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A popular approach for obtaining surfaces interpolating to scattered data is to define the 
interpolant in a piecewise manner over a triangulation with vertices at the data points. In most 
cases, the interpolant cannot be uniquely determined from the prescribed function values since 
it belongs to a space of functions of dimension greater than the number of data points. Thus, 
additional parameters are needed to define an interpolant and have to be estimated somehow 
from the available data. It is intuitively clear that the quality of approximation by the interpo- 
lant depends on the choice of the triangulation and on the method used to provide the addi- 
tional parameters. In this paper we suggest basing the selection of the triangulation and the 
computation of the additional parameters on the idea of minimizing a given cost functional 
measuring the quality of the interpolant. We present a scheme that iteratively updates the trian- 
gulation and computes values of the additional parameters so that the quality of the interpo- 
lant, as measured by the cost functional, improves from iteration to iteration. This method is 
discussed and tested numerically using an energy functional and PoweU-Sabin twelve split 
interpolants. 

1. Introduct ion 

The problem of  scattered da ta  interpolat ion in two dimensions is tha t  of  con- 
s truct ing a funct ion,  say FI, such that  

Fl(xi, yi) = f ' ,  (xi, yi) e V,  (1) 

where V = {(xi,Yi)}i~l is a set of  distinct and non-coUinear points,  called da ta  
points,  a n d f . ,  i = 1 , . . . ,  N, are real numbers  tha t  are usually though t  of  as being 
the values of  a funct ion F,  tha t  is to be approximated  by El, at the da ta  points.  This 
problem is impor tan t  in m a n y  areas of  science and technology and  m a n y  methods  
for its solut ion were suggested in the literature; see e.g., the survey papers of  Barn- 
hill [2], F ranke  [9] (containing a numerical  compar ison between 29 methods) ,  Niel- 

son and  F ranke  [12], and Schumaker  [16]. 
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In this paper we restrict our attention to a class of schemes in which the interpo- 
lant is constructed over a triangulation with vertices at the data points in such a 
way that its restriction to each triangle of the triangulation is a function of a simple 
form, e.g. a low order polynomial, and is moreover continuously differentiable 
over the triangulated region. The dimension of the space of functions containing 
the interpolant is usually greater that N and thus the interpolation conditions (1) 
do not define it uniquely. By using a suitable basis we can write all interpolants 
defined over a fixed triangulation T as 

N M 

ST, f ,g(X,y) = ~-'~f'Pi(x,y) + Z g i Q i ( x , y ) ,  (2) 
i=1 i=1 

where f = 0q , . . - , fN) ,g  = (gl , . - - ,gM) is a real-valued vector, called the para- 
meter vector, containing the additional parameters needed to specify an interpo- 
lant from the space and Pi and Qi a r e  basis functions that depend on T. It is 
common to construct the interpolation space so that the components of g deter- 
mine values, or values of derivatives, of the interpolant at various points in the tri- 
angulated region. For example, in many practical cases the elements of g 
determine first order derivatives of the interpolant at the data points, i.e. we have 
t h a t  OST, f,g/OXl(xi,yi) = gzi-~, OST, f,g/OYl(x,,y,) = g2i, i = 1 , . . . ,  N.  It is intuitively 
clear that the quality of approximation by Sr,f,g depends on the choice of triangula- 
tion and parameter vector and that their computation is central to any interpola- 
tion scheme. A common approach is to generate the interpolant in two steps: First a 
"good"  triangulation is constructed and then the parameter vector is computed. 

