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U N D E C I D A B I L I T Y  OF T H E  P O S I T I V E  VBS-THEOI:tY OF 
A F R E E  SEMIGI:tOUPt)  

V. G. D u r n e v  UDC 512.543.12;512.54.03 

Let Hn denote a free semigroup of rank n with free generators a i , . . . ,  an. 
As observed in the survey [1], "great progress is achieved in the study of decidability of the 

elementary theory of a free semigroup. As far back as in 1946 W. V. Quine [2] proved undecidability 
of this theory. In 1973 V. G. Durnev [3] essentially strengthened the result by proving undecidability 
for the fragment of the elementary theory which, consists of the formulas without negation and with 

Z " a prefix of type 3xVy3z13z23 a. In the article [4] S. S. Marchenkov proved undecidability of the 
positive V34-theory of a free semigroup, essentially improving the result of [3] as regards the number 
of quantifier blocks in the formulas under consideration; however, the total number of quantifiers in 
use is the same in [3] and [4]. 

In the first half of the present article, the results of the articles [3] and [4] are improved as follows: 
the algorithmic undecidability is proven for the positive V33-theory "of Hn for n > 2. 

The proof of this result is carried out along the lines of the article [4] with necessary correctives. 

T h e o r e m  1. For n > 2 the positive V33-theory of 1-In is algorithmically undecidable. 

PROOF. As in the article [4], the proof of the theorem is based on the existence of operator 
algorithms with nonrecursive domain [5]; however, in contradistinction to [4] we make use of operator 
algorithms with "simpler" commands. 

Let 9.1 be an operator algorithm with nonrecursive domain whose program consists of only com- 
mands of the following type (existence of such algorithms is proven, for instance, in [5]): 

[x2] "multiply the given number by 2 and proceed to execute the next command"; 

Ix3] "multiply the given number by 3 and proceed to execute the next command"; 

[: 6; i] "if the given number is divisible by 6, then divide it by 6 and proceed to execute the command 
with number i; otherwise, retain the given number unchanged and proceed to execute the next 
command"; 

[stop]. 
As in [4], we assume that the operator algorithm 9.1 contains m commands that  are enumerated 

by the numbers from 1 to m; moreover, the initial command has number 1 and the sole command 
[stop] has number m. 

Recall that,  given an input x, the work of the operator algorithm 92 begins with executing the 
command with number 1, producing the number Zl together with the number ii of the next executable 
command; given xl,  the command with number il produces the number x2 and the number i2 of the 
next command; and so forth. The calculation with the input x terminates when m, the number of 
the command [stop], is generated at some step of the execution of the algorithm. 

Obviously, the operator algorithm 9.1 is applicable to a number z i f  and only i f  there is a sequence 

(x0, i0), (Xl, i l ) , . . . ,  (i) 

(with denotations of [4]) such that zo = z, i0 = 1, it =rn,  and for every s (1 < s < t) the application 
of the command with number is-1 to Zs-1 produces the number Xs and the number is of the next 
command. 
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For convenience, as in [4], we prefer to use 0 and 1 instead of al and a2. 
In the article [4], it is the element 

OZo+l lioozt +11il OZ2+l l i2. . .  OZ,+l i m 

of 1-In tha t  is associated with sequence (1). Here we associate the following element of the  semigroup Hn 
with sequence (1): 

Oz~176176 OZt+l 1 h+e*m, (2) 

with 6i ~ 0 if x i  is divisible by 6 and ei ~ 1 otherwise (i = 0 , . . . ,  t). 
Now, proceeding as in [4], we construct a positive quantifier-free formula r  w, s, u, v) such that  

the following equivalence holds for every natural  k: 
the formula 

(VW) (38, IZ, V) (I)(0 k+l , W, S, ~Z, V) 

is true on Hn if  and only if the operator algorithm 91 is not applicable r k. 
To this end, it suffices to make the formula (3s, u, v) (I)(0 k+l, w, s, u, v) to assert in essence tha t  w 

is not of the kind of (2). 
We take as (I) the disjunction of the following formulas (1)-(9): 
(1) The word w is empty:  ww = w. 

�9 n (2) In the word w there is an occurrence of some letter ai with 3 < i < n: Vi=3 w = uaiv. 
(3) The word w begins with neither x l0  nor x l l+m0:  

n 

V (x = ua sa  = uajv)v  �9 = v w = x0u 
i,j=l 
i#j 

V(w = xu&lu = u l )  V V w = w = xliOu xXm+2u. V 
2<_i<m 

(4) The word w terminates  with neither 01 m nor 01'n+m: 

w l = l w V ( < y <  w = u O l i )  V ( V w : u O 1  i+m) 
O_ m l<_i<m 

V W = u l  2m+l. 

