
General Relativity and Gravitation, Vol. P8, No. 8, 1996 

Cosmology of General Relativity without Energy- 
Moment.m Conservation 

A. S. AI-Rawaf I and M. O. Taha 1 

Received July 13, 1995. Rev. version February 19, 1996 

A modified version of the field equations of general relativity is obtained 
on relaxing the covariant energy-momentum conservation condition. This 
introduces a single arbitrary constant and does not appear to upset the 
successes of general relativity in or outside cosmology. The matter- 
dominated cosmological model, based on the generalized field equations, 
is discussed. It is shown to provide more room for consistency with the 
observational data. 

1. I N T R O D U C T I O N  

In  this  p a p e r  we der ive  a modif ied form of Eins te in ' s  field equat ions ,  by 
re lax ing  the  cend i t ion  of  covar iant  conservat ion of  t he  ene rgy -momen tum 
tensor  

T~;~ = O, (I) 

and  inves t iga te  t he  changes  t h a t  are  in t roduced  in the  s t a n d a r d  ma t t e r -  
d o m i n a t e d  cosmological  mode l  by  this  modif icat ion.  Our  or iginal  mo- 
t iva t ion  in consider ing th is  modif icat ion has been the  desire to  seek a 
so lu t ion  to  t h e  cosmological  en t ropy  p rob lem wi th in  s t a n d a r d  F r i e d m a n n -  
R o b e r t s o n - W a l k e r  cosmology. Th is  problem,  which is not  the  sub jec t  of  
t he  presen t  paper ,  follows from the  cons tancy  of en t ropy  dur ing  cosmic 
evolut ion.  I t  is a puzzle  t h a t  the  universe in i t ia l ly  possesses the  large en- 
t r o p y  t h a t  we p resen t ly  observe in t he  t he rma l  background  radia t ion .  In  a 
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homogeneous Robertson-Walker (RW) model with a perfect-fluid energy- 
momentum tensor, the constancy of entropy is an immediate consequence 
of condition (1). A solution to this puzzle that  does not assume a specified 
time-dependent cosmological constant [1-4] or introduce an extraneous in- 
flaton field [5] of arbitrary potential, may therefore be sought within a 
modified form of general relativity (MGR) in which the condition (1) is 
relaxed. 

We find that  it is indeed possible to relax the restriction (1) with- 
out upsetting the successes of general relativity (OR)* either in or outside 
cosmology. It  does, therefore, appear that  the covariant conservation con- 
dition (1) has not been specifically tested by observation. The construction 
of a theory in which (1) does not necessarily hold would thus provide an 
opportunity for testing this condition. In fact the relaxation of this condi- 
tion introduces a single arbitrary constant, 77. The restriction (1) requires 

= 1. Our i~lvestigation of the matter-dominated cosmological model, 
based on MCR and the homogeneous Robertson-Walker metric indicates 
that  77 ~ 1. 

It  should be stressed that  our approach to the derivation of the mod- 
ified field equations is the conventional heuristic and intuitive approach 
[6,7]. We simply drop the requirement (1) for T ~  (matter), and impose the 
other criteria for the field equations. No at tempt is made to construct 
the invariant action that  would yield the modified field equations from a 
variational principle. This is obviously desirable, but it is not our concern 
in the present paper, which is mainly concerned with the cosmological 
consequences of the modified field equations. 

The suggestion that  cosmological considerations may require the co- 
variant conservation condition (1) to be relaxed f o r  T~g (matter) has previ- 
ously been advanced in various forms; notably in the work on variable-A 
cosmology [1-4] to solve the entropy problem, and also [8] to resolve the 
horizon problem of the standard model. One usually adopts the interpreta- 
tion that  there is a covariantly conserved T~ (universe) ---- T ~ ( m a t t e r ) - ~  - (ex- 
t ra  piece), which is to be used in the standard field equations. Such an 
interpretation is, of course, also possible in the present work. It obviously 
does not affect the mathematical structure and is of no significant conse- 
quence. We find it more appealing to adopt the simple att i tude that  MGR 
is a classical theory of gravitation that  involves two independent constants, 
which appear to be equally fundamental. One of these constants does not 
survive in the Newtonian limit and seems to be operative in non-Newtonian 

* Editor's note: It should be mentioned that the field equations discussed here do n o t  

follow from a variational principle as GR does. 
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contexts. I t  would, therefore, be appropriate to seek its determination in' 
the cosmological domain. 