Traditional triangulation methods [17] aim at constructing triangulations that 
contain as many "well shaped", nearly equiangular, triangles as possible. Long and 
thin triangles were considered to be bad for interpolation and were to be avoided 
whenever possible. An attractive choice for a well shaped triangulation is the 
Delaunay triangulation [11,17] that maximizes (over all triangulations of the same 
set of points) the minimal angle (in a triangulation). This extensively studied trian- 
gulation has many interesting properties and efficient algorithms exist for its con- 
struction. Thus it became a de facto standard for the choice of an optimal, 
geometrically well shaped, triangulation. However, recent studies (see Rippa [15] 
and references therein) suggest that, for piecewise linear approximation, it is impor- 
tant that the shape of triangles in the triangulation is adapted to the behavior of 
the approximated function. In particular, well shaped triangulations, e.g. Delau- 
nay, are not well suited for approximating functions with a preferred direction, that 
is, a direction in which the function has high curvature as compared to that in the 
perpendicular direction. In such cases better approximation can be provided by tri- 
angles that are thin in the preferred direction and long in the orthogonal direc- 
tion. Dyn et al. [5] proposed algorithms for producing data dependent 
triangulations that are adjusted to the behavior of the approximated function and 
show that a significant improvement in the quality of fit can be obtained when the 
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interpolant is constructed over such triangulations instead of the Delaunay trian- 
gulation. 

In order that the interpolant (2) can be fully defined on a given triangulation T 
we have to compute the parameter vector g. When components of g determine 
values, or values of derivatives, of Sr, f,g then a natural approach is to assign to 
these components corresponding values, or values of derivatives, of some higher 
order approximation to F; see Nielson and Franke [12] and Stead [18] for further 
discussion and references. A different approach [1,4,12] is to compute g so that 
ST, f,g is optimal in some sense, e.g. it minimizes a given functional, among all inter- 
polants ST, f, h, h ~ R M. 

In this paper we suggest considering the generation of the triangulation and the 
computat ion of the parameter vector in a unified framework, combining the data 
dependent approach for constructing triangulations with the method of computing 
the parameter vector by functional minimization. To this aim we associate with 
any interpolant Sr, f,g a value C(Sr, f,g) of a cost functional C measuring the quality 
of the interpolant, i.e. the smaller is C(Sr, f,g), the better is Sr, f,g. To make the pre- 
sentation clearer we restrict ourselves to a specific interpolation scheme and a speci- 
fic cost functional. The interpolant is called the twelve split Powell-Sabin element 
(PS 12) and is described in section 2 and C is the"roughness" ,  or energy, functional 
defined by 

((02ST'f'g'X~ 2''~(02ST'f'g'~2 (.02-~2f'g~2~dxdy, (3) 

~-~ d Ti t Ox 2 J-l-/-Ik O-OxOyy ) +k oy / ,] C(ST, f,g) = 
TieT 

where Ti~ T, i = 1 , . . . ,  N, are the triangles in the triangulation T. This functional 
has an interesting physical interpretation as measuring the bending energy of a sur- 
face and was considered by many authors, see, e.g., Alfeld [1] and Cline and Renka 
[4]. 

This paper is organized as follows. In section 2 we describe the PS12 interpolant 
and in section 3 we consider the problem of computing an optimal, minimum 
energy, interpolant among all interpolants defined over all possible triangulations 
and parameter vectors. Since, in most cases, it is very difficult to attain the optimal 
interpolant we also present efficient, locally optimal, schemes in which the triangu- 
lation and the parameter vector are updated iteratively. The iterations continue as 
long as the energy of the interpolant is reduced from iteration to iteration. In sec- 
tion 4 we present a summary of our numerical experiments with the suggested 
schemes and in section 5 we make concluding remarks. 

