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We investigate stochastic gravity as a potentially fruitful avenue for 
studying quantum effects in gravity. Following the approach of stochas- 
tic electrodynamics (SED), as a representation of the quantum gravity 
vacuum we construct a classical state of isotropic random gravitational 
radiation, expressed as a spin-2 field, h.~(~),  composed of plane waves 
of random phase on a fiat spacetime manifold. Requiring Lorentz in- 
variance leads to the result tha t  the spectral composition function of 
the gravitational radiation, h(w), must be proportional to 1/w 2. The 
proportionality constant is determined by the Planck condition tha t  
the energy density consist of hw/2 per normal mode, and this condi- 
tion sets the amplitude scale of the random gravitational radiation at 
the order of the Planck length, giving a spectral composition function 
h(w) -~ ~"6"~c2Lp/w ~ . As an application of stochastic gravity, we inves- 
t igate the Davies-Unruh effect. We calculate the two-point correlation 
function {/~ojo (0,1- - 6~-/2)Rkom(0, r + 6~-/2)) of the measureable geo- 
desic deviation tensor field, Rioio, for two situations: (i) at  a point detec- 
tor uniformly accelerating through the random gravitational radiation, 
and (ii) at an inertial detector in a heat bath of the random radiation 
at  a finite temperature. We find that  the two correlation functions agree 
to first order in a6"r/c provided that  the temperature and acceleration 
satisfy the relation k T  = ha/2~rc. 

1. I N T R O D U C T I O N  

I n  s t o c h a s t i c  e l e c ~ o d y n a m i c s  (SED), t h e  e l e c t r o m a g n e t i c  v a c u u m  is re-  
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garded as a classical state of real, isotropic, random electromagnetic radi- 
ation. This picture of zero-point fluctuations in a real field has its origins 
in early investigations of the quantum aspects of the electromagnetic field 
by Planck [1], Nernst [2], and Einstein and Stern [3] before the advent 
of quantum mechanics. After the introduction of quantum mechanics the 
picture came to be regarded as naive, and the vacuum was considered 
to consist only of virtual particles without any measurable consequence. 
There are, however, measureable vacuum effects that  are realized when 
the vacuum interacts with charged particles as in, for example, the Lamb 
shift [4] and quantum noise in electronic devices (Ref. 5, Ch.7), and when 
physical boundary conditions are altered as in the Casimir effect [6], the 
Casimir-Polder force [7], and spontaneous emission in cavities [8]. A fur- 
ther vacuum effect that  is, in principle, measureable is the Davies-Unruh 
effect [9,10] which is due to an altered physical vacuum as perceived from 
an accelerated frame of reference. In an attempt to obtain more physically 
meaningful and less abstract explanations for vacuum phenomena, Mar- 
shall [11] and Boyer [12] in some far-reaching work in the 1960s and 1970s 
resurrected the earlier classical ideas of the electromagnetic vacuum and 
applied them, respectively, to the problem of the stability of the hydrogen 
atom ground state and to the derivation of the Planck spectrum. Since 
this pioneering work considerable progress has been made, and SED has 
been applied successfully to many of the standard problems of QED [13]. In 
fact, Milonni [14] has shown that,  with few exceptions, SED and QED treat- 
ments give identical results. Some good arguments supporting the reality 
of the vacuum have been given by Halsch et al. [15]. A consensus may be 
emerging that  the vacuum is an all pervasive state of a field, not funda- 
mentally different from the excited (particle) states except that, because it 
is the ground state, it cannot give up any energy-momentum to a particle 
detector. A comprehensive review of SED, including many references, has 
been given by de la Pefia [16]. 