(5) The word w includes 12m+l as a subword: w = ul2m+lv. 
(6) The word w contains 1 m or 12"* not at the end: w = u01m0v V w = u012m0v. 
Observe tha t  if a word w satisfies none of the conditions (1)-(6) with the  replacement  of x by 

0 z+l,  then w has the form 
Or+ 1 lJoozl+l l J10Z2+ 1 l J2 . . .  0 z*+l l Jr 

for some nonnegative integers x, X l , . . . ,  xt and some naturals j l , j2 , . . .  ,jr; moreover, 1 _< Jk ~-- 2rn 
(0 < k < t), j ,  is m or 2m, jk for k < t differs both from m and 2m, and j0 is e i ther  1 or 1 + m. 

(7) Recall tha t  if xk is divisible by 6 then 1 _< Jk _< m, while m + 1 < Jk -< 2m otherwise. This 
condition is violated by means of the following formula: 

z' 
sO = 0s& ( w  

vV 
l_e_5 

0s611+mu 00es61i0u ulOs61 m+m = v V V w = v w = 

l_<e<5 0<i<m 

w ---- ul00es61 m V V w ---- ulOs61i+mOv 
l~i~_m 

) v V V w=u100%61i0v 
1<e<5 l<i<m 
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(8) With each i that  is the number of a command of type [xd] with d = 2, 3, we associate some 
formula which essentially asserts that somewhere in the word w a "failure" happened due to improper 
execution of a command; i.e., either the result of the command is computed wrongly or a wrong 
number is indicated as the number of the next command. 

As such a formula, we take the formula of the form sO = 0s&(~l V ~2), where the formuIa 
ff~l essentially asserts that the result of a command of type [xaq is computed wrongly, whereas the 
formula ~2 asserts that the result of the application of the command [xd] is computed correctly but 
the number of the next command is indicated wrongly (on condition that s is the degree of 0). 

We let ~1 be the following formula: 

(vw_-o v 
e-- 1 e-- l l<l<d-1 

V(-VO,e-- 1 w = vOOsli+emoSdlu) V ( V-.O, e- lW = 

v(V V w=vOli+smosdOllu) V ( V, w= 
e=O,1 l<l<d-1 e-- 1 

As ~2 we take the formula 

vOli+emosdOtlu) 

v lsOl i+~rnosdOu) 

vOOs l i+ernoS d l u )  . 

V V V (w -- Osli+~mOsalJ+bnOu V w -- vlOsli+e'nOsdlJ+bnOu 
e=0,1 1=0,1 j#i+l 

Vw = vlOsli+emOsdl j+lm V w = Osti+emosdlJ+lm). 

(9) With each i that is the number of a command of type [: 6; j], we associate some formula which 
essentially asserts that  somewhere in the word w a "fail.ure" occurs due to improper execution of the 
command; i.e., either the result of the command is computed wrongly or a wrong number is indicated 
as the number of the next command: 

sO = Os~5 ( w  = Os61iOsOu V w = vOOs6IiOslu V w = vlOs61iOsOu 

Vw = vOOs61iOslu V V V((w = Os61iOslt+~mOu 
~=o,I t#i  

Vw = Os61iOslt+~m) V (w = vlOs61iOslt+~mOu V w = vlO61iOslt+~m)) 

V(w = sOli+msOOu V w = vOOsli+mOslu) V (w = vlsOli+msOOu 

Vw = vOOsli+mOslu) V V V (w = Osli+mOslt+~mOu 
e=0,1 t~i+ l 

Vw = Osli+mOsl t+~m V to = vlOsli+moslt+~mOu V to = vlOsli+moslt+~m)).  

Let us make some comments on the last formula:, the first four rows relate to the case in which 
the number to which the i th command [: 6; j] applies is divisible by 6; moreover, the first two rows 
assert that  the result is computed wrongly; i.e., it is not the result of division of the preceding number 
by 6 and the next two rows assert that the result is computed correctly but the number of the next 
command is indicated wrongly. Analogously, the last four rows relate to the case in which the number 
to which the i th  command [: 6; j] applies is not divisible by 6; moreover, the first two rows assert that 
the result is computed wrongly (i.e., the number to which the command applies is changed, although it 
must be preserved) and the last two rows assert that the result is computed correctly but the number 
of the next command is indicated wrongly. [] 

We apply Theorem 1 to studying Diophantine sets in free semigroups. 
For the sake of convenience, we denote the free generators of H2 by a and b. 
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DEFINITION. A subset S of the set II~ is called Diophant ine  if there are words u and v in the 
alphabet 

{a, b, zl ,  �9 �9 �9 xp, Yl, Y2, �9 �9 �9 } 

such that  the equivalence 

(g l , . . . , gp)  E S r162 112 ~ ( 3 y l , . . . , y n ) u ( g l , . . . , g p , y l , . . . , y , , a , b )  = v ( g l , . . . , g p ,  y l , . . . , y , , a , b )  

holds for all elements g l , . . . ,  gp in 1"i2. In this case, each such pair of words (u, v) is referred to as the 
record of  the Diophant ine  set S. 