The results of our work are summarized in Section 4. The main cos- 
mological consequence is a new relationship between the age of the universe 
tp and the present value Hp of Hubble's constant, 

tpHp -- 2 + 77 \~pp] \ 2 '  2 + ~ ;2  4- -~/;1 - ~pp (2) 

where F is the hypergeometric function, f~p the density parameter and 
~/the new constant. This relation widens the margin for agreement with 
observational data  and provides, in principle, a basis for the determination 
of the constant ~/. 

The arrangement of the paper is as follows. In Section 2 we derive the 
modified field equations. In Section 3 we discuss some of the immediate 
consequences of the modified field equations. In Section 4 the cosmological 
model based on these equations is discussed. A summary of the results 
and concluding remarks are presented in Section 5. 

We show elsewhere [9] that the proposed cosmological model is con- 
sistent with the recent data  on Hubble's constant [10], does not lead to an 
increase in the probability of gravitational lensing and yields f~B > 0.03, 
where f~s is the baryon contribution to tip, in agreement with recent ana- 
lysis [11] of light element abundances. 

After the completion and limited preprint distribution of this work, it 
was brought to our attention that  our modified field equations, eqs. (8), had 
already been obtained by Rastall [t2], on the assumption that  condition 
(1) be replacea by 

T"~;,  = AR,~, (3) 

where A is a constant. The motivation of Rastall is that  the assumptions 
that  lead to (1) are all questionable, including the principle of equivalence. 

Our derivation of the modified field equations in Section 2 may be 
considered an alternative approach to these equations. It yields (3) and 
does not assume it. The rest of our paper is different. Reference 12 does 
not discuss the cosmological consequences of the modified field equations. 

2. GENERAL RELATIVITY WITHOUT THE CONSERVATION CON- 
DITION 

We derive the modified field equations using the conventional ap- 
proach [6,7] except that  we do not impose the covariant conservation con- 
dition. The field equations are 

G ~ ,  - -  - 8 r G T ~ ,  , (4) 
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where G ~  is the gravitational tensor to be determined. The requirement 
that  G ~  contains only terms that  are linear in the second, or quadratic 
in the first, derivatives of the metric tensor restricts G ~  to the form 

G~,  = a R ~ ,  + ~Rg~ ,  , (5) 

where a and f~ are constants. Then one requires that  the non-relativistic 
Newtonian equation 

V2g00 = -8~rGT00 (6) 

be obtained in the limit of the weak stationary field. This imposes the 
condition 

o~(c~  - 2) 3 
/9 = 2 ( 3 -  2 a ) '  a # 0, 2" (7) 

When this is substituted into (5) and (4), one obtains the modified field 
equations 

R , v  - �89 = - k T ,~ , ,  (8) 

where 
2 - a 87rG 

k : - -  (9) V =  3 - 2 a '  

In these equations the constant a is an arbitrary parameter. Standard cR 
has a = 1. 

Since the conservation condition (1) has not been explicitly imposed, 
it will obviously not be automatically satisfied. In fact one finds 

T~L,;~ _ V - I 
2k R ~ ,  (10) 

or, using R = k(2v - 1)-ZT, 

-I (z - 
T%;. = (11) 

where T = g ~ , T  ~' .  We shall assume that  ~ is a universal gravitational 
parameter, i.e. the same for all physical systems, and that  c~ # 1. Never- 
theless it would still be possible for some systems to satisfy the covariant 
conservation condition (1). Equation (11) then shows that  such systems 
are characterized by constant T. The constant value must then be zero, if 
one requires tha t  T~v = 0 at spatial infinity, i.e., 

T ~ ; ~ = 0  ==~ T = 0 .  (12) 
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Thus, a viable covariantly conserved system would necessarily possess a 
traceless energy-momentum tensor. This conclusion, which requires a ~ 1, 
is a remarkable consequence of MCa. There is in flat space no connection 
between the co~servation and tracelessness conditions. 