At the present time there is no satisfactory theory of quantum grav- 
ity. With the possible exception of superstrings [17], which have their own 
problems, theories of quantum gravity [18] are essentially nonrenormaliz- 
able. But even more serious conceptual problems exist. The metric g~L,(x) 
is not only a tensor field on the spacetime manifold, but through the line 
element d s  2 ---- g~,dx~dx ~" it also defines the proper distances between the 
points x on the manifold which label the degrees of freedom of the metric 
field itself. Thus, when the metric field becomes quantized, the degrees of 
freedom of the metric field also become quantized, and such a situation 
is exceedingly difficult, if not impossible, to interpret both physically and 
mathematically. 
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Given the many successes of SED in treating quantum aspects of the 
electromagnetic field and the lack of success of at tempts to quantize the 
gravity field, it seems entirely reasonable and appropriate to apply the 
classical-statistical ideas of SED to gravity as a potentially powerful analyt- 
ical tool. At the outset, however, we must recognize that  where Maxwell's 
theory is linear, general relativity is nonlinear. While a linear superposition 
of plane waves satisfies Maxwell's equations, it does not satisfy Einstein's 
field equation. So we must immediately retreat to a weak field satisfying 
a linear field equation. But  this restriction is compatible with our goal 
in this paper which is limited to the vacuum state for distance scales well 
above the Planck scale. For distance scales on the order of the Planck 
scale, we probably have a topological foam, and Hawking [19] has shown 
that  Planck-scale black holes contribute strongly. Our formalism is totally 
inadequate to handle these non-linear configurations. We are considering a 
random classical field as a representation of the quantum gravity vacuum. 
Our results will be compatible with a weak-field assumption. 

Thus we are led to consider a tensor field h~u(x) on a flat manifold, 
with Ih~v I << 1, composed of an isotropic superposition of plane waves with 
random phases as a classical representation of the quantum gravitational 
vacuum. Weinberg [20] and Deser [21] have shown that  a self-coupled 
spin 2 quantum field (without random phases) satisfies the Einstein field 
equations and has all of the properties of GR when it is finally interpreted 
as a metric field on a corresponding curved manifold. We interpret the 
zero-point fluctuations as occurring primarily in the tensor field on the 
fiat manifold where it is unrelated to the metric which is Minkowskian. 
Then the full metric on the associated curved manifold is gu~ = ~?u~ -t- hu~ 
and the fluctuations in hu~ cause the manifold itself to fluctuate. 

In this paper we do two things with the random classical gravita- 
tional radiation that  we are taking to represent the gravitational vacuum: 
(i) through the relativity principle and the Planck condition we deter- 
mine the form and magnitude of the spectral composition function h(w), 
and (ii) we investigate the Davies-Unruh effect for a particle detector ac- 
celerating through this gravitational vacuum. In applying the relativity 
principle, we insist that  the stochastic average, (h~h~) ,  be manifestly 
Lorentz invariant when expressed as an integral over the wave vector 
and sum over polarizations. Applying the Planck condition, that  (Too) 
should have an. energy hw/2 per normal mode, sets a scale for the am- 
plitude of the gravitational radiation at the order of the Planck length. 
For the Davies-Unruh effect we calculate the two-point correlation func- 
tion, (P~0j0(0, ~- - ~T/2)RkOlo(O, 7- -I- 5T/2)),  of the measureable geodesic 
deviation tensor field, P~0jo, at a point detector accelerating through ran- 
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dom gravitational radiation and at an inertial detector in a thermal bath 
of random radiation. The two cases agree to first order in aSr/c if the 
temperature and acceleration are related by kT = ha/27rc. 

2. THE STOCHASTIC GRAVITATIONAL VACUUM 

Following the procedure of Boyer in the electromagnetic case [22], we 
construct a rank two tensor field h~(x)  on a flat spacetime manifold as 
an isotropic linear superposition of classical plane waves propagating at 
the speed of light with random phases, integrated over all wave vectors k 
and summed over two independent polarizations A = 1, 2. We work in the 
transverse, traceless (IT) gauge (Ref. 23, p.946) where h~o = O, Y'~-i hii = O, 
and ~--]~j h i j j  = 0. The nonzero elements of h~(x)  are given by 

2 

hij (r, t) = E / dSkeiJ (k, A)h(w) cos[k �9 r - wt - e(k, ~)], (1) 

where the eij(k, A) for A = 1,2 are two independent polarization tensor 
fields on k space, h(w) = h(ck) is a spectral composition function to be de- 
termined by considerations of Lorentz invariance and quantum mechanics, 
and the 8(k, A) are a set of random phase angles. 

Equation (1) is a classical, stochastic representation of the quantum 
gravitational vacuum. With the random phases 8(k, A) held constant, 
h ~  (x) is a solution of the Einstein field equations in the weak field (lin- 
earized) limit (see Ref. 23, p.435) for any composition function h(w). The 
classical ground state is a zero-field configuration. So eq. (1) represents 
zero-point fluctuations (ZPF) about the classical vacuum. 

