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UNDECIDABILITY OF THE POSITIVE V33-THEORY OF

A FREE SEMIGROUPY
V. G. Durnev UDC 512.543.12;512.54.03

Let II, denote a free semigroup of rank n with free generators ay,...,an.

As observed in the survey [1], “great progress is achieved in the study of decidability of the
elementary theory of a free semigroup. As far back as in 1946 W. V. Quine [2] proved undecidability
of this theory. In 1973 V. G. Durnev (3] essentially strengthened the result by proving undecidability
for the fragment of the elementary theory which consists of the formulas without negation and with
a prefix of type JdzVy3z1329323.” In the article [4] S. S. Marchenkov proved undecidability of the
positive V3*-theory of a free semigroup, essentially improving the result of [3] as regards the number
of quantlﬁer blocks in the formulas under con31dera.t10n however, the total number of quantifiers in
use is the same in [3] and [4].

In the first half of the present article, the results of the articles [3] and [4] are improved as follows:
the algorithmic undecidability is proven for the positive V33-theory of I, forn > 2.

The proof of this result is carried out along the lines of the article [4] with necessary correctives.

Theorem 1. For n > 2 the positive V33-theory of I, is algorithmically undecidable.

PROOF. As in the article [4], the proof of the theorem is based on the existence of operator
algorithms with nonrecursive domain [5]; however, in contradistinction to [4] we make use of operator
algorithms with “simpler” commands.

Let A be an operator algorithm with nonrecursive domain whose program consists of only com-
mands of the following type (existence of such algorithms is proven, for instance, in {5]):

[x2] “multiply the given number by 2 and proceed to ezecute the next command”;
[x3] “multiply the given number by 3 and proceed to ezecute the next command”;

[: 6;2] “if the given number is divisible by 6, then divide it by 6 and proceed to ezecute the command
with number 1; otherwise, retain the given number unchanged and proceed to erecute the next
command”;

[stop].

As in [4], we assume that the operator algorithm 2 contains m commands that are enumerated
by the numbers from 1 to m; moreover, the initial command has number 1 and the sole command
[stop] has number m.

Recall that, given an input z, the work of the operator algorithm 2 begins with executing the
command with number 1, producing the number z; together with the number z; of the next executable
command; given z1, the command with number 7; produces the number z; and the number i3 of the
next command; and so forth. The calculation with the input z terminates when m, the number of
the command [stop], is generated at some step of the execution of the algorithm.

Obviously, the operator algorithm 2 is applicable to a number z if and only if there is a sequence

(zo’i0)1(m1’i1)"")(zhit) (1)

(with denotations of [4]) such that z¢ = z, 19 = 1, i = m, and for every s (1 < s < t) the application
of the command with number i5_; to z,..1 produces the number z, and the number i, of the next
command.
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For convenience, as in [4], we prefer to use 0 and 1 instead of a; and a;.
In the article [4], it is the element

Oz0+11ig0z1+11i10x2+11i2 L O:I:g+11m

of II, that is associated with sequence (1). Here we associate the following element of the semigroup I,
with sequence (1): . ' . _
Ozo+lllo+€0m031+l 1!1+€1m022+1112+€2m . 02g+11tg+sgm, (2)

with €; = 0 if z, is divisible by 6 and ¢; = 1 otherwise (¢ = 0,...,1).
Now, proceeding as in [4], we construct a positive quantifier-free formula ®(z, w, s, u, v) such that

the following equivalence holds for every natural &:
the formula

(Vw)(3s, u,v) @(OkH, w, S, u,v)

is true on Il if and only if the operator algorithm 2 is not applicable to k.

To this end, it suffices to make the formula (3s,u,v) ®(05*!,w, s,u,v) to assert in essence that w
is not of the kind of (2).

We take as @ the disjunction of the following formulas (1)-(9):

(1) The word w is empty: ww = w.

(2) In the word w there is an occurrence of some letter a; with 3 < i < n: \/I_; w = ua;v.

(3) The word w begins with neither 10 nor z1*+™0:

n
\/ (z = vais&w = uav) Vz = wu Vw = z0u
1,j=1
i
V(w = zu&lu = ul) V \/ w=zl'0uVw=z1 2y
2<i<m

(4) The word w terminates with neither 01™ nor 01™+™;

wl:le( \/ w=u01i)V( \/ w:u01i+m)Vw=u12m+1.

1<i<m

(5) The word w includes 12™*! as a subword: w = ul1?™+1y,
(6) The word w contains 1™ or 1™ not at the end: w = u01™0v V w = u012™0Qv.