The important  case of the pure electromagnetic field is an example of 
this result. In this case 

T ~ '  = �88  ' ~  - g~ '~FV~F,~ ,  (13) 

and T~V,~ -- 0. The generalization of this to T ~ ; ~  = 0 requires g ~ v T  ~" = 
0 in curved space-time. Since this is already satisfied in flat space, both 
conditions may consistently be transformed from flat to curved space-time 
without imposing any additional constraint on T ~ .  

Conversely, one deduces from eq. (11) that  MGFt coincides with stan- 
dard c a  for all systems with a traceless energy-momentum tensor. For 
such systems R : 0 so that  

n,~,  = -kT~ ,v  . (14) 

The only difference between this and the corresponding equation of QR 
is the replacement of G by G / ~  on the right-hand side. Any observable 
consequences of this change should lead to a determination of ~. For the 
change to be possible, c~ > 0 is required. 

As previously stated we consider M~R to be a theory with two con- 
stants: k and c~, or equivalently G and ~. The Newtonian limit shows that  
c~k, or G, is the universal gravitational constant. Equation (11) indicates 
a universal rate of energy dissipation, or energy generation, for matter  
systems in interaction with the gravitational field. The universal constant 
may thus be determined by studying (11) in simple systems for which this 
equation is non-trivial. 

It is also possible to write the field equations (8) in the conventional 
form 

R ~  - ~1Rg~v = - k 0 ~ ,  (15) 

where 
O~,v = T~v -t- �89 - c ~ ) T g ~ .  (16) 

One notes that  0 ~  is completely determined by T ~  and vanishes in the 
absence of matter;  This form of the field equations shows that  one could 
equivalently regard MGR as a modification of T~,v, within standard OR, by 
the addition of a piece representing a matter-gravitation interaction term 
that  involves the new universal constant c~. The total energy-momentum 
tensor, 0 ~ ,  is covariantly conserved. This point of view is always tenable 
and does not affect any of the formal or physical consequences. 
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3. CONSEQUENCES OF THE FIELD EQUATIONS 

3.1. Empty space 
In empty space the field equations reduce to those of standard GR 

R~. --- 0. (17) 

This is extremely significant on two accounts. The first is that  one is 
allowed to keep, in MO~t, the extensive literature [13] that  exists on the 
classes of exact solutions of Einstein's vacuum field equations of various 
types and symmetries. The second is that  some of these solutions, such 
as the Schwarzschild and Kerr solutions, have been widely used to explore 
the most important  consequences of ca.  In particular, one notes that  
the crucial tests of the perihelion of Mercury, the deflection of light, the 
gravitational red shift and the delay in radar echoes, as well as the demon- 
stration of the existence of black holes, are all based on the Schwarzschild 
solution. The physics of rotating black holes is described by the Kerr solu- 
tion. Thus all these features, which are characteristic of standard ca, are 
maintained in MGR. 

3.2. Radiation 
As previously remarked, for systems with traceless energy-momentum 

tensor, the form of the field equations of oR and MGR are the same except 
for the replacement of G by G / a .  These include Einstein-Maxwell fields for 
which many exact solutions exist [13]. They also include general radiation 
and highly relativistic thermodynamic systems. Thus the modified and 
the standard field equations are essentially equivalent in their description 
of the pure radiation era in cosmology. It follows that,  even with the 
proposed modification, entropy could not have been generated during the 
pure radiation era. One must therefore associate the generation of entropy 
with the advent of massive particles,  i.e., with the phase transitions that  
create mass. It  thus seems that  the successes of the standard model in 
early cosmology are maintained while deviations are provided for, where 
the standard model is expected to be inadequate. 

3.3. Perfect fluid solutions 
In a homogeneous aw space-time, an energy-momentum tensor of the 

form 
T.. -- (p § p)u.uu q- pg~.. , (18) 

where p ---- p(t) ,  p = p(t)  and u 2 -- - 1 ,  will be designated "of perfect fluid 
type" (PFT). To represent a physical perfect fluid, Tt, v must also satisfy 
certain other conditions, such as positive energy density and a physically 
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acceptable equation of state, which are not necessary for our definition of 
PFT. 