Because the classical equations of motion are linear in the weak-field 
limit, the spectral composition function h(w) is so far unrestricted. But we 
require that  average (or expectation) values be in accord with the relativity 
principle. In particular we require (hu~h ~}  to be a Lorentz scalar. From 
eq. (1) with hu~ in the IT gauge, we have 

2 

= = f d3k I a) 
,~----1 

(2) 

where k -- [k[ and we have used 

(cos[e(k,  ,X)] cos[e(k' , ,~')])  = (sin[e(k,  A)] s in[e(k' ,  A')]} 
= �89 - k')Saa,,  (3) 

(cos[O(k,,X)] s in[e(k' ,  ~ ' ) ] )  = O. (4) 
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The factor of k 3 in eq. (3) arises from dimensional considerations. The 
angled brackets in eqs. (2), (3), and (4) denote time averages over random 
phase angles, 8(k, A), associated with each normal mode (wave vector k 
and polarization A). The fluctuations in phase between different modes 
are uncorrelated. Therefore the averages of eq. (3) should give a Dirac 
delta function in the continuous mode label k and a Kronecker delta in 
the discrete label A. But  these averages are pure numbers without units. 
Consequently the Dirac delta function must be dimensionless and of the 
form 

1 / da~e ~'[(k-k')/kl - ka~S(k - k'),  (5) 63[(k - k ' ) /k]  = (21r)3/2 

where ~ is nondimensional. The argument of this delta function uniquely 
satisfies all of the requirements: (i) it is dimensionless; (ii) it is a function 
exclusively of the components of the two wave vectors; and (iii) it is zero 
only when the two wave vectors are equal. The factor of �89 is due to the 
fact that  when k = k ~ and A = A t the two averages in eq. (3) are equal and 
their sum is equal to one. Boyer's disregard of the units of delta functions 
has resulted in his spectral function h2(w) for both the scalar field and the 
electromagnetic field being incorrect by a factor of (c/w) 3 [22]. However, 
if one consistently ignores the units of delta functions, as Boyer has done, 
a compensating error is made in doing the integrations over wave vectors 
for the correlation functions. Consequently Boyer's correlation functions 
are correct. 

In order for eq. (2) to be Lorentz invariant, the right-hand side must 
have the invariant form (Ref. 24, p.l12) 

d3k (const.). (6) 
2• 

Since ~= le i j ( k , A) e ~ J (k ,A)  = 4, independent of k, 3 and w = ck, in- 
spection of eq. (2) shows that  Lorentz invariance requires the spectral 
composition function to be of the form 

A 
= (7)  

where A is a constant. 

2 3 The identity, ~=i ~#(k'A)ei#(k'A) = 4, follows from eqs. (22) and (23) in Section 
3. It is obviously true for the polarization tensors given by eq. (22) and the sum is 
invariant under the orthogonal transformations of eq. (23). 
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We determine the proportionality constant, A, by considering the en- 
ergy density of the gravitational radiation, Too, which, according to Planck, 
should be composed of hw/2 for each normal mode of oscillation. Thus 
from a quantum mechanical point of view, the energy density should be 

2 

On the classical side of the picture, the energy density for gravitational 
waves in the TT gauge is given by (see Ref. 23, p.955) 

1 c 4 

Too = 32---~ G (hij '~ (9) 

where hij,0 denotes a derivative with respect to x ~ - ct, and the average 
is over a representative number of periods of the wave. As the stochas- 
tic average is also over such an interval, we make no distinction in our 
notation. 

Substituting derivatives of eq. (1) with respect to x ~ and eq. (7) for 
h(w) into eq. (9) and applying eqs. (3) and (4), we have the result 

Too = 64--~ G d3k--w-~ eijeiJk 3, (10) 
A=l  

where the factor of (w/c) 2 comes from the x0 derivatives of eq. (1). 
w',2 ij Comparing eqs. (8) and (10) and noting that  2-,~--1 eije = 4 in 

eq. (10) (see footnote 3 above), we see that  the proportionality constant 
must be 

A = ~ v/-h-G/c a c 2 ~ - -  v / ~ L p c  2, (11) 

where Lp is the Planck length, and the spectral composition function is 
given by 

h(w) = Lp lvfl"~ D = LPvfi '~ /k2" (12) 

