. Our next enterprise is to define a structure G*, which will be a 
model closely related to 6”. The greatest difficulty is to define the domain 
of G*. 

Let M be the largest number of elements of any one cluster in Go. For 
each cluster C we intend to define an enumeration 

C(O), C(l), . . . . C(2m - 2) 

of elements of C, in such a way that the following conditions are satisfied : 
(1) Every element of C occurs somewhere in the enumeration (perhaps 

more than once). 
(2) If C is on the diagonal, then 

C(oj = c(o), 
and for every odd number i < 2m - 1, 

F(<= C(i + 1). 

(3) If C is off the diagonal, then, for every even number i< 2m - 1, 

C(i) = C(i + 1), 

andforallic2m-1, 

Z($ = C(i). 

The definition goes as follows. First for each cluster in 6” we fix upon an 
enumeration of its elements which is exhaustive and without repetitions, 
in such a way that the following conditions hold: 
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(i) If C is a cluster on the diagonal and &,, . . ., r,- r is the enumeration of 
it, then &, is the element whose existence is guaranteed by Lemma 2. 

(ii) If C is a cluster off the diagonal and if tf,,, . .., qeB1 and lo, . . . ccV1 
are the enumerations of C and C, respectively, then, for every i< c, 
rli=li* 

It is clear that such enumerations can be found. 
Suppose now that C is any cluster, and let c= [Cl (ICI is the cardinality 

of C). Suppose that to, . . . . 5=-I is the enumeration of it. If C is on the 
diagonal, then define, for all i c 2m - 1: 

If C is off the diagonal, then define, for all i < 2m - 1: 

c(i)= &,ifi=2tori=2t+l,andt<c; 

I &,,ifi=2tori=2t+l,andtzc. 

It is clear that this definition satisfies conditions (I)-(3) above. 
We are now in a position to define G*. To make notation easier we 

shall write r.,, for rzrnm2 (recall that, given 6, !P uniquely determines m). 
Define 

U* = ((C, p, q) : C is a cluster in G ‘, and 
OrZp,q<2m-1). 

For each k&Vat, define 

v*(k)= {<C,p, +u*: W,(P, 9))EWW). 

Finally, for each ( C, p, q) E U* define 

X*(C, p, q) = (D, p, p), where D is the cluster on the 
diagonal such that col C = col D; 
Y*(C, p, q) = (E, q, q), where E is the cluster on the 
diagonal such that row C = row E. 

To have a term for it, we shall call the structure 6 * = <U*, V*, X*, Y*> 
the rectification of 6”. Note that X* and Y* are operations on U* and 
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that, for all (C, p, q)e U*, 

x*<c, P, Q) = x*x*l(c P, 4) = 
= y*x*(GP, 4) = WC !l,;p>; 

y*<c, P, 4) = y*wc, P, q) = 
=x*y*(c,P,q)=x*<~,,,P). 

It is a noteworthy feature of our construction that, for every UE U, there 
are some non-negative p, q < 2m - 1 such that (C, p, q) E U*, where C is 
the cluster in 6 ’ of which [u] is an element. 
LEMMA 3. 6 * is a model. 

Proof. We have to verify that U*, X*, and Y* satisfy the five conditions 
(i)-(v) in the definition of frame. Conditions (iii)-(v) are automatic, given 
previous remarks, but we shall prove that (i) and (ii) hold. 

Condition (i). Suppose (C, p, q) and (C’, p’, q’) are elements of U* 
such that 

(1) x*<c, P, 4) = x*(c’, P’, 4’); 
(2) y*<c, P, 4) = WC’, PI, 4’). 

(1) implies that there are clusters D and D’ on the diagonal such that 

(3) <D, P, P> = CD’, P’, P’> ; 
(4) co1 c =colD; 
(5) co1 C’ =colD’. 

From (3) it follows that 

(6) D=D’; 
(7) p =p’* 

(4), (5), and (6) imply that 

(8) co1 c = co1 C’ . 

By a similar argument we may infer from (2) that 

(9) 4=4’; 
(10) row C=row C’. 

A cluster is completely determined by its column and row, so (8) and (10) 
yield 

(11) C=C’. 
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Hence, by (7), (9), and (1 l), 

(12) (C,P, 4) = CC’, P’S 4’) 3 

which is the desired result. 
Condition (ii). Assume that (C, p, q) and (D, r, s> are elements of U*. 