We now observe tha t  eq. (16) shows that  if T~v is PFT then so is 
0~v and vice v~ersa. But  6 ~  is covariant ly  conserved and satisfies the 
field equations (15) of s tandard GR. There exist many exact solutions of 
eqs. (15) when 0~,~ is PFT [13]. These may therefore be utilized to yield 
exact solutions to the modified field equations (8) when T ~  is given by 
eq. (18) for certain equations of state p = p(p). 

The procedure is to transform eq. (18) into 

Pe = �89 - a )p  - 3(1 - ~)P, (19) 

R e = � 8 9  3 )P 1 - - ~(i - o O p ,  

and the equation of s tate  p = p(p) into the constraint P0 = Pe(pe). If, 
under this constraint, an exact solution to eqs. (16) and (19) exists, one 
would have a corresponding exact solution to eqs. (8) and (18) under the 
equation of s tate  p = p(p).  One should note that  the constraint Po = 
Pe(pe) need not be a physically acceptable equation of state since many 
exact PET solutions of GR extend beyond physically admissible regions and 
may still be formally used to obtain exact PFT solutions of MGR. 

As an example, suppose we seek a solution to the field equations (8) 
for a dust universe with flat Rw metric and 

= pu u , (20) 

From eqs. (16) and (19) this corresponds to Po = w h e r e p - -  pi t  ) > 0. 
�89 - a )p  and 

Pe - 3 -  o~ Po. (21) 

Although Po < 0, for 0 < a < 1, there exists an exact solution to eqs. (15), 
(19) and (21) in a flat Rw metric with scale factor a(t),  namely 

( 2 t) l-a/3 
- , (22) 

a c t ) =  3 o~to 

and 

- 1 (23) 
Pe -- 241rG t 2 ' 

where to is an arbitrary constant. This yields a solution to eqs. (8) and 

(20) with 
043 - 1 (24) 

P -- 12z'G t 2 
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and the same scale factor (22), since the Rw metric is the same. Setting 
c~ = 1 in (22) and (24) one obtains the well-known solution for the dust or 
mat ter-dominated universe of standard ca. 

We make two observations on eqs. (22) and (24), that  pave the way 
to our discussion of the cosmological model in MCa in Section 4. 
(a) Equation (22) changes the relation between the present age of the 

universe, tp, and the present value of Hubble's constant, Hp, from 
tp = ] H p  I in standard CR to tp ---- (1 -- (x/3)Hp 1 in MGR. For a given 
observational value of Hp, this increases the estimate of the age of the 
universe by a factor of (3 - a ) / 2  where 0 < a < 1. 

(b) From eqs. (22) and (24) one deduces the expected energy non-conser- 
vation. The energy of non-relativistic mat ter  increases as the universe 
expands since p a  3 ~ a s where s = 3(1 - c~)(3 - c~) -1. This indicates 
the continuous transformation of gravitational energy into dust, with 
associated generation of entropy which may also be estimated. 
Finally we mention an important  consequence of eqs. (15) and (16). 

The proofs of the classical singularity theorems [14] in GR will hold for MGR 
with the usual energy conditions imposed on 0 ~  and then transformed to 
T ~ .  The condition tha t  ( 8 ~  - �89 _> 0, for every time-like vector 
t ~, yields ( T ~  - �89 - a ) T g ~ ) t ~ t  ~ > O. When T ~  is PFT this condition 
requires 

p + p > 0 ,  P+--3 ( 2 - a ) p > 0 ,  (25) 
a 

which reduce to the usual conditions in GR when a = 1. For p > 0, 
violation of (25) is not likely to occur with any reasonable equation of 
state. 