Substituting eq. (12) into eq. (1), our final result for the random 
classical gravitational radiation in the TT gauge can now be written as 

h Ar, t)=LpVY  _,i  )cos[k. r -  O(k, (13) 
)~-=1 
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where k = [k[ = w/c. Average values of scalars formed from h,~ are 
Lorentz invariant, and the associated energy density consists of a collec- 
tion of harmonic oscillators, with each oscillator in its ground state of 
energy likc/2 and each one corresponding to a normal mode (k, A). The 
contact with quantum mechanics has set the scale for the amplitude of 
the gravitational radiation at the magnitude of the Planck length. The 
large k contribution to hij goes as Lp f dk and approaches unity only for 
k ,-., 1/Lp. 

We pointed out earlier that  our linearized formalism with Ihijl << 1 
cannot be used for length scales on the order of the Planck length, so 
this result is nicely consistent. Clearly if eq. (13) is to be used as a toot 
for approximate quantum mechanical calculations, it must be cut off at 
k < 1/Lp. 

3. THE CORRELATION FUNCTION AT AN ACCELERATING DE- 
T E C T O R  

The random classical gravitational radiation given by eq. (13) can be 
used in general relativity calculations to estimate quantum effects. As 
a first application of stochastic gravity we investigate the Davies-Unruh 
effect for an observer accelerating through the zero-point fluctuations of 
the gravitational vacuum. This application extends the work of Boyer on 
the scalar and electromagnetic fields [22] to the spin-2 gravitational case. 
In so doing we also clarify some of Boyer's earlier results. 

We consider a particle detector that  is uniformly accelerating in the 
x direction with respect to an inertial frame of reference containing the 
gravitational vacuum given by eq. (13). Let the detector be located at the 
origin of an accelerating reference frame which we will call the detector's 
rest frame. The world line of the detector is given by 

t ( r ) =  C sinh (a-~)  
a 

x(r )  = - -  cosh 
a 

(14) 

(15) 

where a is the magnitude of the acceleration and T is the proper time. 
As an indication of how the vacuum appears to the particle detector, we 
calculate the two point correlation function at the origin of the detector's 
rest frame at proper time • for two points separated by a small time ~r. 
Correlation functions in stochastic field theories correspond to Wightman 
functions in quantum field theories [25]. 
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But before we proceed, we recognize that  the potential field ho(x ) is 
not directly observable. The equation of geodesic deviation is 

d2xJ RJOkO xk, (16) 
dT 2 -- 

where RJOkO is the Riemann tensor, which is directly observable. There- 
fore, we turn our attention to the related tensor field P~0j0(x) of geodesic 
deviation which, for weak fields in the IT gauge, is related to the potential 
field by (see Ref. 23, p.948) 

1 
R/oj0(r, t) = - ~  h~j,o0(r, t) 

= -~ d3keij(k,A)h(w)-~ c o s [ k . r - w t - O ( k , A ) ] ,  (17) 
A=I 

and corresponds to the E and B fields in electrodynamics. 
Then in the detector's rest frame the two-point correlation function 

at proper time ~- in which we are interested is given by 

Aijkz(6r) = {R/0j0(0, r - 5r/2)Rkoto(O, T + 6T/2) ). (18) 

In order to calculate A(6r) we must transform the P~0j0(x,t) given by 
eq. (17) to the instantaneously comoving inertial frames at r • 6~-/2 with 
t and x given by eqs. (14) and (15). When we do the Lorentz transforma- 
tions, we get a factor of 7(y - 6T/2) for each 0 index and each 1 index in 
the set {i0j0} and similarily a factor 7(T + 6/2) for the set {k0/0}, where 
from eqs. (14) and (15) the function 7(T) is given by 

l (dx'~ 2 
7(~) = 1 - ~ \ dt / = cosh . (19) 

Substituting the Lorentz transformations of eq. (17) into eq. (18) and 
using eqs. (3) and (4) to do one integration over k and sum on A, we have 

A i J k t ( 6 T )  = E d3k k3eij(k,A)ekl(k,A)h (w) ~c 2 x 
A=I 
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where the functional dependences of t, x, and ~/are given respectively by 
eqs. (14), (15), and (19), and nl  and n2 are the total number of 1 indices 
respectively in the sets {i0j0} and {k0/0}. 