The intersection and the union of two Diophantine sets are themselves Diophantine sets: it is well 
known that  in I I2  the conjunction Xl = y l & s X 2  ~- Y2 of equalities is equivalent to the sole equality 
x l a x 2 x l b x 2  = ylay2ylby2; on the other hand, as proven in [6, 7], there are words u and v in the 
alphabet {a, b, Xl, x2, yl, Y2, Zl ,  z2, z3,  z4} such that 

I-I2 ~ (VXl, X2,Yl,Y2)((Xl ----X2 V Yl ----Y2) ~ (35)u(~:, f / ,~ ' ,a ,b)  = v ( x , y , z , a , b ) ) ,  

where �9 denotes Xl, x2; ff denotes yl, y2; s denotes zl, z2, z3, z4; and 

u = u ( x l ,  x2, Yl, Y2, Zl, z2, z3, z4, a, b), v = v ( x l ,  x2, yl ,  y2, Zl, z2, z3, z4, a, b). 

We shall show below that it is possible to restrict ourselves just to the new variables Zl and z2. 
Every singleton set and its complement are Diophantine, which ensues from the following fact: in 

the articles [6-9], for every n > 2 the formula 

P , ( x ,  y) = (3u,  vl ,  v2) x = u a i v l & y  = uajv2) V x 

tJ 1 
i#j  

= y a i v l  V y =  z a i v l ) ) )  

was constructed and there was proven that the equivalence g # h r162 Hn ~ P , ( g ,  h) holds for arbitrary 
two elements g and h of 1-i,. Therefore, every finite set and its complement are Diophantine. 

N. K. KosovskiY [6] constructed the first examples of recursive sets in 112 which are not Diophantine; 
such is for instance the set S consisting of all symmetric words, i.e. the words of the form 

a ,~X b~l . . . a,~ ~ ,  b~, a'~, . . . b~l a '~ . 

Observe that,  in view of G. S. Makanin's theorem [10], every Diophantine set and its complement 
therewith are recursive. For this reason, it is of interest, in our opinion, to construct an example of 
a Diophantine set whose complement is not Diophantine. 

To construct such an example from the operator algorithm P2 with nonrecursive domain, this 
domain denoted by R(9.1), we as above construct some formula (I)(x, w, s, u, v) of the form 

k I 

,&l  W i i ( z '  w,  s, u, v, a, b) = Uij(x ,  w,  s, u, v,  a, b) V= 
i=1 

for which the equivalence 

r ~ R(P.I) ~=~ 112 ~ (Vw) (3s ,  u ,v)@(aar ,  w , s , u , v )  

holds for every natural number r. 
Eliminating the signs &5 and V from the formula (I) and renaming the variables, we obtain a formula 

F ( x ,  z,  X l , . . . ,  x , )  of the form 

u ( x , z ,  z l , . . . , z , , a , b )  = v ( x , Z ,  X l , . . . , x , , a , b )  
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for which the following equivalence holds: 

r r R(~) ,~ H2 ~ (Vz)(3~)~(a~, z, ~, a, b)= . ( ~ , ~ ,  ~, ~, b) 

o r  

r E R(9.1) r 1"[2 p (3z)-~(3~) u(aa T, z, ~, a, b) = v(aa', z, ~., a, b). 

We now demonstrate that the complement of the Diophantine set 

D ~ {(g,h)[(32.)u(g,h ,~. ,a ,b)=v(g,h ,~,a ,b)}  

is not Diophantine. Indeed, in the opposite case there would exist words ul and vl in the alphabet 
{x, z, y l , .  �9 Y,~, a, b} such that 

~(3~.)u(x,z,~,a,b) = v(x,z,5:,a,b) r (3fl)ul(x,z,~ha, b) = vl(x ,z ,~,a,b) .  

Then, however, the equivalence 

r �9 R(~) ~ H2 p (3z)(3~)~l(a~',  z, ~, a, b)= vl(aa',z,~,a,b) 
would hold and, by G. S. Makanin's theorem [10], the set R(9.[) would be recursive, contradicting the 
choice of the operator algorithm 9.1. 

We will discuss some algorithmic questions concerning the determination of the number of elements 
of a Diophantine set or its complement. 

The following theorem is a simple corollary to G. S. Makanin's result [11]: 

T h e o r e m  2. There is an algorithm allowing us, given an arbitrary pair (u, v) of words defining 
a Diophantine set S and an arbitrary natural number k, to determine whether S contains no less 
than k elements, or no more than k elements, or exactly k elements. 

PROOF. Let a Diophantine set S has record 

(g l , - . - ,  gp) E S r I]2 p (3y l , . . . ,  y,~) u (g l , . . . ,  gp, YI,-- . ,  Y,, a, b) = v(g l , . . . ,  gp, YI,. �9 Yn, a, b). 