Observe that if a word w satisfies none of the conditions (1)—(6) with the replacement of z by

0>+ then w has the form
pt1pjogziHliigze+lysz | goetlqse

for some nonnegative integers z,z1,...,z; and some naturals j1,j2,...,J:; moreover, 1 < j;z < 2m
(0 <k <t), 71 is m or 2m, ji for k < ¢t differs both from m and 2m, and jy is either 1 or 1 4 m.

(7) Recall that if zj is divisible by 6 then 1 < j; < m, while m + 1 < j; < 2m otherwise. This
condition is violated by means of the following formula:

s0 = 0s& (w =0s8114my v \/ V w = 00s%1°0u vV w = u10s81™+™
1<e<5 0<i<m

Y, \/ w = ul00%s1™ v \/ w = ul0s%1™ oy
1<e<5 1<i<m
\Y V v 'wV= u1005361i0v).
1<e<5 1<i<m
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(8) With each 7 that is the number of a command of type [xd] with d = 2,3, we associate some
formula which essentially asserts that somewhere in the word w a “failure” happened due to improper
execution of a command; i.e., either the result of the command is computed wrongly or a wrong
number is indicated as the number of the next command.

As such a formula, we take the formula of the form s0 = 0s&(¥; V ¥2), where the formula
W, essentially asserts that the result of a command of type [xd] is computed wrongly, whereas the
formula U, asserts that the result of the application of the command [xd) is computed correctly but
the number of the next command is indicated wrongly (on condition that s is the degree of 0).

We let ¥; be the following formula:

( V w= Osli+€m03d0u> \Y; ( V V w= vOli’*"EmOstllu)
e=0,1

£=0,1 1<I<d—1
V( \/ w = v0031i+5m05d1u) \%; ( V w = v1301i+5m03d0u)
e=0,1 e=0,1

V( \/ \/ w= v01i+5m03d011u> v ( V w= v0031i+5m05d1u).

€=0,11<I<d-1 e=0,1

As ¥, we take the formula

V \/ v (w = 031i+em03d1j+1m0u Vw= v1051i+em03d1j+1m0u
e=0,1 1=0,1 j#i+1

Vw = v10s17Fm0sd17Hm v 4y = gs1itempgdyiHimy,

(9) With each ¢ that is the number of a command of type [: 6; j], we associate some formula which
essentially asserts that somewhere in the word w a “failure” occurs due to improper execution of the
command, i.e., either the result of the command is computed wrongly or a wrong number is indicated
as the number of the next command:

s0 = 0s& ('w = 0s%1%0s0u V w = v00s%1*0s1u V w = v10s51°050u

Vw = v00s510s1u v \/ \/((w = 0s°1°0s1"+™0u
€=0,11#j

Vw = 0s51°0s175™) v (w = v10s51°0s 145 ™0u v w = v1081°0s1P+°™))
V(w = s01"™s00u V w = v00s1 ™ 0s1u) V (w = v1s01T™500u

Vw = v0031i+m051u) v V v (w= 0s1H+™m0s11H™ 0y
€=0,1 1141

Vw = 0s17F™0s1*™ v w = 01051 ™0s 1 ™0u v w = v1031‘+m031‘+€’")).

Let us make some comments on the last formula: the first four rows relate to the case in which
the number to which the ith command [: 6; ] applies. is divisible by 6; moreover, the first two rows
assert that the result is computed wrongly; i.e., it is not the result of division of the preceding number
by 6 and the next two rows assert that the result is computed correctly but the number of the next
command is indicated wrongly. Analogously, the last four rows relate to the case in which the number
to which the ith command [: 6; j] applies is not divisible by 6; moreover, the first two rows assert that
the result is computed wrongly (i.e., the number to which the command applies is changed, although it
must be preserved) and the last two rows assert that the result is computed correctly but the number
of the next command is indicated wrongly. O

We apply Theorem 1 to studying Diophantine sets in free semigroups.

For the sake of convenience, we denote the free generators of II; by a and b.
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DEFINITION. A subset S of the set II} is called Diophantine if there are words u and v in the
alphabet
{a$b121)'--amp)ylay%“'}

such that the equivalence

(gl,-"1gp) €ES& HZ "_' (3y1,---,yn)u(yl,---,gp,yl,---,yma,b) = v(gh'-'1gp7y17-°')yn7a7b)

holds for all elements g1, ..., gp in IIz. In this case, each such pair of words (u,v) is referred to as the
record of the Diophantine set S.