3.4. Bui l t - in  cosmologica l  constant  
I t  is well known tha t  the addition of a term A g ~ ,  A constant, to the 

left hand side of Einstein's field equations is compatible with the conser- 
vation constraint (1). I t  does, however, violate the condition on the New- 
tonian limit and leads to residual vacuum curvature. In a homogeneous 
aw universe, generation of entropy requires that  A be time-dependent [1] 
so tha t  (1) is violated. A number of variable-A cosmological models exist 
in the li terature [1-4]. The field equations of MGR may, in fact, be written 
in a form that  exhibits a t ime-dependent cosmological term and presents 
the theory as a variable-A model: 

1 R R ~  - ~ g ~ ,  + A g ~  = - k T ~ ,  (26) 

I I - o~  
h - 2 3 - 2(~ R .  (27)  
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In this respect one observes that  
(a) A(t) --* 0 as t -~ c~ in a perfect-fluid Rw universe, i.e. one has a 

decaying-A cosmology. 
(b) A ~ 0 in vacuum, so that  no additional A-force occurs in the vacuum 

solutions. 
(c) A ~ 0 for traceless T ~ ,  so that  exponential de Sitter or inflationary 

expansion cannot arise during the pure-radiation era. Thus, if de- 
sired, exponential inflation can only occur in a pre-radiation period. 
This is consistent with the assumption that  the initial period of the 
cosmic expansion was controlled by the interaction of a scalar field 
with gravitation [5]. 

4. THE COSMOLOGICAL MODEL 

At any time during the evolution of the universe one may write the 
total  energy density in the form 

P = P r + P r m + P m  (28) 

where Pr is the contribution of pure radiation (i.e. of the different types of 
massless particles), Prm the contribution of massive matter in equilibrium 
with (electromagnetic) radiation and Pm the contribution of decoupled 
massive matter.  

In a classical cosmological model, one may distinguish three stages of 
evolution. Stage I is an era of p u r e  r a d i a t i o n  with 

1 
P = P r ,  P = "~Pr, Pr = b T  4, (29) 

where b is a known constant. Stage II is a t r a n s i t i o n a l  e ra  of radiation and 
relativistic (elementary-particle) matter  in thermal equilibrium, with 

1 b , T  4 P = P r + P r m ,  Pr = ~Pr = �9 (30) 

The expressions for Prm (T) and Prm (T) axe model-dependent. One usually 
assumes ideal gas distributions and applies the formulae of nuclear statis- 
tical equilibriuq~ to study nucleosynthesis during this period. It would be 
useful to reconsider this standard analysis in MaR. 

State III is the m a t t e r - d o m i n a t e d  era in which non-relativistic (atomic 
then galactic) mat ter  is decoupled from radiation. In this era, 

P = Pr + Pro,  pr = cTr 4 , Pr = l p r ,  Pm "~- O. (31) 
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The matter  component may be thermodynamically modelled by an ideal 
gas with Pm ~ 0 and a temperature Tm related to Pr, and Pm by the 
equation of state of a classical non-relativistic ideal gas. It is actually 
a classical thermodynamic system that  is gradually transformed from an 
ideal gas of hydrogen into an ideal gas of galaxies. To circumvent this, one 
simply studies the matter  component as a mechanical system that  evolves 
under the field equations. 

For a homogeneous universe with aw metric and T~v given by (18), 
the field equations (8) give 

= ~ [p -/3(3p - p)] a2, (32) 

d j - [ a 3 { p - l ~ ( 3 p - p ) } ] + 3 a 2 [ p + 1 3 ( 3 p - p ) ]  =0 ,  (33) 
da 

where/~ = � 8 9  - ~) and ~ is the curvature constant. 
As remarked previously, these equations coincide with those of the 

standard cosmological model for the stage of pure radiation, except that  
one replaces G by G / s :  

(~)2 = 31 kpr a2e ' dad (a3pr)§ . (34) 

Thus for small t, irrespective of the value ore, a ~ t 1/2, Pr ~ a -4, T ~', a -1, 
S is constant and the model is indistinguishable from the standard model 
during this stage. An earlier field-theoretic era may be constructed to 
remove the im~ial singularity. This may, for example, be an extension of 
the string-motivated model of [15]. 