Denote the claim "S contains no less than (no more than, exactly) k elements" by IS] > k 
(IS[ _< k, [SI = k) and denote by (I)k the formula 

(=]X~I) X(1). (1) ,y(n 1) ;:c~k) ~(k). (k) y(nk))ff~, 
'''', P ' ~ 1  '''" ,''', ,''', P , ~ 1  ,''', 

where @ has the form 

i~=1 U ( X ~ i ) ,  . . . , X.(i), y~ i ) ,  . . . , y ( i ) ,  a ,  b)  

= v ( x ~  i) ,x(i),y~ i), .,y(i) a ,b )~  & ( ~ / x l i ) # x ~  i)) 
' . . . . .  ' l < i < j < k  

- - t = l  

Then 
[SI >_ k ~ H2 ~= Ck, 

and the question of validity of the 3-formula Ck on If2 is algorithmically decidable by G. S. Makanin's 
theorem [10]. To complete the proof, it suffices to observe that 

ISl<k~(lSl>_k+l), ISl=k~lSl>k~lSl<k.[] 
The following question remains open: Is there an algorithm allowing us, given an arbitrary record 

of a Diophantine set S, i.e., g/yen the corresponding pair (u, v) of words, to determine whether S is 
a finite set? 

The conjectural answer is positive: in our opinion, it could be reached by proving that  the equation 

~ ( x l , . . . , , q , a ,  b) = V(Xl,... ,~ , ,a ,  b) 
having a solution g l , . . . ,  gp in 112 such that gl is a "very long" word in comparison with the length of 
the words u and v admits infinitely many solutions with different first components. 

Observe that  if the set S is finite then the answer can be obtained by resolving the question of 
the form "II2 ~ (I)k?"; difficulties arise in the case of an infinite S. 

The following theorem sheds some light on the source of the difficulties: 
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T h e o r e m  ~. For every fixed k, there is no algorithm allowing us, given an arbitrary pair (u, v) of 
words defining a Diophantine set S, to determine whether the complem,'nt of S contains k elements 
(no less than k elements for k > 0, or no more than k elements). 

PROOF. As described above, given the operator algorithm 92 with nonrecursive domain, we con- 
struct some formula r  of the form 

(Vy) (3z l , . . . , z , , )w(x ,y ,2 ,  a,b) = u(x ,y ,~ ,a ,b)  

such that the equivalence 
r ~ R(P.I) . H2 ~ O~(aa r) 

holds for every natural r. 
Denote by Sz,~,= the following Diophantine set: 

{yIH2 ~ (35)w(aaZ,y,5,  a ,b )=  u(aaZ, y,~,a,b).  

If r ~ R(9.1) then S~,w,= = 112; however, if r �9 R(P2) then the complement of the set ST,~,= consists of 
the only element yo (if the commands of the operator algorithm 92 are enumerated by the numbers 
from 1 to rn, the initial command has number 1, and the terminal command has number m, then in 
the case r �9 R(P.I) there is a unique sequence of pairs of natural numbers (x0, i0), (Xl, i l ) , . . . ,  (zt, it) 
such that x0 = r, i0 = 1, it = m, and for every s (1 < s < l) the application of the command with 
number is-1 to Xs-1 gives the number Xs and the number of the next command is is); with these 
notations, 

Y0 = a z~176162176 zl + l b i~ +elm az2+ l b i2+e2m �9 �9 �9 a zt+ l b it+etm, 

where ei ~ 0 if xi is divisible by 6 and ei ~ 1 otherwise (i = 0 , . . . ,  t). 
We obtain the following equivalences: 

r �9 n ( ~ )  r  1112 \ S.,~,=I : 1, 
r �9 R(~t) r  H2 \ S.,~,. # z ,  

,, r R ( ~ ) .  In2 \ s.,~,.I = o, 

r e n ( ~ )  ~ In2 \ s~,w,.I ~ 1, 

r ~ R(9.1) ~ lII2 \ S~,w,=l < 0. 

Let b l , . . . ,  bk be different degrees of the element a; put 

T~,w,u ~ S~,w,~ \ {bl , . . .  ,bk}. 

It is easily seen that T~,,~,,, is a Diophantine set. 
If r ~ R(92) then St,w,= = 112, and therefore 

YI2 \ Tr,w,, = {bl , . . . ,bk} ,  IH2 \ Tr,w, . I  = k.  

However, if r C R(~)  then H2 \ Sr,w,u consists of the only element y0 which is not a degree of a; hence, 
[112 \ Tr,w,u[ = k + 1. We obtain the equivalences 

Observe that we always have IH2 \ Tr,w,ul >_ k; therefore, 

IH2 \ T,,~,.I = k + 1 r  ~(Irh \ T,.~,, _< k). [] 

The following question remains open: Is there an algorithm allowing us, given an arbitrary record 
of a Diophantine set S, i.e., given the corresponding pair (u, v) of words, to determine whether the 
complement of the set S is finite? 

We now discuss the question of eliminating the signs & and V from the formulas pertinent to free 
groups and semigroups. 
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It is well known that  in free groups and semigroups the sign & can be eliminated from formulas 
by methods that  are in a sense of the same type: in free groups this is carried out by means of 
A. I. Malltsev's equation 2 2 - 1  x]alxlal = (x2a2x2a 2 1)2 (see [12]) that has only the trivial solution Xl = 
l&:x2 : 1, and the conjunction xl - y l~x2  = Y2 in H,  is equivalent to the equality XlalX2Xla2x2 : 
ylalY2Yla2y2 [13]. 