2. Powell-Sabin 12 split interpolant 

Two common requirements for an interpolant defined by (2), in order that it 
can be computed efficiently, are that its restriction to any triangle of the triangula- 
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tion (i) is a function of a simple form and (ii) is completely defined by specifying 
its values, or values of its derivatives, on vertices, edges, and points in the interior of 
the triangle. The degree of the lowest order polynomial satisfying these require- 
ments is five (see, e.g., [8]) which is too high for practical applications. Further- 
more, the necessary data for specifying such an interpolant must include 
derivatives up to second order whilst we are only interested in C 1 continuity. An 
alternative approach is to divide each triangle, called a macrotriangle in this con- 
text, into several subtriangles and to construct the interpolant as a low order poly- 
nomial on each subtriangle. Powell and Sabin [13] proposed to split each 
macrotriangle into twelve subtriangles (see fig. 1) and to define the interpolant to 
be quadratic on each of them. They showed that an interpolant, that we shall refer 
to as PS12, is uniquely defined as a C 1 function over the triangulated region by spe- 
cifying its values and the values of its first order derivatives at all vertices and the 
values of  its normal derivatives (outward or inward normal) at the midpoints of all 
edges of the triangulation. The parameters vector g of (2) contains values of first 
order derivatives of the interpolant at all data points and values of its normal deri- 
vatives (it does not matter  in which direction) at midpoints of all edges of the trian- 
gulation. Since the number of edges in a triangulation is not greater than 3N, N 
being the number of vertices, we have that the dimension ofg  is not larger than 5N. 
A common way to reduce the dimension is to require that the normal derivative of 
the interpolant is a linear polynomial (instead of being piecewise linear) on each 
edge. In this way the dimension of the parameter vector is only 2N while the result- 

Fig. 1. A twelve-split macrotriangle. The PSI2 interpolant, that is quadratic on each subtriangle, is 
defined by specifying its value and gradient at all vertices and its normal derivative at the midpoint of 

all edges of the macrotriangle. 
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ing reduced interpolant, that we call R-PS 12, is still a C l function over the triangu- 
lated region. 

Other popular interpolants of this type are [8] the Clough-Tocher interpolant 
obtained by subdividing each triangle into three and constructing the interpolant to 
be cubic on each subtriangle (this is probably the best known of those schemes) 
and the Powell-Sabin six-split interpolant defined by dividing each triangle into six 
and constructing the interpolant to be quadratic on each subtriangle. 

3. Minimizing the energy of  a PS12 e lement  

Let us consider the bilinear form a, 

a(u, v) = E [_ (UxxVxx + 2u~rv~y + UyyVyy)dxdy  , 
T ~ T  J lt 

defined over a fixed triangulation T. The energy functional (3) can be easily 
expressed, by using the representation (2), as a quadratic form in g, that is, as 

C(Sr, Lg) = a(Sr, f,g, St, f ,g) = (Ag, g) + 2(g, b) + c, 

where the M x M matrix A, the M-dimensionai vector b and the constant c are 
defined by 

Aq = a(Qi, Qj), bi = E f j a ( Q i ,  ej), c -- a Pj, Pj . 
j=l 

It is easy to verify that the (sparse) matrix A is positive definite (see also [1,4]) and 
thus the vector go (T) ~ II~ ~ defined by go (T) = - A -  1 b is the unique energy minimiz- 
ing vector, i.e, for which C(Sr,f ,  go(r)) = ruing ~ aM C(ST, f,g). 

Since there are finitely many triangulations of a set of points and to each one of 
them there corresponds a unique optimal parameter vector, it follows that the opti- 
mal interpolant Sr.Le,(r). ), for which C(sr.,l,eo(r.)) <~ C(ST, f,g) for any triangula- 
tion T and any M-dimensional vector g, always exists (of course, in general, it need 
not be unique). 