The intersection and the union of two Diophantine sets are themselves Diophantine sets: it is well
known that in II; the conjunction z; = y1&z2 = y2 of equalities is equivalent to the sole equality
z1az2z1bTy = y1ay2y1byo; on the other hand, as proven in [6, 7], there are words u and v in the
alphabet {a, b, z1,2,y1,¥2, 21, 22, 23, 24} such that

I; = (Y71, 22,91,92)((z1 = 22 V 41 = 92) & (F2) u(Z, 7, Z,a,b) = v(Z,§, 2,a, b)),
where 7 denotes z1,z2; ¥ denotes y1,y2; Z denotes 21, 22, 23, 24; and
u= U(.’E],:Eg, Y1,Y2, 21, 22, 23, 24, @, b)7 v = U(zla r2,Y1,%2, 21, 22,23, 24,04, b)

We shall show below that it is possible to restrict ourselves just to the new variables z; and 2.
Every singleton set and its complement are Diophantine, which ensues from the following fact: in
the articles [6-9], for every n > 2 the formula

n n
Pp(z,y) = (Hu,vl,'vg)( \/ (z = uajv1 &y = uajva) V (V(z =ya;y Vy = za,'vl)))
1,7=1 1=1
1#)

was constructed and there was proven that the equivalence ¢ # h < I, = Py(g, k) holds for arbitrary
two elements g and h of II,,. Therefore, every finite set and its complement are Diophantine.

N. K. Kosovskii [6] constructed the first examples of recursive sets in II; which are not Diophantine;
such is for instance the set S consisting of all symmetric words, i.e. the words of the form

a®1pP1 | gupPipPigm | pPrgm

Observe that, in view of G. S. Makanin’s theorem [10], every Diophantine set and its complement
therewith are recursive. For this reason, it is of interest, in our opinion, to construct an example of
a Diophantine set whose complement is not Diophantine.

To construct such an example from the operator algorithm 2 with nonrecursive domain, this
domain denoted by R(2), we as above construct some formula ®(z,w, s, u,v) of the form

l
j8—61 Wij(z,w, s, u,v,a,b) = Uij(z,w, s,u,v,a,b)

1=1
for which the equivalence
r ¢ R2A) & Iz E (Vw)(3s, u,v)®(aa”,w, s, u,v)

holds for every natural number 7.
Eliminating the signs & and V from the formula ® and renaming the variables, we obtain a formula
F(z,z,z1,...,2a) of the form

u(z, z,z1,...,2Zn,a,b) =v(z,2,21,...,2n,a,b)
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for which the following equivalence holds:

r ¢ R(A) & II; | (V2)(3z) u(aad', 2,2, a,b) = v(ad', 2, Z, a, b)
> r € R(2A) & Iz |= (32)-(3%) u(aa", 2, Z, a,b) = v(aa", z,Z, a, b).

We now demonstrate that the complement of the Diophantine set
D = {{g,h) | (3%) u(g, h, Z,a,b) =v(g,h,Z,a,b)}
is not Diophantine. Indeed, in the opposite case there would exist words u; and vy in the alphabet
{z,2,y1,..-,Yn,a,b} such that
-(3%z) u(z, 2, Z, a, b) = v(z, 2, Z,a,b) & (Iy) vi(z, 2,7, a, b) = vi(z, 2,9, a, b).

Then, however, the equivalence

r € R(A) & Iz E (32)(37) vi(ad’, 2,7, a,b) = vi(aa’, 2,§,a,b)

would hold and, by G. S. Makanin’s theorem [10], the set R(2) would be recursive, contradicting the
choice of the operator algorithm .

We will discuss some algorithmic questions concerning the determination of the number of elements
of a Diophantine set or its complement.
The following theorem is a simple corollary to G. S. Makanin’s result [11]:

Theorem 2. There is an algorithm allowing us, given an arbitrary pair (u,v) of words defining
a Diophantine set S and an arbitrary natural number k, to determine whether S contains no less
than k elements, or no more than k elements, or exactly k elements.

PROOF. Let a Diophantine set S has record

(.ql)"'vgp) €ESe H2 |= (ayl,---,yn)u(gly---,gpyyl,---,yn,a',b) = v(gla'"7gpvy1)"'1ynaa7b)°
Denote the claim “S contains no less than (no more than, ezactly) k elements” by |S| > k

(IS} £ k,|S| = k) and denote by ®; the formula

(3:1:51), ... ,:z:g,l),ygl), ... ,y,(,l), .. ,zgk), ... ,zg,k),ygk), .. ,y,(,k))\ll,

where ¥ has the form

k . . :
i(izl u(xg'), e, :1;,(,'), y%'), ... ,y,(,'),a, b)

— (3) @ , 0 (3) (1) (3)
=v(z1",. .., Zp Y] ey Y ’a’b)&lsi(gjgc <t_\/1mt # T ) .
Then
S| > k < 11 = ¥,
and the question of validity of the 3-formula ®} on II; is algorithmically decidable by G. S. Makanin’s
theorem [10]. To complete the proof, it suffices to observe that

IS|<ke-(S|>k+1), |S|=k&|S|>k&|S| <k O

The following question remains open: Is there an algorithm allowing us, given an arbitrary record
of a Diophantine set S, i.e., given the corresponding pair (u,v) of words, to determine whether S is
a finite set?