Although the disjunction sign V too can be eliminated from formulas pertinent to free groups and 
semigroups, this is carried out by several different methods: as was shown by G. A. Gurevich (see [12]), 
in a free group Fn (n >_ 2) the disjunction of the equations xl = 1 V x2 = 1 is equivalent to the 
conjunction of the four equations 

[ 1 ;xlo1 = 1 
e,5=.4-1 

In the case of II~ N. K. KosovskiY [6, 7] constructed words 

w ( x , y , z , v ,  x l , . . . , x k , a l , a 2 ) ,  u ( x , y , z , v ,  x l , . . . , x k ,  al,a2) 

in variables z, y, z, v, x l , . . . ,  xk and constants al and a2 such that the equivalence 

( A - -  B V  C =  D) ~ H,  ~ ( 3 ~ . ) w ( A , B , C , D , ~ . , a ) = u ( A , B , C , D , ~ . , a )  

holds for all elements A, B, C, and D of l-I,,, where ~ denotes x l , . . . ,  xk and a denotes al ,  a2; moreover, 
in the articles [6, 7] k = 4. An analogous formula was constructed in the article [14]. In [14] k is much 
greater than in [6, 7] (near 40), although the authors of [14] point out that  it is possible to diminish 
k to 3 by using rather involved analysis, with the reference to the dissertation [15] that  is practically 
inaccessible to the Russian reader. 

We demonstrate that it is possible to construct a rather simple formula with k = 2. 
As a preliminary, we prove some lemma about solutions to one simple equation in a free semigroup. 

L e m m a .  I f  the equality A m B m c  m = D m holds in the free semigroup Hn (n >_ 2) for rn >_ 6 
with [A[ : [B[ or [B[--- [CI, then A, B,  C, and D are degrees of the same element of  Hn, where 
]W[ is the length of a word W in Hn. 

PROOF is based on Lemma 2.3 of S. I. Adyan's monograph [16]: i fA~A  I = B r B  ~, where the word 
A ~ is an initial fragment of A, B ~ is an initial fragment o r B ,  and [AtA~[ >_ [AB[; then it is possib]e to 
indicate a word D such that A = D k and B = D 8 for some k and s. It is easily seen that  the following 
assertion is true along with this lemma: if A~A t = B~B r, where the word A ~ is a terminal fragment 
of A, B I is a terminal fragment of B,  and [A~A ~] >_ ]BA[, then it is possible to indicate a word D such 
that A = D k and B = D s for some k and s. The last assertion, as well as the former, will be referred 
to as S. I. Adyan's lemma. 

We examine the case in which [A[ = [B]. The case in which IB[ = [C] is treated similarly. 
If A '~ = DkD1, where Dx is an initial fragment of D and [Am-~[ >_ ]DI, then IA ra] >_ [AD], and 

therefore by S. I. Adyan's lemma there is a word E such that A = E 8 and D = E* for some s and t. 
Thus, we obtain the equality E * m B m c m  = E *m which implies the equality B m c  m = Em(*-*). 

If t - s = 0 then B and C are empty words and the assertion under proof is valid. 
However, if t - s >_ 1 then by the Lyndon-Sch/itzenberger theorem [17] B, C, and E are degrees 

of the same element S, and hence A, B, C, and D are degrees of S. 
If C m = D I D  k and [C 'n-l] >_ [D[, where DI is a terminal fragment of D, then the analogous 

consideration shows that  A, B, C, and D are degrees of the same element. 
We are left with settling the case in which JAm-l[ < [D[ and [Cm-l[ < [D I. Since m >_ 6 

then [Am[ < Io21 and [Sm[ < [D2[. By assumption, [A] = }B[; therefore, IBml < [D2[. Hence, 
[AmBmCm I < [D~[, but A m B m C  m = D m, and consequently [Dm[ < [D6], m < 6, contradicting the 
hypothesis of the lemma. [] 

We turn to constructing a formula r y, z, v) of the form 
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such that  the equivalence (A = B V C = D) r II~ ~ ~(A, B, C, D) holds for all elements A, B, C, 
and D of the group Hn �9 Since (A = B V C = D) r ( A D  = B D  V B C  = B D ) ,  it suffices to construct 
a formula F ( x , y , z )  such that  (g = h V f = h) r Hn ~ F ( g , f , h ) .  

Let ~(x ,  y, z, x~, x2) denote the following system of equalities: 

[(x k a)k(xkb)klk[(yka)k(y%)k] = x i [ (z  x2&x  (x b) k] 

= [(x ka)k(xkb)k]xl x2[(yka)k(ykb) k] = [(yka)k(ykb)k]x2, XlX2 -- X2Xl. 

Assume k > 6. 

T h e o r e m  4. For arbitrary elements g, h, and f of the free group Hn (n k 2) we have 

(g = h V f -- h) r Hn ~ ( 3 X l , X 2 ) q ~ ( g , f , h ,  x l ,X2) .  