During the transitional era of stage II, the field equations give 

= -~ [pr + ( l  + t3)pm - 3/3pm] a2 , 

d [.3{p, + (1 +  )pr= - 3Zprm} ] 
da 

+3a2[3Pr--flPrm+(lT3j3)Prm] = 0 .  (35) 

One may apply the usual assumptions of thermal and chemical equi- 
librium for the various species of radiation, elementary particles or nuclei 
that  populate the universe in several successive ranges of temperature. 
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The results will not be much affected by the presence of/3, since for tl~e 
most part the conditions are relativistic. For example, one would still find 
that  

since this is based on pe+ ,~ T 4, so that  entropy is approximately constant 
in MGR, which is required for (36). A notable exception is the generation 
of entropy during this stage in MGR whereas entropy is strictly constant in 
the standard model. Equation (35) gives 

T dS d dv d 
dt = d-t (PrmV) + Prm-~ =/3V~-~ (3prm - Pro). (37) 

In the ideal gas model, for large T,  (d/dt)(3prm - P~m) > 0. Thus/3 > 0 
i.e. 0 < a < l .  

The generation of entropy during this stage is an important physical 
feature, since this period includes the spontaneous symmetry breaking 
that  generated quark and lepton mass, as well as the phase transition that  
created hadrons. 

During the matter-dominated era, the field equations give 

= [ , 2 ,  (38) 

(39) 
, 4  

(1 + f l )~a (a3pm) - 3fla2pm = O, 

assuming that  Pro, 3/3pro >> Pr. For the radiation component, the entropy 
is (assuming massless neutrinos) 

S, = S.~ + S~, or a3T 3 (40) 

which is not  constant, since eq. (34) is no longer valid. Equation (39) 
yields 

where the constant of integration is evaluated at the present time t = tp, 
writing Pmp and ap for the present values of Pm and a. Thus, in contrast to 
standard cosmology, the total energy content Era of non-relativistic matter 
is not constant. It  increases with the expansion according to 

E m  '~  a 3/~/(1+/~). (42) 
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The time-dependence of the scale factor, a(t),,is obtained from eqs. (38) 
and (41). From eq. (38) one gets 

2 2 [ 1-Ff~ 1] 
e : a p g ;  [ ' i - ~  ['~ p - (43) 

where 
= 8"n'Gpm 

3H 2 (44) 

Thus the universe is critical for 

1 - 2 f l  
~ p  = 7 ,  ~ = 1 + f l  " ( 4 5 )  

Since ~ < 1, this is a considerable departure from the standard model, 
which is critical for g~p = 1. If, for example, f~ -- �88 the universe is closed 
when ~p > 0.4. 

The observational limits on ~p are 

0.1 < f~p < 4. (46) 

It thus appears that,  with any appreciable value of f~, a closed universe is 
more likely. We shall first consider the case e = 1, so that  

(47) 

where 

a0  = ap  ( 4 8 )  

Equation (47) should be integrated subject to the boundary condition a = 
adec at t = tdec, where 'dec' denotes decoupling of matter  and radiation. 
We shall, however, replace this condition by a = 0 at t = 0. Then eq. (47) 
gives 

t ~ aO - -  f ( a / a o ) "  _ _  u 1 1 , - 1 1 2 ( 1  _ u ) - l l 2 d u  ' 

?7 --JO 

i.e., 

(49) 
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where F is the hypergeometric function. This equation determines a = a(f) 
implicitly. The corresponding equation for the standard model (77 = 1) is 

r /a \ l l  2 (a'~112(1_ a'~112 ] 
- - -  - -  . ( 5 0 )  

, o 0 ,  o0,  

Equations (47), (48) and (49) may be used to express the age of the 
universe tp in terms of Hp, lip and 77. For eqs. (47) and (48) give 

so that  eq. (49) yields 

tp = N(+)(flp, ?7)H; 1 , 

where 

+ N(+) (lip, 77) = 2 lt~pp ] F , + ~ ; ~ + ~ ; i -  . 