In practice it might be very difficult to obtain an optimal interpolant and we 
are usually content with interpolants that are only locally optimal in some sense. 
The schemes that we present below iteratively update the triangulation and recom- 
pure the parameter vector in such a way that the energy of the interpolant is 
reduced from iteration to iteration. The initialization of the iterations is completed 
by computing an initial triangulation T (~ (the Delaunay triangulation is a sensible 
choice since it ca~a be computed efficiently) and an initial parameter vector g(0~ (in 
our numerical experiments we took g(O) to be the energy minimizing vector go (T  (~ 
but, of course, it is possible to use any available method, for example [1,4,18], to 
compute a suitable initial vector). At the ith iteration we start with an interpolant 
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Sr, f,g corresponding to a triangulation and a parameter vector computed in the pre- 
vious iteration. An iteration step consists of transforming T into a new triangula- 
tion and computing a new parameter vector so that the energy of the interpolant 
defined over the transformed triangulation with the new parameter vector is smal- 
ler than that of Sr, f,g. A simple transformation of T was suggested by Lawson 
[10,11]: Consider an interior edge e of T that is the diagonal of a convex quadrilat- 
eral formed from the two triangles in T having e as their common edge. The triangu- 
lation T can be transformed into a triangulation, which we call T (e), by replacing 
e by the opposite diagonal of the quadrilateral. This local and simple transforma- 
tion is also very general since, as proved by Lawson [10] and Dyn et al. [7], any trian- 
gulation can be transformed to any other one by a sequence of such 
transformations. An edge e is eligible for such a swap only if it is a diagonal of a con- 
vex quadrilateral and if C(Srce) f, gCe) ) < C(ST, f,g), where g(e) is a parameter vector 
computed for the transformed triangulation, e.g. by one of the procedures 
described below. If more than one edge is eligible for swapping then we have to 
decide which one to swap. Different strategies are presented and compared in [6] 
but none was found to be significantly better than the others. In our implementa- 
tion we swap the edge E for which C(ST(E),f,g(E ) ) ~ C(ST(e) f,g(e ) ) for all eligible edges 
e. If no interior edge can be swapped, then the iterations terminate, and the result- 
ing triangulation is called locally optimal. The iterations may end also if a pre- 
scribed number of edge swaps was made. Since the number of triangulations is 
finite and each edge swap results in reduction in the energy of the interpolants, the 
above scheme converges after a finite number of edge swaps to a locally optimal 
triangulation provided that the vector g(e) is defined uniquely by T (e) andf .  

We turn now to the question of computing g(e) in order to define Srce) f, gc,~ over 
the transformed triangulation T (e). A possible method is to use the energy minimiz- 
ing factor go(T(e)) but this requires the solution of a system of linear equations 
and thus may be impractical for large sets of points. When g defines values of deri- 
vatives of the interpolant at the data points, as is the case for the (reduced) R- 
PS12 interpolant, and the components of the initial vector g(0) contain adequate 
approximation to derivatives of F at the data points, then we can take g(e) to be 
equal to the initial vector for all iterations. For the (full) PS 12 interpolant, the para- 
meter vector contains also components defining values of its normal derivatives at 
midpoints of all edges of the triangulation and thus, when computing g(e), we 
must take into account the fact that the location of the midpoint and the direction 
of the normal to an edge change after an edge swap. Assuming that the components 
of  g contain adequate approximations to derivatives of F at all data points and to 
normal derivatives of F at midpoints of all edges of T, then we suggest the follow- 
ing procedure: Take all components o fg  (e), except the one that defines the normal 
derivative of the resulting interpolant Srl,~,f,e~,~ at the midpoint of the swapped 
edge, to be equal to the corresponding components ofg. The remaining element is 
computed so that the energy of Srce),f, gce~ is minimized. This is equivalent to mini- 
mizing a quadratic function, with a positive leading coefficient, and is very simple 
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to implement. We note that the resulting parameter vector depends on T (e), on f 
and, also, on the previous parameter vector g. Thus the above iterative scheme is no 
longer guaranteed to converge in a finite number of steps. This did not cause any 
problems in our numerical experiments, in which we always observed convergence 
after a finite number of swaps. 

Other variants of the above scheme can be obtained by considering different 
initial triangulations and parameter vectors, different strategies for swapping 
edges, and different methods for computing the parameter vector on the trans- 
formed triangulation. One such variant is the scheme proposed by Quak and Schu- 
maker [14] in connection with (reduced) Clough-Tocher interpolants: The initial 
triangulation is Delaunay and the initial parameter vector was computed using a 
standard estimation procedure [4]. The parameter vector g(e) was taken to be equal 
to this initial vector for all iterations. No specific method for swapping edges was 
adopted and eligible edges are swapped as soon as detected by the program. 