PROOF. First of all, we demonstrate that (xka)k(xkb) k is a prime element of IIn for every prime 
element z of IIn. 

Assume the contrary. Let (zka)k(zkb) k = S m and m > 2; then by the Lyndon-Schftzenberger 
theorem [17] xka and xkb commute; i.e., xkaxkb = xkbxka, which is impossible. 

If g = h V f = h then, obviously, Hn ~ (qzl,  x2) ~(g, f ,  h, xl,  z2). 
Conversely, let H,, ~ (3zl,  x2) ~(g, f ,  h, zl ,  z2). Then there are n, m > 0 such that  

Xl = [(xka)k(xkb)k]n&hx2 = [(yka)k(ykb)klm. 

Demonstrate that  n m =  0 or x = y = z. 
If n m  ~ 0 then the equality xlx2 = x2xl implies that the elements (xka)k(xkb) k and (yka)k(ykb)k 

commute and are consequentl, y degrees of the same element. Since they are prime elements, it follows 
that (xl~a)k(xkb) k = (yka)k(y%)k.  But then 

(xk a)k = (yka)k,~(xkb)k = (ykb)k ' xka = yka,~xk b = ykb, x k = yk, x = y. 

Hence, the following equality holds: 

[(x ka)k(xkb)k] 21c = [(x ka)k(xkb)k]a[(zka)k(zlcb)lc]k[(x ka)k(xkb)k] rn. 

It is clear that  2k > n + m ;  therefore, the preceding equality implies the equality [(xka)k(xkb)k] T M  

= [(zka)k(zkb)k] k. Since the elements (zka)k(zkb) k and (zka)k(zkb) k are prime, we obtain the equality 
(zka)l '(xkb) k = (zka)k(zkb) k which implies the desired equality x = z. 

If n m =  0 then we examine the case n = 0 (the case m = 0 is settled similarly). In this case 

k k k k k  k k k k k  [(x a) (x b) ] [(y a) (y b) ] = [(zka)k(zkb)klk[(yka)k(ykb)&] m. 

For m > k, we obtain 

[(xka)k(xkb)k] k = [(z ka)k(z%)klk[(yka)k(ykb)klm-k. 

If m - k > 2 then, by the Lyndon-Schfitzenberger theorem [17] and in view of the fact that  the 
elements (xka)k(xkb) k and (zka)k(zkb)k are prime, we obtain the equalities x = y = z. If m - k = 0 
then we obtain the equality x = z; however, if m - k = 1 then we obtain the equality 

[(z ka)k(zkb)klk(yka)k(ykb)k = [(x ka)k(xkb)k] k. 

Since [yka] = ]ykb[, by the Lemma yka and ykb are degrees of the same element, which is impossible 
as they have different terminal fragments. 
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For rn < k we obtain the equali ty 

[(xka)k(xkb)klk[(yk a)k(ykb)k] k-m = [(z ka)k(zkb)k] k, 

whence for k - m > 2 we again infer the equality x = z by using the Lyndon-Schfitzenberger theo- 
rem [17], while for k - m = 1, the equality 

[(x k a)k(xkb)k]l'(y k a)k(ykb) k = [(z k a)k(zkb)k] k 

which by the Lemma leads to a contradiction. [] 
It was already proven in the article [8] that ,  to eliminate the disjunction sign from the formulas 

per t inent  to free semigroups is impossible without the existential quantifier. Since the access to the 
article [8] is very l imited, we expose a simplified proof of this fact. 

T h e o r e m  5. For any  n > 2, there are no words 

w ( x , y , z , v ,  a l , . . . ,ar t ) ,  u ( x , y , z , v ,  a l , . . . , a n )  

in variables x, y, z, and v and constants a l , . . . ,  art/'or which the equivalence 

(g = h V p = f )  r w ( g , h , p , f , a )  = u ( g , h , p , f , a )  

holds for all elements g, h, p, and f of IIn. 
PROOF. Assume the contrary; i.e., there is an equation 

w ( x , y , z , v ,  a l , . . . ,ar t )  = u ( x , y , z , v ,  ax, . . . ,art)  

whose solutions are the  various collections (g, g, p, f )  and (g, h, p, p) and only them. 
In the words w and u, we dist inguish maximal  nonempty subwords in the a lphabet  of the  unknowns 

w(x,  y, z, v, a) =,: A , X I A 2 . . .  AtXtAt+l ,  u(x, y, z, v, ~t) -.- B l a B 2 . . .  BkYkBk+l,  

where Yj and Xi  are nonempty  words in the alphabet  of the unknowns {x, y, z, v}, Am and Bs are 
nonempty  words in the a lphabet  {a 1 , . . . ,  art} (with a possible exception of the  cases m = 1, m = t + 1, 
s = 1, and s = k + 1), and = is the sign of lexicographic equali ty of words. 

Consider the  following formulas: 

r (Vx, z ,v)w(x ,x ,  z , . , a )  = u(x, x, z, v, a), 
r ( w ,  u, u, z, z, a) = z ,z ,a) .  