(51) 

(52) 

(53) 

For the standard model (with e = 1) one has 

[ 1 1 (ap ~1)1/2 sin-1 - 1 . (54) N ( + ) ( f l P ' I ) =  ~p~--i \ ~p ] 

We shall consider lip, Hp and tp as given observables. Equation (54) 
is then a rigid test of the (closed) standard model. From work on the age 
of the globular star clusters in the halo of the Milky Way [16] one deduces 
that  

tp > (16-t-2) x 109 yr. (55) 

Taking for the Hubble parameter, hp, in the relation 

Hp t = 0.98hp 1 x 101~ yr, (56) 

the observable range 0.5 < hp ~ 0.85, we get 

11.53 x 109 yr < Hp 1 < 19.6 x 109 yr. (57) 

From these one secures the lower bound 

tpHp ~ 0.71, (58) 
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and, if equality; is assumed in (55), also the upper bound tpHp < 1.56. The 
bound (58) appears to exclude the closed standard model, since eq. (54) 
gives tpHp = (0.67, 0.57, 0.51, 0.47) for t p  = (1, 2, 3, 4), which covers the 
whole of the allowed range, (46), for the closed model. 

For flp < 1, the standard model is open and eq. (54) is replaced by 

1 [ n,> (1-n,] 'i2] 
N(-)(t.,I)= 1--n. 1 ( l _ t p ) ~ / 2  s i n h ' l t . - - - ~ .  ) j .  (59) 

Using this equation one finds that  the lower bound (58) is satisfied only if 
~2p < 0.7. It thus appears that the presently available observational data 
would exclude the matter dominated standard model for all f~p > 0.7. It 
is only tenable in the range 0.1 <~tp __~ 0.7. 

Equation (53) shows that the situation is quite different in the matter- 
dominated model of MCR, due to the presence of the parameter 77. 

We first note that  eq. (53) also holds for the case e = -1 ,  i.e., for the 
open model with t p  < ,/, so that  

where 

N (-) ( tp ,  r/) = N (+) ( tp ,  r/). (60) 

This follows from the fact that, in this case, eq. (49) is replaced by 

. . . . .  , (61) * 2+7k ) \ a l / /  

( = H_ 1 ( 17 ~ 112 ( ~p ,~11,7+112 (62) 

Thus eq. (53) may be used for all cases and we shall denote fpHp by 
N ( tp ,  77). One notes the special cases: 

2 i12F(1 3 5.1 _ t ; , )  (63) N ( t p , 1 )  = ~ tip ' 2 ; 2 '  ' 

which may be written in the forms (54) or (59) for t p  <> 1; 

2 
N ( t p ,  t ip)  = 2 + tip ' t p  < 1, (64) 

N ( t p .  0) = v / -~ t ; l /2e  l/n" [1 - r  1/2) ]. (65) 
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Figure 1. Region consistent with the modified matter-dominated model is shaded. 
The standard model is the edge 7} = 1 of this region. 

where @(x) is the error function. 
Using these equations one finds (see Figure 1) that the observational 

data restrict the values of N to the range 

0.71 < N < 0.96, (66) 

where the upper limit corresponds to ~p ~-- 0.1, z} = 0. For 0.1 < ~p < 0.7, 
it is possible to admit values of W in the whole range [0,1], where the unique 
fixed value is determined by the values of f/p and N. For 0.7 < ~p < 1.4 
we must have 0 < ~/< 1 and the standard model is excluded. Thus the 
admissible values of ~'~p lie in the range 

0.1 < f/p < 1.4. (67) 



9 5 0  A l - R a w a f a n d  T a h a  

Should observations show N or 12p to exceed 0.96 or 1.4, respectively, one 
must discard the matter-dominated,  zero-pressure, cosmological model, 
even when energy conservation is relaxed. 

If, on the other hand, observations fix definite values for f~p and N 
tha t  lie within the admissible region of the MGR matter-dominated model, 
then a unique value of W is determined. For example, the values ~p -- 1, 
N -- 0.73 yield 7} -- 0.25. One is then able to measure the energy non- 
conservation parameter  at a value tha t  definitely excludes the standard 
model. Figure 1 shows the standard model to be extremely restrictive 
since N is uniquely determined by ~'~p when ~} = 1. For example f~p -- 0.5 
yields N = 0.75 (when ~} = 1), so that  Sp = 15 x 109 yr implies H p  1 = 
2 x 101~ yr, i.e. h -- 0.49, which is at the limit of the observational range. 
In the MGR model, flp ---- 0.5 is consistent with 0.75 < N < 0.85, so tha t  
tp --- 15 x 109 yr yields 0.49 < h < 0.56 which provides some margin for 
agreement with observation. 