The conjectural answer is positive: in our opinion, it could be reached by proving that the equation
u(z1,...,2Zq,6,b) = v(z1,...,24,0,b)

having a solution g1, ..., gp in II such that g; is a “very long” word in comparison with the length of
the words u and v admits infinitely many solutions with different first components.

Observe that if the set S is finite then the answer can be obtained by resolving the question of
the form “II; |= ®,7”; difficulties arise in the case of an infinite S.

The following theorem sheds some light on the source of the difficulties:
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Theorem 3. For every fixed k, there is no algorithm allowing us, given an arbitrary pair (u,v) of
words defining a Diophantine set S, to determine whether the complem~nt of S contains k elements
(no less than k elements for k > 0, or no more than k elements).

PROOF. As described above, given the operator algorithm 2 with nonrecursive domain, we con-
struct some formula ®g(z) of the form

(Vy)(3z1, ..., 2zn) w(z,y, 2, a,b) = u(z,y, z,a,b)

such that the equivalence

r¢ R(A) & II; = dy(aa”)

holds for every natural r.
Denote by Sz w,u the following Diophantine set:

{y | 02 | (32) w(aa®, y, Z, a, b) = u(aa®,y, z, a, b).

If r ¢ R(A) then S; .« = II2; however, if r € R() then the complement of the set Sy 4 consists of
the only element yo (if the commands of the operator algorithm 2 are enumerated by the numbers
from 1 to m, the initial command has number 1, and the terminal command has number m, then in
the case 7 € R(2) there is a unique sequence of pairs of natural numbers (zo, %), (z1,%1),.. ., (Zt,%1)
such that z¢o = r, 190 = 1, 3, = m, and for every s (1 < s <) the application of the command with
number 7,1 to T,_; gives the number z, and the number of the next command is 7,); with these

notations,

yo = a1:0+1 bto+£omazl+lbtl+elma:cg+1 b12+52m L a$t+1 blt+€tm’

where g; = 0 if ; is divisible by 6 and ¢; = 1 otherwise (z =0,...,1).
We obtain the following equivalences:

re€ R2A) & |I2\ Srweu|l =1, r€ RA) & 2\ Srwul > 1,
re RA) &\ Srwu#9, ¢ RA) &\ Srwu =9,
r¢ RA) & |2\ Srwul =0, r¢ RRA) < |12\ Sruwu| 0.

Let b1,..., b be different degrees of the element a; put
Tz,w,u = z,w,u \ {b17 ceey bk}-

It is easily seen that T} 4 4 is a Diophantine set.

If r ¢ R(A) then S; oy = II2, and therefore
I \ Tr,w,u = {b], ey bk}, |H2 \ Tr,w,ul = k.

However, if r € R(2) then Il \ S; w,u consists of the only element yo which is not a degree of a; hence,
|2 \ Tr,w,u] = k + 1. We obtain the equivalences

re R@) @ M\ Tl = k+1, 7€ RE) & I\ Trgal > £+ 1.
Observe that we always have |II3 \ Ty «| > k; therefore,
IH2 \ Tr,w,ul = k + ]- <:> ﬁ(le \ Tr,w’u S k). D

The following question remains open: Is there an algorithm allowing us, given an arbitrary record
of a Diophantine set S, i.e., given the corresponding pair (u,v) of words, to determine whether the
complement of the set S is finite?

We now discuss the question of eliminating the signs & and V from the formulas pertinent to free
groups and semigroups.
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It is well known that in free groups and semigroups the sign & can be eliminated from formulas

by methods that are in a sense of the same type: in free groups this is carried out by means of

A. 1. Mal'tsev’s equation x%alm%al_l = (mzagzzaz_l)z (see [12]) that has only the trivial solution z;

1&z2 = 1, and the conjunction z; = y1&=z = y2 in II, is equivalent to the equality ria1z2210222 =
y1a1y2y102y2 [13].