4. The  numerical  experiments  

We have conducted extensive numerical testing of the iterative scheme discussed 
in section 3 involving the (full) PS12 and the (reduced) R-PS12 interpolants. Two 
scattered data sets consisting of 33 and 100 points, taken from Franke [9], and two 
regular grids, of 7 x 7 and 10 x 10 points, covering the unit square, were consid- 
ered. Data vectorsf  = (fl, �9 �9 �9 ,f~) were obtained for each set of points by evaluat- 
ing various functions, including all the functions of [9], at the data points. Several 
initial triangulations, always including the Delaunay triangulation, were con- 
structed and the vector minimizing the energy of the interpolant t o f  defined over 
the initial triangulation was taken as the initial parameter vector. 

The quality of fit of an interpolant t o f  defined on a given triangulation was mea- 
sured by computing various norms of the error function (namely the function that 
is the difference between the interpolant and the function from which f was 
sampled). We computed the Lx norm and the squared L2 norm of this "error" func- 
tion, and all its first and second order partial derivatives, using a seven-point, 
fifth-degree, Radon integration formula over all triangles. The tables display the L1 
and La norms of this error function in the "Values" row and the "LI"  and "La" col- 
umns respectively. The sum of the L1 norms of all first (resp. second) order partials 
of the error is displayed in the "Gradient"  (resp. "Second-der.") row and the 
"LI"  column. The rooted sum of the squared LE norms of all first (resp. second) 
order partials of the error is displayed in the "Gradient"  (resp. "Second-der.") row 
and the "L2" column. 

The objective of the first set of experiments was to compare the minimal energy 
interpolant So = S T , f ,  go(T ) and the interpolant SF = ST , f ,  gF(T ) defined by the vector 
gF(T) containing the true derivatives o f f  at the data points and, for PSl2 interpo- 
lants, the normal derivatives of F at midpoints of all edges. The results that we 
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obtained were by and large consistent over the large number of experiments. 
although there were counterexamples in each case. In general So was better than SF 
for approximating second order derivatives but worse for approximating function 
values. The quality of approximation to first order derivatives is comparable but 
usually So is worse when the quality of approximation of measured using L1 norms 
of the error in first order derivatives. Table 1 illustrates this behavior. It displays 
the errors for inter2Polants to data sampled from the function 
F6 = ~ [64 - 81((x - 0.5) + (y - 0.5)2)] 1/2 - 0.5, and constructed over the Delau- 
hey triangulation of 33 points. 

The next objective of our experiments was to test the iterative procedure for 
obtaining the locally optimal (minimal energy) triangulations presented in section 
3. We found that this scheme tends to converge very fast to a locally optimal trian- 
gulation and, in almost all cases, different locally optimal trinagulations were 
obtained when starting from different initial triangulations. The Delaunay triangu- 
lation was always very close to being locally optimal (very few edge swaps per- 
formed) but the energy of the interpolant defined over it was often higher than that 
ofinterpolants defined over other triangulations. 

Our final observation is that interpolants with higher energy provide in many 
cases better approximation than interpolants having lower energy. As an example, 
consider three interpolants S t , f  ,go(r) constructed for data taken from the function 
F2 = ( t a n h ( 9 y -  9x) + 1)/9 over three different, locally optimal, triangulations, 
T (a), T (b) and T (c) (see fig. 2), obtained by applying the iterative procedure starting 
from different initial triangulations of a set of 33 points. Table 2 displays the devia- 
tion of F2 and the interpolants defined over those three locally optimal triangula- 
tions. The quality of approximation to F2 on T (b) is much better than that on 
triangulation T(") which was obtained after one edge swap from a Delaunay trian- 
gulation. The energy of the interpolant defined on T (b) is smaller than that of the 
interpolant defined on T (a). The interpolant defined on T (c) has the smallest energy 

Table 1 
Deviation of the function F6 from interpolants constructed over the Delaunay triangulation of 33 
points. 