We finally note tha t  eq. (27) enables one to obtain an expression of 
the effective decaying cosmological "constant" of the matter-dominated 
model based on MGR: 

A = _~1 - a 47rGpm ~ a -[3/(1+/~)]. (68) 
c~ 

If  c~ is small, as seems to be the indication of Fig. 1, then ~ ~ 1 and the 
rate of decay in (68) will be close to that  of the critical-density model of 
[1] in which A ~ a -2. From (68) one obtains for the present value 

IApl (69) 
2 c~ 

of the order of 1020 yr -2. 
In Sectiop 5 we give a summary  of our results and some concluding 

remarks. 

5. SUMMARY AND CONCLUSIONS 

(i) Motivated by our desire to solve the entropy problem of the stan- 
dard cosmological model, we have proposed that  the energy-conservation 
condition be relaxed. The result is a modified version of classical general 
relativity with a single free parameter,  embodied in the field equations (8). 

(ii) A number of immediate consequences follow from the modified 
field equations: 
(a) Covariantly conserved systems must possess a traceless energy momen- 
tum tensor. 
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(b) In empty space the modified field equations coincide exactly with those 
of standard general relativity; eqs. (17). 
(c) It follows from (b) that  the crucial tests of general relativity, the exis- 
tence of singularities, black holes and all features connected with the exact 
vacuum solutions remain intact. 
(d) For systems with a traceless energy-momentum tensor the modified 
field equations coincide with the original ones, eq. (14), except that  G is 
replaced by G/~ where ~ ~ 1. 
(e) It follows from (d) that  the treatment of Einstein-Maxwell fields, gen- 
eral fields of pure radiation, and highly relativistic thermodynamic systems 
remains unchanged. In particular, the modified and original field equations 
are equivalent in their description of the radiation era in cosmology. 
(f) The modified field equations may be written in a form that  exhibits a 
cosmological term [eq. (26)] with a definite dependence on the scalar cur- 
vature [eq. (27)]. In a perfect-fluid aw universe, this provides an effective 
decaying cosmological "constant", that  vanishes identically in vacuum and 
in pure-radiation systems. 

(iii) In the matter-dominated era of the homogeneous aw universe 
based on the modified field equations one finds that the total energy of 
non-relativistic matter increases with the expansion, eq. (42). This might 
be interpreted as the continuous transformation of gravitational energy 
into massive matter, as the curvature of the universe unfolds and it evolves 
towards flatness. 

(iv) The present value of the product tpHp is given for the modified 
matter-dominated model by eq. (53), where 0 _ ~/< 1 and ~ = 1 is the 
un-modified model. The universe is closed for f~p > 7. One finds that  the 
observational lower bound in eq. (58), which seems to exclude the closed 
unmodified model, is consistent with open and closed possibilities in the 
modified version. 

(v) The observational lower bound in eq. (58) restricts the original 
matter-dominated model to be open and admits values of f~p that  are 
limited to 12p < 0.7. For the modified version both open and closed pos- 
sibilities are consistent with the data and the upper bound on f~p is 1.4. 
Exact knowledge of ~p and $pHp would either uniquely determine the free 
parameter ~ in the range 0 < z /<  1 or show that  the matter-dominated 
cosmological model is inconsistent with the data, even when energy con- 
servation is relaxed. 

(vi) Should the need arise for generalizing the matter-dominated zero- 
pressure cosmological model, the obvious extension is to include electro- 
magnetic radiation and relativistic massive neutrinos, where the latter are 
the dominant component. Exploration of the wider margin for consistency 
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wi th  the  obse rva t iona l  da ta ,  t h a t  is p rov ided  by  the  modif ied  model ,  should  
however precede  such general izat ions .  
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