Although the disjunction sign V too can be eliminated from formulas pertinent to free groups and
semigroups, this is carried out by several different methods: as was shown by G. A. Gurevich (see [12]),
in a free group Fy (n > 2) the disjunction of the equations z; = 1V 9 = 1 is equivalent to the
conjunction of the four equations

- () -6
. sézil[zlaizlal €, T205T2a, ] =1.

In the case of I, N. K. Kosovskif [6, 7] constructed words
w(z,y, z,v,z1,...,Zk,01,02), u(z,y,2z,0,21,...,%Tk C1,02)
in variables z,y, z,v, z1,...,z; and constants a; and as such that the equivalence
(A=BVC=D) &I, E(3z)w(4,B,C,D,z,a) =u(A,B,C,D,z,a)

holds for all elements A, B, C, and D of I1,,, where Z denotes z1,...,z} and a@ denotes a1, az; moreover,
in the articles [6, 7] k¥ = 4. An analogous formula was constructed in the article [14]. In [14] k is much
greater than in [6, 7] (near 40), although the authors of [14] point out that it is possible to diminish
k to 3 by using rather involved analysis, with the reference to the dissertation [15] that is practically
inaccessible to the Russian reader.

We demonstrate that it is possible to construct a rather simple formula with £ = 2.

As a preliminary, we prove some lemma about solutions to one simple equation in a free semigroup.

Lemma. If the equality AMB™C™ = D™ holds in the free semigroup I, (n > 2) for m > 6
with |A| = |B| or |B| = |C|, then A, B, C, and D are degrees of the same element of I, where
|W| is the length of a word W in Il,.

PROOF is based on Lemma 2.3 of S. I. Adyan’s monograph [16]: if A’A' = B"B', where the word
A' is an initial fragment of A, B' is an initial fragment of B, and |A*A’| > |AB|; then it is possible to
indicate a word D such that A = D¥ and B = D* for some k and s. It is easily seen that the following
assertion is true along with this lemma: if A'A* = B'B", where the word A’ is a terminal fragment
of A, B' is a terminal fragment of B, and |A' A'| > |BA|, then it is possible to indicate a word D such
that A = D* and B = D* for some k and s. The last assertion, as well as the former, will be referred
to as S. I. Adyan’s lemma.

We examine the case in which |A| = |B]. The case in which |B| = |C| is treated similarly.

If A™ = D¥D, where D; is an initial fragment of D and |A™~1| > |D|, then |A™| > |AD|, and
therefore by S. 1. Adyan’s lemma there is a word E such that A = E® and D = E! for some s and ¢.
Thus, we obtain the equality ES™B™C™ = E'™ which implies the equality B™C™ = Em(t=9),

If t — s =0 then B and C are empty words and the assertion under proof is valid.

However, if t — s > 1 then by the Lyndon-Schiitzenberger theorem [17] B, C, and E are degrees
of the same element S, and hence A, B, C, and D are degrees of S.

If C™ = D, D* and |C™"!| > |D|, where D is a terminal fragment of D, then the analogous
consideration shows that A, B, C, and D are degrees of the same element.

We are left with settling the case in which |[A™7!| < |D| and |C™"!| < |D|. Since m > 6
then |A™| < ID2‘1 and |S™| < |D?|. By assumption, |A| = |B|; therefore, |B™| < |D?|. Hence,
|A™B™C™| < |D®|, but AmB™C™ = D™, and consequently |[D™| < |D®|, m < 6, contradicting the
hypothesis of the lemma. O

We turn to constructing a formula ®(z,y, z,v) of the form

(3(1?1,:1:2) w(z,y,z,v, z, T2, alaaZ) = ‘U,(.’l}, Y,2,v,71,72,01, 0'2)
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such that the equivalence (A = BV C = D) & I, |= ®(A, B,C, D) holds for all elements A, B, C,
and D of the group II, . Since (A= BVC = D) & (AD = BDV BC = BD), it suffices to construct
a formula F(z,y,2) such that (g =hV f = h) & II, = F(g, f, h).

Let ¥(z,y, z,z1,z2) denote the following system of equalities:

[(z*a)¥(z*B)*1*[(y*a)* (s*b)*1* = 21[(*0)* (*D)* 1 zo&em1[(e%a) (=¥ )]
= [(z*a)* («*b)*z1&2:[(v%a) (4*)*] = [(v*a)* (*b)"]22&z122 = 2221

Assume k > 6.
Theorem 4. For arbitrary elements g, h, and f of the free group Il, (n > 2) we have

(g =hV f = h) A Hﬂ }= (azl)mZ)\I’(g’fahvzlazZ)'

PROOF. First of all, we demonstrate that (z¥a)¥(z*b)* is a prime element of II, for every prime

element z of II,.