Since the formulas r and r are t rue in the subgroup IIrt and since n > 2, by Yu. I. Merzlyakov's 
theorem [18] they  are t rue in every free group Fm with m > n; in part icular ,  in the  group Frt+3. 
Therefore, the  equalit ies 

w(an+l,an+l,an+2,an+3,a) -"- u(an+l, art+l,an+2,an+3,a), 
w(art+l,  an+2, an+3, art+3, a) == u(an+l, art+2, an+3, an+3, ~t) 

hold in the group Frt+3. Pu t  

X!  1) ~ Xi[x,y,z,vl[art+a, an+l, an+2, art+3], 

]i(1) ~ yj[x,u,z,vl[an+l,an+l,an+z, an+3] ' 

X! 2) ~_ Xi[z,y,z,vl[an+l,an+2, an+3, an+3], 

yj(2) ~ yj[~,u,.,,,][art+l,a.+2, art+3, art+3] ' 
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where W[z,u,z,u][A, B, C, D] is the word obtained from the word W by the simultaneous replacement 
of each occurrence of the variable x with the word A, the variable y with the word B, the variable z 
with the word C, and the variable v with the word D. Then the following equalities hold for s = 1, 2: 

AIX~' )A2 . . .A ,X} ' )A ,+I  = B1Y( ' )B2 . . .BkYO)Bk+I  . 

Since A i and Bi are words in the alphabet {aa , . . . ,  an} and X} s) and y/Cs) are words in the alphabet 

{an+l, an+2, an+3}, the preceding equality implies that t = k and 

t + l  2 t .(s) (s) 
& A i = B i ,  & & X ,  =Y i  �9 

i=1  s = l  i=1  

It is easily seen that  the system of the equalities 

'x!') & & = 
s = l  i=1  

implies the system of the equalities 
t 
& X i = Y i .  

i=1  

Therefore, w ( x , y , z ,  v,a) = u (x , y , z ,  v,a). Hence, the identity 

( v x , y , z , v ) w ( x , y , z , v , a )  = u(x,y, z,v,a) 

holds on Hn, contradicting the assumption that was made at the beginning of the proof. [] 
The following natural question arises: Is it possible to construct words w ( x , y , z , v , t , 5 )  and 

u(x, y, z, v, t, ~) such that the equivalence 

(g = h V p = f )  r ( 3 t )w(g ,h ,p , f , t , a )  = u(g ,h ,p , t ,5 )  

holds for M1 elements g, h, f ,  and p of IIn? 
The conjectural answer is negative. 
As was already pointed out above, in the articles [7-9] the formula 

Pn( ,Y) = (x = uaivl~y = uajv2) V x 
i, -1 
i#j 

=ya lv l  V y = x a i v l ) ) )  

was constructed for every n _> 2 and there was proven that the equivalence 

g # h H. Pn(g,h) 

holds for arbitrary two elements g and h of H,. Therefore, G. S. Makanin's theorem [10] on the al- 
gorithmic decidability of the compatibility problem for systems of equations in the free semigroup H2 
readily implies the algorithmic decidability of the existential and universal theories of every semi- 
group Hn. 

It was proven in the article [9] that the universal and, consequently, existential theories of a semi- 
group H of countable rank are algorithmically decidable. However, the proof in [9] uses the not 
generally accepted notion of the 3-quantifier with respect to a generator and its elimination. 

We now demonstrate that  the decidability of the universal theory of a free semigroup of countable 
rank is a direct corollary to the decidability of the universal theory, of an arbitrary free semigroup of 
finite rank. 
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Indeed, assume r to be a formula of the form (Vzl , . . . ,  xp)~ and let �9 be its matrix (quantifier- 
free part). Let us show that  if �9 contains as constants only a l , . . . , a = ,  then II ~ q~ r  H=+I ~ r 
Since IIm is a subsemigroup of H for every m, it follows from H ~ ~ that II,~ ~ ~ for every m > n. 

Conversely, assume that  H=+I ~ ~. Denote by H the subsemigroup of H,,+I which is generated 
by the elements 

al, . . . , an, an+lalan+l, . . . , a~+lala~+l, . . . .  

Then H ~ ~. However, the semigroup H is isomorphic to the semigroup II; moreover, we can take 
such an isomorphism ~o for which the following equalities hold: 

~ ( a i ) = a l  if 1 < i < n ,  ~(ai)=an+lalan+li-n i-n if i > n .  

Therefore, It ~ r [] 
The formulas considered in the articles [3, 4] and in the beginning of the present article have a quite 

simple prefix. At the same time, their matrices include a good many occurrences of the disjunction 
sign V. Of course, using the method indicated above, we could eliminate the sign Y but this would 
lead to a considerable increase of the number of existential quantifies in the prefix. 

In this connection, in our opinion, the question is of interest whether it is possible to simultaneously 
simplify the prefix and the matrix of a formula; moreover, the simplest matrix should look like 
a formula of the form w = u, where w and u are words in the alphabet of the variables and generators 
of the semigroup. 