Then C and D are clusters in G”, so co1 Cn ro’ow D is also a cluster in 6 ‘; 
callit E.Evidently (E, p, S)E U*. We have co1 C=col Eand row D=rowE. 
Therefore, at once, 

X*W P, s> = WC, P, 4); 
Y*(E,p, s) = Y*(D, r, s); 

which is what we wanted. 
We are now ready to prove the fundamental result. 

LEMMA 4. For every formula AE !P and every element (C, p, q) of U*, the 
following conditions are equivalent: 

A is trueat (C,p, q) in G*. 
For each u~C(r,(p, q)), AEU. 

Proof. We assume that A is a formula of !?? and that (C, p, q) belongs 
to U*. That the lemma holds if A is a propositional letter or a Boolean 
compound, is easily seen. Thus it will be enough to confine attention to 
the case when A=oB, for some modal operator o. In fact we shall only 
exhibit the subcases when o is q , 0, or @I. 

First suppose that A= CUB. Consider the following conditions: 

(1) q B holds at (C, p, q) . 

(2) For every D such that co1 C = co1 D and every r c 2m - 1, B 
holds at (0, p, r) . 

(3) For every D such that co1 C = co1 D and every r < 2m - 1, if 
u~D(r,(p, r)) then BED. 

(4) For every uEC(T,(p, q)), IllB~u. 

We wish to show that (1) and (4) are equivalent. The equivalence of (1) 
and (2) is given by the truth deft&ion, the equivalence of (2) and (3) by 
the induction hypothesis. Hence it is enough to prove that (3) and (4) are 
equivalent. 

First assume that (4) holds. Take any D and r of the appropriate kind. 
Pick any uoC(T,Cp, q)) and UED(~~(P, r)). From the fact that col C= 
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= col D it follows that X’[u] = X”[u], so Xu = Xu. Now, 

q BEU implies (DmBEu (by 19) 
implies q B E Xu 
implies q BEXU (since IQBEY) 
implies (D q BEu 
implies q BEU (by #9) 
implies BEU (by #2). 

Since q BEU is supposed to hold, BEU. Thus (3). 
Conversely, assume that (4) does not hold. Take any UE C(r,(p, q)). 

It will be enough to show that the set of formulas 

(1B) u {(DC: OCEU} 

is consistent. Suppose it is not. Then, for some C with QCEU, (DC + B is 
derivable in L. Hence q (lE + /JB is also derivable in L, whence by 
# 10 QC + q B is derivable in L. Consequently, q BEU. Since aBoY, 
condition (4) is satisfied, contrary to our assumption. 

Next suppose that A = 0B. Consider the following conditions: 
(1) QB holds at (C, p, q). 
(2) B holds at (D, p, p>, where co1 C= co1 D and D = 4. 
(3) Foreach~ED(r~(p,p)),BEu. 
(4) For eachueC(r,(p, q)), (DBEu. 

Again we want to show that (1) and (4) are equivalent, and again it 
suffices to show that (3) and (4) are equivalent. This time the proof is 
quite short. For let D be such as required. Take any u~C(r,(p, q)) and 
ueD(r,(p, p)). By the way U* was constructed, u=Xu. Furthermore, 
co1 C= co1 D, so Xu z Xv. Hence u E Xu. Consequently, 

BEuiff BEXZJ 
iff @BEu. 

Finally, suppose that A = @B. Consider these conditions : 
(1) @B holds at (C, p, q). 
(2) B holds at <C, q, p). 
(3) For each u ~C(r&q,p)), BEU. 
(4) For each urzC(~&p, q)), @BEu. 

Again, and for the same reason, it will be enough to show that (3) and (4) 
are equivalent. Take any ueC(r,(p, q)) and uEC(rlp(q,p)). By the way 
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U* was constructed, [u] = [7. Hence u= v”. Since @BE !P, 

BEU iff @BEV” 
iff @BEu. 

This ends our proof of Lemma 4. 

VII. COMPLETENESS OF B 

We are Anally able to prove that B is complete with respect to our se- 
mantics. 

THEOREM I. Every valid formula is derivable in B. 
Proof. Suppose that A is a formula not derivable in B. We shall show 

that there is a model in which A is false somewhere. It follows from 
our assumption that { 1 A) is a consistent set, so there will be some 
1~ 17, such that 1A~t (every consistent set can be extended to a maximal 
consistent set). Form the canonical substructure 6 generated by t. Let 
Y be the closure under 0, 0, and @ of the set of subformules of A. Let 
6” be the filtration of Gthrough Y. Because of the reduction axioms 
# # 5,6, Y is logically finite, so 6” is finite. The rectification G* of 6” is 
therefore definable. G* is a model. Let C be the cluster of which [t] is an 
element. It follows from the construction of G* that there exist p, qOat 
such that [i]= C(T,(p, q)). Since A#t, Lemma 4 implies that A is false in 
G* at (C, p, q). Q.E.D. 