Assume the contrary. Let (z*a)*(zfb)* = S™ and m > 2; then by the Lyndon-Schiitzenberger
theorem [17] z*a and z*b commute; i.e., z¥az®b = z¥bz*a, which is impossible.

If g=hV f = h then, obviously, I, = (3z1,z2) ¥(g, f, k, z1, z2)-

Conversely, let II, = (3z1,z2) ¥(y, f, h, z1,72). Then there are n, m > 0 such that

21 = [(2*a) (240" &2 = [(y¥a)*(4*B)1]™.

Demonstrate that nm =0 or z = y = 2.

If nm # 0 then the equality z;z2 = zoz; implies that the elements (z a)k(zkb) and (y*a)k(y*b)*
commute and are consequentlky degrees of the same element. Since they are prime elements, it follows
that (z¥a)k(z*b)* = (y*a) . But then

(.'z:ka,)'c = (yka)k&(zkb)k = (y*b)F, z*a = y*a&atb=y*b, 2F =y* 2z =y,
Hence, the following equality holds:
[(a*a)*(z*8)*1* = [(a*a)* (z*)*]"(("a)* (z*0)*1*((s*a)*(z*B)¥]™.

It is clear that 2k > n+m; therefore, the preceding equality implies the equality [(z¥a)*(z*b)
[(z a)k(zkb)k]" Since the elements (z¥a)*(z*b)* and (2*a)¥(z¥b)* are prime, we obtain the equality
(z%a)*(zFb)* = (z*a)¥(2¥b)F which implies the desired equality z = =.
If nm = 0 then we examine the case n = 0 (the case m = 0 is settled similarly). In this case

[(=*a)* (=" IF (5" ) (¥*0)*1* = [(Fa)*(z* ) F[(w*a) (5 B) 1™

For m > k, we obtain

k]2k—n—m

[(a*a)* (*0)"* = [(* ) (*) Pl a)  (v*B) ™.

If m — k > 2 then, by the Lyndon-Schiitzenberger theorem [17] and in view of the fact that the
elements (z*a)¥(z*b)* and (z¥a)*(2*b)* are prime, we obtain the equalitiesz =y = z. If m — k = 0
then we obtain the equality z = z; however, if m — k = 1 then we obtain the equality

[(ZFa)*(* )1 (v*a)F (y*b)* = [(a*a)*(z* D).

Since |y*a| = |y*b|, by the Lemma y*a and y¥b are degrees of the same element, which is impossible
as they have different terminal fragments.
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For m < k we obtain the equality
[(=*a)*(=*8)*1*[(s*a)* (v*0)*1*~™ = [(*a)*(z*B)*]",

whence for k — m > 2 we again infer the equality z = 2z by using the Lyndon-Schiitzenberger theo-
rem [17], while for k — m = 1, the equality

[(z*a)¥ (¥ b)k]F (y*a)* (y*D)F = [(2¥a)F (z*D)¥]*

which by the Lemma leads to a contradiction. O

It was already proven in the article (8] that, to eliminate the disjunction sign from the formulas
pertinent to free semigroups is impossible without the existential quantifier. Since the access to the
article [8] is very limited, we expose a simplified proof of this fact.

Theorem 5. For any n > 2, there are no words
w(z,y, z,v,6a1,...,0n), u(z,y,2,v,81,...,0n)
in variables z, y, z, and v and constants ay,...,an for which the equivalence
(g=hVp=f) & wghp,f,a)=ughp,fa)

holds for all elements g, h, p, and f of Il,.
PROOF. Assume the contrary; i.e., there is an equation

w(z,y, z,v,0a1,...,8,) = u(z,y,2,v,01,...,0n)

whose solutions are the various collections (g, g,p, f) and (g, k, p,p) and only them.
In the words w and u, we distinguish maximal nonempty subwords in the alphabet of the unknowns
{z,y,2,v}:

w(z,y, z,V, C_L) = AIXIAZ “ee AtXtAt+la u(:z:, y,z,'v,d) = B1)/1B2 v BkYkBk+1a

where Y; and X; are nonempty words in the alphabet of the unknowns {z,y,z,v}, An and B, are
nonempty words in the alphabet {a;,...,an} (with a possible exception of the casesm = 1, m = t+1,
s =1, and s = k + 1), and = is the sign of lexicographic equality of words.

Consider the following formulas:

o, = (Vz, z,v)uw(z, z, 2,v,8) = u(z, z, z,v, a),
o2 = (Vz,y,2)w(z,y, 2, 2,8) = u(z,y, 2, 2, a).