As Boyer has shown [22], there is no preferred time for accelerated 
motion in a Lorentz invariant theory. The instantaneously comoving iner- 
tim frame is the equivalent of any other inertial frame. Therefore, we lose 
no generality if we set r = 0 in eq. (20), and so doing we obtain 

Aijk~(6r ) = d3k k3eij(k,A)ekl(k,A)h2(w)\2c2] x 

x eosh ~-~-c J cos[ sinh , (21) 

where we have substituted eq. (19) for the functional dependence of ~/and 
n - 4 + n l  -}- n2. 

It  is convenient to perform the integral of eq. (21) in spherical polar 
coordinates. The polarization tensors depend on the direction (~, r of 
the k vector, but not its magnitude, i.e., e(k, A) = e(~, r A). They can 
be obtained from e(0, 0, A) by a sequence of rotations. In the IT gauge, 
we have two independent polarization tensors for waves travelling in the 

= 0 direction (see Ref. 23, p.952): 

~(0, 0, 1) = 0 - 1  , e(0, 0, 2) = 0 . (22) 
0 0 0 

Then the general polarization tensors are given by 

~(e, r A) = R~ ( r  0, A)R~T(e)R~r(r (23) 

where the R's represent positive, active rotations. 
Since only the polarization tensors in eq. (21) depend on the direction 

of k we define 
2 ~" 2w 

Qijkl = ~=l~o ~o Sint~dOdCeij(O,r162 (24)  

with values given by 

327r 
Q m l  = Q2222 = Q3333 = 15 ' 

167r 
(~1122 : (~1133 =" Q2233 = - - - -  15 ' 

8 ~  
(~1212 : ( ~ 1 3 1 3  : ( ~ 2 3 2 3  ---~ 1"-'5" 

(25) 
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The other components of Qijkl which cannot be derived from eqs. (25) by 
the obvious symmetries of eq. (24) are all zero. 

Using eq. (24), we can write eq. (21) as 

Aijkl(6~') = ~ c ~  2c ] 

[ 2WC sinh f a6~- ~ ] • cos  L-- ] j  �9 (26) 

Finally, substituting eq. (12) for h(w) and evaluating the integral over w 
with the help of a temporary damping factor, 

f0 1 f0 dww 5 cos(bw) = Re dww 5 exp[(ib - A)w] 

120 
b 6 , (27) 

we have 

A i j k l ( 6 T ) - - - - Q i J k l ( a )  8 32~rL2 [ ( a2-~ ) ] 
- 8c 8 ~c sinhS(a~f~-/2c) 120c~ (28) 

Equation (28) gives the correlation functions of two geodesic deviation 
tensor fields, P~0j0(0, T - 6"1"/2) and Rkolo(O, T + /iT/2), for an arbitrary 
proper time T and small proper time separation 6T along the world line 
of an accelerating detector. The non-zero values are indicated by eq. (25). 
We will now show that these correlations are the same as would be detected 
by an observer who is stationary in a thermal bath of isotropic, random 
gravitational radiation at a temperature T = ha/2~rck. 

4. T H E  G R A V I T A T I O N A L  D A V I E S - U N R U H  EFFECT 

We now want to look at the correlation function for a stationary ob- 
server in a radiation field with the same zero-point distribution as above, 
but now with a finite-temperature Planck distribution as well. Thus, in- 
stead of eq. (12) for the spectral function, we have 

i ] 
h2(w) -- h2(w)2 -b e~l~-  T _ 1 " (29) 

where the first term in the bracket corresponds to the usual zero-point 
fluctuations and the second term to the Planck distribution. Using h in 
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place of h in eq. (17) and averaging over the random phases as before, the 
new correlation function is given by 

s  - (~0~0(0, t - 6t/2)nk0~0(o, t + ~t/2) ) 