As is usually the case with proofs of this sort, there is more information 
in the proof than spelled out by the theorem. Most important, the reject- 
ing model 6* (which of course varies with the formula to be rejected) is 
always finite. Actually it would not be difficult to compute an upper 
bound to the cardinality of U*, given the number of subformulas of A. 
However, here we are content to state just this result: 
COROLLARY. B has thefinite modelproperty. 
Hence, since B is recursively enumerable : 
THEOREM II. B is decidable. 

VIII. OUR SOLUTION 0~ AQVISTVS PROBLEM 

It is now possible to obtain a better picture of the logic contemplated by 
Aqvist. We see how his idea of evaluating formulas at a point with 
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respect to a point is accommodated in our semantics by identifying each 
point with the ordered pair of its coordinates. If the operators 0 and 0’ 
are identified with our 8 and @, respectively, then all we have to do in 
order to arrive at a definition of Aqvist models is to impose this one con- 
dition on our models (U, V, X, Y) : 

(vi) For all u, UE U and all keNat, if Xu = Xv then UE V(k) if and only if 
DE V(k). 

Note that this is a condition on models, not on frames! This explains why 
Aqvist’s logic is not closed under substitution. 

In the completeness proof carried out above, the only condition on L 
was closure under modus ponens and universal generalization: nowhere 
was it assumed that L was closed under substitution. Hence the proof 
works for Aqvist’s logic too. In fact, it is axiomatized by adding to B one 
new axiom schema : 

# 15. PkwlJJPk, provided Pk is a propositional letter. 
We shall sketch a proof of this contention. Let us call the new axiomati- 

&ion B’. 
THEOREM III. Every formula true in all Aqvist models is derivable in B’. 

Proof. Proceed as in the proof of Theorem I, with this exception: we 
add as a condition on Y that, for every propositional letter P, if Pkc Y 
then q P,o Y. Even under the new condition Y is logically finite, so 6* 
exists and is a model, and Lemma 4 holds. It only remains to prove that 
G* is an Aqvist model. 

Suppose that 

X*(C P, q) = X*(D, P, 0, 

and that for some kE Nat, 

CC, P, q) E v*(k) - 

Take any elements uoC(r,(p, q)) and o.~D(r,(p, r)). Since Y*(k)#B, 
it follows from the definition of V* that Pko Y. Therefore, as Pk holds at 
(C, p, q), Lemma 4 implies that Pkou. By # 15 - the new schema - 
q P,ou. Hence, by #9, O>mP,ou, so q PkoXu. Since co1 C=col D, 
Xu = Xv. By the new condition on Y, since Pko Y, also q Pko Y. Therefore 
[IlP,oXu. Hence @>Pkou, so, by #9 and #2, Pkeu. Applying Lemma 4 
once more we conclude that Pk holds at (D, p, r). That is to say, 
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COROLLARY. B’ has thefinite modelproperty. 
THEOREM IV. B’ is decidable. 

IX. POST SCRIPTUM 

When this paper was almost completed, Lennart Aqvist published his 
own solution to what we have termed Aqvist’s problem. His paper, an 
appendix to [l], is reprinted in the present issue of the Journal of Philo- 
sophical Logic. 

A prima facie Aqvist’s semantics may not appear very similar to ours. 
In effect the two are the same, however, even though in the present 
formulation Aqvist’s semantics is less general than ours - not surprising 
as we consciously sought generality. Whereas no effort is made to prove 
Theorem IV, Aqvist gives a He&in-type proof of Theorem III. The most 
interesting feature is that completeness of B’ is proved with no appeal to 
filtrations, let alone rectifications. Aqvist exploits the fact that in the 
presence of # 15 the canonical structure will satisfy the condition that 
each point be uniquely determined by its coordinates. Unfortunately 
there is no such fact to exploit in the general case. Thus, while Aqvist’s 
strategy is simpler and more straightforward than ours, it does not achieve 
as much. 

It would be interesting to know whether there are much shorter proofs 
of Theorems I and II than those we have presented here. 

University of Pittsburgh 
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