Since the formulas ®; and @2 are true in the subgroup II, and since n > 2, by Yu. I. Merzlyakov’s
theorem (18] they are true in every free group Fy, with m > n; in particular, in the group Fy4s.
Therefore, the equalities

w(an+1, Qp+1,0n+42, Gn43, 6) = u(an+l) Gn+1,8Cn42, 0n43, E),
W(@n+1, An+2, Ant3, Ant3, @) = U(Bnt1, Ant2, Ant3; Bnt3, a)

hold in the group Fr43. Put

X‘_(l) = Xi[z,y,z,v][aﬂ+1’ Qn+1,Cn42, an+3]’
Y]'(l) = Yj[x,y,z,v][an+1,a‘ﬂ+1’ Gnt2, Gnt3),
X§2) = i[z,y,z,v][an+1’ @n+2; Gn+3; O3],
Yj(z) = J'[x,y,z,u][an+1’ Gn+2;Bn+3; Ent3),
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where Wi, , , )[4, B, C, D] is the word obtained from the word W by the simultaneous replacement
of each occurrence of the variable £ with the word A, the variable y with the word B, the variable z
with the word C, and the variable v with the word D. Then the following equalities hold for s = 1,2:

Ale(a)Az e AtX,(a)AHl = BlYl(’)Bz . .BkYk(’)BkH.

Since Aj and B; are words in the alphabet {a1,...,a,} and X J(-") and Yi(s) are words in the alphabet
{@n+1,@n+2,an+3}, the preceding equality implies that ¢ = k and

t+1 2 i
& Ai=Bi, & & X =Y.

s=11=1

It is easily seen that the system of the equalities

& & X =y®

s=11=1
implies the system of the equalities
t
& X; =Y.
1=]
Therefore, w(z,y, z,v,8) = u(z,y, z,v,a). Hence, the identity
(Vz,y,2,v) w(z,y,2,v,8) = u(z,y,2,v,8)

holds on II,, contradicting the assumption that was made at the beginning of the proof. O
The following natural question arises: Is it possible to construct words w(z,y,z2,v,t,a) and
u(z,y, 2,v,t,a) such that the equivalence

(9g=hVp=f)& (3t)w(g,h,p,f,t,a) = u(g, h,p,t,a)

holds for all elements g, h, f, and p of 11,7
The conjectural answer is negative.
As was already pointed out above, in the articles [7-9] the formula

Pp(z,y) = (Elu,vl,vz)< V (z = ua;vi1&y = uajva) V (V(z =yavy1Vy= za,'vl)))
1,7=1 1=1
E

was constructed for every n > 2 and there was proven that the equivalence

g#h &I, = Pa(g, h)

holds for arbitrary two elements g and h of II,,. Therefore, G. S. Makanin’s theorem [10] on the al-
gorithmic decidability of the compatibility problem for systems of equations in the free semigroup II,
readily implies the algorithmic decidability of the existential and universal theories of every semi-
group Il,.

It was proven in the article [9] that the universal and, consequently, existential theories of a semi-
group II of countable rank are algorithmically decidable. However, the proof in [9] uses the not
generally accepted notion of the 3-quantifier with respect to a generator and its elimination.

We now demonstrate that the decidability of the universal theory of a free semigroup of countable
rank is a direct corollary to the decidability of the universal theory.of an arbitrary free semigroup of
finite rank.
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Indeed, assume @ to be a formula of the form (Vzi,...,z,)¥ and let ¥ be its matrix (quantifier-
free part). Let us show that if ¥ contains as constants only a1,...,an, then Il E & & I,4; E @.
Since I, is a subsemigroup of II for every m, it follows from I |z ® that II,;, = ® for every m > n.

Conversely, assume that [I,4+1 = ®. Denote by H the subsemigroup of II,+; which is generated
by the elements

k k
a1y --30n, 0041018041, - .-, 8p 10100 41, - .

Then H = ®. However, the semigroup H is isomorphic to the semigroup II; moreover, we can take
such an isomorphism ¢ for which the following equalities hold:

ola)=oi i 1<i<n, plo)=aifeal i i>n

Therefore, I = ®. O

The formulas considered in the articles 3, 4] and in the beginning of the present article have a quite
simple prefix. At the same time, their matrices include a good many occurrences of the disjunction
sign V. Of course, using the method indicated above, we could eliminate the sign V but this would
lead to a considerable increase of the number of existential quantifies in the prefix.

In this connection, in our opinion, the question is of interest whether it is possible to simultaneously
simplify the prefix and the matrix of a formula; moreover, the simplest matrix should look like
a formula of the form w = u, where w and u are words in the alphabet of the variables and generators
of the semigroup.