= d3k k3eq(k,A)ekl(k,A)h2(w)\2ca] cosw(St), (30) 

which does not depend upon the absolute time t. 
Carrying out the angular integrations and summing over the polar- 

izations then gives 

h~jkL(~t) = Q~jkl /0 ~ dwo~ 5 x 

( 2 )32~rL~c4. (31) 
x cos[w(6t)] 1 + exp(hw/kT) - 1 

Evaluating the integral over w with 

/0 (cos ox) ~ - -  ~ = ~ cotan rb - , (32) 

we finally obtain 

~ijk,(St) = Q~Jk' ( kT~)  s 327rL2c4 

- 8ci0 - -  sinhS[(kT(6t)~r)/h ] x 

x [16cosh4(kT~ t)lr) +88cosh2(kT~ t)lr) + 16] . (33) 

Comparing eqs. (33) and (28) with 5t = 5r, we see that  the correlation 
functions agree for a temperature of 

ha 
T = - -  (34) 

27rck 
if the quantities in the square brackets in the two equations are the same. 
Now let us assume that  aST/2c << 1 for any reasonable acceleration and 
correlation interval. Then cosh (a~7"/2c) = 1 + 1/2(a6v/2c) 2 + ... is 1 
through first order in a6~-/2c and to this order the [...] in both eq. (33) 
and eq. (282 become equal to 120, independent of which components of 
AijkL and Aijkl we are considering, that  is, the dependence on n goes 
away. 

We have shown to first order in a6r/2c that  an observer accelerating 
through the zero-point radiation of the gravitational vacuum will see the 
same spectral distribution as a stationary observer would see at a finite 
temperature  with the magnitude of the acceleration and the temperature 
related by eq. (34). This is the Davies-Unruh effect for stochastic gravity. 
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5. DISCUSSION AND CONCLUSION 

In addition to fields of spin 0 and spin 1, the Davies-Unruh effect has 
now been demonstrated for a spin 2 tensor field. But while the effect is 
exact for the scalar field, it is only a first-order effect for the vector and 
tensor fields. We reproduce the correlation functions for the three cases 
here (in our notation) for the purpose of comparison and discussion. The 
correlation functions for the scalar field have been given by Boyer [22] as 

= - - -  sinh -2 
7rc \ 2e J '  

A(St) h r k T  2 2 

(35) 

(36) 

and for the vector field as 

4h / a \ 4 . _4 / a6v \ 
A~J (St) = 5iJ ~--~ ~ c )  slnh ~-~-c J '  (37) 

-.,a.c3(--~--)sinh- (~) +2cosh2(-~)],(38) 
where the indices i , j  = 1 , . . . ,  6 run over the components of the electric 
and magnetic fields. For the tensor field we have from eqs. (28) and (33) 

_Q,.k 4~rL~ ( a ~ sinh_S(aST'~ AiJkl(Sv) = 3 c 6 \ 2 c )  \ 2C ] 120c~ , (39) 

4~rL2/~rkT\6 6 ( ~ _ ~ )  
[k,jkl(St) = - Q i j k t ~ - - ~ )  sinh- x 

x [16cosh 4 ( ~ - ~ ]  + 88cosh 2 ( - ~ ) +  16]. (40) 

Upon examining eqs. (35)-(40) with T = ha/2~rck and ~ft = ~fT, it is 
clear that  the Davies-Unruh effect is exact only for the scalar field, and it 
is valid to first order in a~T/2C for the vector and tensor fields. This was 
the conclusion of Boyer [22] for the scalar and vector fields. Our results 
extend the first-order effect to the tensor field. Where the effect is not 
exact we have written the correlation functions as a product of an exact 
factor and a first-order factor in square brackets. It appears that  the exact 
factors represent the scalar Davies-Unruh effect, and the first-order factors 
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represent departures from the scalar effect due to a multicomponent field. 
The exponents in the exact factors are equal to +2 (r + 1) where r is the 
rank of the tensor field. 

Our equivalence of the two correlation functions, eqs. (39) and (40), to 
first order in a~r/2c is somewhat remarkable in that  the coefficients of the 
leading terms in eq. (40) add up exactly to 120, and 120coshn(a~'/2c) ---* 
120 in eq. (39) in leading order for any value of the integer n. 

To the best of our knowledge, this paper is the first at tempt to bring 
the ideas of S~.D to bear on gravitation. The representation of the quantum 
gravity vacuum as an isotropic superposition of random-phase plane waves 
is intuitive, and has lead to results that  are in agreement with similar 
results for other fields with which we are more familiar in the quantum 
domain. We hope that  this initial investigation will lead to further progress 
in understanding quantum effects in gravity. 
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