Deviation in R-PS 12 interpolant PS 12 interpolant 

Ll L2 Energy LI L2 Energy 

Values (SF) 0.00050 0 .00103 21.5569 0.00044 0.00093 11.7800 
Values (So) 0.00172 0.00254 4.9336 0.00150 0.00226 4.4064 

Gradients (SF)  0 .01861  0 .03470  21.5569 0.01367 0.02716 11.7800 
Gradients (So)  0 . 0 3 2 6 0  0.03236 4.9336 0 .02832 0.02925 4.4064 

Second-der. (SF) 1.84107 3 .93520 21.5569 1.08318 2.53758 11.7800 
Second-der. (So) 0.79077 0.79226 4.9336 0 .71080 0.78743 4.4064 
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Fig. 2. Triangulations T (a) (left), T (b) (middle), T (c) (right). 

but the quality of  fit by the interpolant defined over it is similar to that provided 
by the interpolant defined on T (~ i.e. worse than the quality of  fit provided by the 
interpolant defined on T (b). These findings are consistent with the conclusion of  
Quak and Schumaker [14] that the energy of  an interpolant does not provide a clear 
indication of  the quality of  approximation. 

Finally we note that the above experiments were also conducted using the six- 
split Powel l -Sabin interpolant and the Clough-Tocher interpolant (both full and 
reduced types were tested). The results were similar to those obtained for the PS 12 
and R-PS12 interpolants. Numerical comparison between these three macroele- 
ments will be presented elsewhere. 

5. C o n c l u s i o n s  

In this paper we suggest an iterative procedure for interpolating scattered data 
which aims at minimizing the energy of the interpolant. The procedure generates an 
initial triangulation and computes and initial energy minimizing parameter vec- 

Table 2 
Deviation of the function F2 from its R-PSi2 interpolant defined over three minimum energy 
triangulations of 33 points. 

Deviation in Li L2 Energy 

Values (T (a)) 0.01061 0.01488 48.729 
Values ( T (b)) 0.00405 0.00659 45.699 
Values (T (c)) 0.00982 0.01411 42.223 

Gradient (T(')) 0.26961 0.25340 48.729 
Gradient (T (b)) 0.11501 0.12336 45.699 
Gradient (T (c)) 0.23839 0.22888 42.223 

Second-der. (T (~ 7.73305 6.83612 48.729 
Second-der. (T (b)) 4.48987 4.31599 45.699 
Second-der. (T (c)) 6.70469 6.00280 42.223 
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tor. The tr iangulat ion is then iteratively changed, and the paramete r  vector recom- 
puted, in such a way that  the energy o f  the interpolant  is fur ther  reduced. 

The idea of  defining a particular interpolant  among all interpolants f rom a given 
space of  functions by minimizing the energy is not  new; see Alfeld [1] and Cline 
and Renka  [4], and we found that  this is a part icularly good technique for approxi-  
mat ing  first and second order derivatives. The iterative scheme as suggested in 
this par t  is very sensitive to the choice of  the initial t r iangulat ion and converges 
rapidly to a locally optimal tr iangulation. An interesting question is whether  tech- 
niques like simulated annealing [3] can be used to find better locally optimal trian- 
gulations. Such methods  try to avoid poor  local minima by allowing edges to be 
swapped, in a control led way, and also in cases where the energy of  the in terpolant  
defined over the t ransformed tr iangulat ion is increased. 

The ideas described in this paper  are, of  course, applicable to any si tuation 
where it is desirable to choose the interpolant  and the paramete r  factor  so that  the 
value of  a given functional  is minimized. We think of  the funct ional  being mini- 
mized as measur ing the quali ty of  interpolants,  and believe that  useful funct ionals  
can be constructed by using available informat ion about  the approximated  func- 
tion, e.g. convexity, monotonici ty ,  smoothness,  etc. The energy funct ional  dis- 
cussed in this paper  seems to be well suited to situations where the approximated  
funct ion is known to have low energy. In our numerical  examples we found that  this 
is not  a good cri terion for improving the quality of  fit to general functions and in 
m a n y  cases interpolants  having higher energy provide better approximat ion  than 
those provided by interpolants with lower energy. 
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