As some advancement in this direction, we propose the following theorem: 

T h e o r e m  6. It is possible to construct a formu/a ~(x) that has one free generator x, is of the 
form 

(~w)(Vy) (3Xl , . . . ,  x11)u = v, 

where u and v are words in the alphabet {X,W,y,Xl,... ,Xll,al,a2,a3}, and is such that there is no 
algorithm a110wing us, given an arbitrary element g of H2, to determine whether the formula O(g) 
is true on H3. 

PROOF. Denote by H(w,  z, x l ,  x2, x3) the formula 

3 

V 
i,j-=l, 
i#j 

(w = x l a i x 2 ~ z  = xlajx3)  V z = wx].  

It is easy to see that  the following equivalence holds for arbitrary elements g and h of Ha: 

II3 ~ (~xl, x2, x3) H(g, h, x l ,  x2, x3) ~:~ "h is not an initial fragment of  g". 

Denote by II a semigroup that has presentation (aa,a211A1 = B1, A2 = B2, A3 = B3) and for 
which the problem of equality to a fixed word go is algorithmically undecidable [19]; moreover, the 
words Ai and Bi are nonempty for every i. Put A3+j .~- Bj  and B3+j ~ Aj  for j = 1,2,3. Denote 
by F(x)  the following formula: 

(3 1, x2, y, x l ,  x2, 

where 

q~(x, w, y, xl, x2, x3) ~ H(a3goa3w, ya3, xl ,  x2, x3) 

V(i=~/la3goa3wa3ga3-'-ya3xlAix2a3xlBiz2a3x3 ) �9 
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Demonstrate that  the equivalence 

113 ~ F(g)  r "g equals go in 11" 

holds for an arbitrary nonempty word g of 112 which differs from go. 
If g is a nonempty word of 112 distinct from go and g equals go in II, then in H2 there is a sequence 

go ,g1 , . . .  ,gin such that  gm == g; moreover, for every i (0 < i < m -- 1), there are a j and words X1 
and X2 such that  gi = X I A i X 2  and gi+l -~ X 1 B j X 2 ;  furthermore, we may assume m > 2. 

We put 

W o  ~ g l a 3 g 2 a 3  �9 �9 �9 a 3 g m - 1 .  

It is easy to show that  the formula 

(Vy) (3 i, z2, W0, y, zl, 

is true on 113. Therefore, II3 ~ F(g) .  
Conversely, let Ha ~ F(g)  and let Wo be an element of II3 such that  

1-I 3 ~ (Vy)(3Xl, X2, ~g3)lX/(g, Wo,y, xl, x2, ~g3 ). 

First of all, it is easy to demonstrate that %2 does not occur in the word a3goa3Woa3ga3 and, for 
that reason, in 112 there are nonempty words hm, hm-1 , . . . ,  ho (m > 2) such that  

hm == go, ho == g, a3goa3Woa3ga3 == a3hma3hm- la3  . . . a3hoa3. 

We now show that  ht equals h0 in H by inducting on t. 
Assume that  rn > t > 0 and assume that hi equals h0 in 11 for every i such that  t > i > 0. 
Put Y ~ a 3 h m a 3 h m - l a 3 . . ,  a3ht+l for m > t and Y ~ A for m = t, where A is the empty word. 

Then a3goa3Wo == Y a 3 Z  for some Z, and therefore there are words X], )(2, and X3 and a number i 
such that  

a3go a3 Woa3ga3 :=: Y a 3 X 1 A i X 2  a3XI  B i X 2  a3X3. 

1. If the letter a3 does not occur in the words X1 and X2 then h, = X 1 A i X 2  and ht-1  -"- X I B i X 2 ,  
implying that  hi equals ht-1 in II. Since hi-1 equals ho in H, it follows that  h, equals ho in II. 

2. If the letter a3 occurs in Xz then there is l < t such that h, == hz, implying again that  h, equals 
ho in II. 

3. If the letter a3 does not occur in X1 but X2 = X21a3X2r and a3 does not occur in X2a then 
there is l < t such that  ht = X1AiX21 and ht == X1BiX2 t ,  which again implies that  ht equals ho in 11. 

Eliminating the sign V from the matrix of the formula F ( x )  by the above-described method, we 
obtain a sought formula r of the form 

(~ ]W) (Vy ) ( : : ]X l , . . . ,X l l )U -~  ?3. 

REMARK. Clearly, the prefix of the formula r is of higher complexity than that  of the formula 
in the articles [3, 4]; however, this circumstance is to some extent outweighed by the simple form of 
the matrix of the formula. Moreover, the study of formulas of the indicated type reduces in a certain 
sense to the study of solution sets for equations in 13 unknowns and sheds more light on the source of 
difficulties that  appear in attempts to describe the solution sets for the equations having the number 
of unknowns greater than 3. 

In conclusion, the author expresses his deep gratitude to S. I.-Adyan for support and unfailing 
interest in the article. 
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