As some advancement in this direction, we propose the following theorem:

Theorem 6. It is possible to construct a formula ®(z) that has one free generator z, is of the

form
(Fw)(Vy) 3zy,...,z11)u = v,

where v and v are words in the alphabet {z,w,y,z1,...,%11,a1,a2,a3}, and is such that there is no
algorithm allowing us, given an arbitrary element g of I3, to determine whether the formula ®(g)
is true on Il3.

PROOF. Denote by H(w, z,z;1,z2,z3) the formula

3
\/ (w = z10i22&2 = T10523) V 2 = Wy
i,7=1,
i#J
It is easy to see that the following equivalence holds for arbitrary elements g and & of IIs:

3 E (321, z2,z3) H(g, h,z1,22,73) & “h 1s not an initial fragment of g”.

Denote by IT a semigroup that has presentation (aj,as||A; = Bi, A2 = Bj, A3 = B3) and for
which the problem of equality to a fixed word gp is algorithmically undecidable [19]; moreover, the
words A; and B; are nonempty for every :. Put A3z4; = B; and B34; = A; for j = 1,2,3. Denote
by F(z) the following formula:

(B’UJ)(Vy) (3.’1,‘1, T2, (Ea)‘I’(Z,‘UJ, Y,Z1,Z2, 1133),
where
\I’($>w:y,$l;z2,z3) = H(aggoa;;w,yag,:cl,:z:g,:vg)

6
v \/ azgoazwazgas = yazzr1Aizoa3z1 Bizoaszs | .

1=1
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Demonstrate that the equivalence
I3 = F(g) & “g equals gg in II”

holds for an arbitrary nonempty word g of Ils which differs from go.

If g is a nonempty word of II; distinct from gy and g equals gg in II, then in II; there is a sequence
90591, - -, gm such that g, = g; moreover, for every ¢ (0 < i < m — 1), there are a j and words X;
and X3 such that g; = X1A4;X> and giy1 = X1 B;jX>; furthermore, we may assume m > 2.

We put

Wy =2 g1a3gzas. .. a3gm—1.

It is easy to show that the formula
(Vy) (azla T2, :’53)\1’(91 WD) Y,%1,%2, $3)

is true on II3. Therefore, II3 = F(g).
Conversely, let II3 = F(g) and let Wy be an element of I3 such that

H3 F (Vy) (3271, Z2, 2:3)‘]:’(9’ W07 Y,Z1,%2, 2:3)-

First of all, it is easy to demonstrate that a% does not occur in the word asgoasWyasgas and, for
that reason, in II3 there are nonempty words hm, Am—1,...,ho (m > 2) such that

hm = gg, ho = g, a3g0a3Woa3ga3 = a3hma3hm_1a3 TN a3h0a3.

We now show that h; equals kg in I by inducting on ¢.

Assume that m >t > 0 and assume that h; equals hg in II for every ¢ such that ¢ > 7 > 0.

Put Y = ashpashm—-1a3...a3hiy) for m >t and Y = A for m = ¢, where A is the empty word.
Then azgoasWy = YazZ for some Z, and therefore there are words X3, X3, and X3 and a number 3
such that

azgoazWoazgas = Ya3 X1A4;X2a3X1BiX2a3X3.

1. If the letter a3 does not occur in the words X; and X3 then hy = X1 A; X2 and hy—; = X; B; X>,
implying that h; equals h;—; in II. Since h;—; equals hg in II, it follows that h; equals Ag in II.

2. If the letter a3 occurs in X then there is I < ¢ such that hy = h;, implying again that h; equals
h() in II.

3. If the letter a3 does not occur in X; but X; = Xya3X5, and a3 does not occur in X5 then
there is [ < t such that h; = X;A; X5 and hy = X; B; Xy, which again implies that h; equals hg in II.

Eliminating the sign V from the matrix of the formula F(z) by the above-described method, we
obtain a sought formula ®(z) of the form

(Elw)(Vy)(Bml, .o ,.’1:11) u = v.

REMARK. Clearly, the prefix of the formula &(z) is of higher complexity than that of the formula
in the articles [3, 4]; however, this circumstance is to some extent outweighed by the simple form of
the matrix of the formula. Moreover, the study of formulas of the indicated type reduces in a certain
sense to the study of solution sets for equations in 13 unknowns and sheds more light on the source of
difficulties that appear in attempts to describe the solution sets for the equations having the number
of unknowns greater than 3.

In conclusion, the author expresses his deep gratitude to S. I.-Adyan for support and unfailing
interest in the article.
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