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A THEOREM ON THE MARKOV PERIODIC APPROXIMATION IN ERGODIC THEORY 

A. M. Vershik UDC 517.4 

One presents a new variant of the theory of periodic approximations of dynamical 

systems and C*-algebras, namely the construction for each automorphism of the 

Lebesgue space of a Markov tower (or adic model) of periodic automorphisms. One 

gives several examples. 

i. Introduction 

In [i] we have outlined the proof of the theorm on the simultaneous uniform approxima- 
2 

tion of the multiplication and shift operators in the space of L-functions on a dynamical 

system with an invariant measure; more exactly: let S be an automorphism of the segment [0, 

i] with an invariant Lebesgue measure and let ~ be a bounded measurable function; for each 

>0 there exist operators in L 2 , U (~ and V c~ , such that g U s -U ~ II<~ , 

IIM~ - V ~ II ~g and the *-algebra generated by U ~ and V ~ is finite-dimensional; 

here U s is a unitary shift operator of the dynamical system, M~ is a multiplier, and N'g 

is the operator norm. If ~S~)~) = ~+~)~i),~=~O~ , then the problem consists in the 

simultaneous approximation of the operators, satisfying the relation UMU "4~'~=~~I. 

This problem has been solved in [2] and has been formulated earlier by the author in [3, 4] 

and by Rieffel [5]. The above formulated theorem has applications in operator theory, in the 

theory of approximations of dynamical systems and in ~ -algebras; it can be considered as a 

variant of the noncummutative constructive theory of operators (see [4]). 

The proof of the theorem is divided into two stages. The first one is a new variant of 

the theory of periodic approximations (Theorem 3 in [i]), namely the construction of the 

Markov towers of periodic automorphisms (see below) and is considered in this paper. The 

second stage refers to the theory of ~ -algebras and will be considered elsewhere. 

The approximations in the theory of dynamical systems, as in the theory of equations, 

can be partitioned into two classes: Factor-approximations or the moment method (projective 

approximation) and subapproximations or the method of nets (inductive approximation). In 

the first case we investigate the behavior of the operators on finite-dimensional subspaces 

of functions or on a collection of sets and in the second case we investigate the behavior 

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 
Instituta im. V. A. Steklova AN SSSR, Vol. 115, pp. 72-82, 1982. 

0090-4104/85/2805- 0667509.50 O 1985 Plenum Publishing Corporation 667 



of the system on finite collection of points. The approximation considered below is of the 

second type; we approximate an automorphism by periodic automorphisms whose trajectories are 

included in the trajectories of the initial one, i.e., we approximate the automorphism of a 

random permutation. This variant is related to the author's paper [6] on the scale of an 

automorphism and makes use of a modification of the construction of a consistent sequence of 

periodic automorphisms, found there (the lemma of Sec. 3 in [6]). The important modification 

introduced here consists in the fact that we do not require the constancy of the minimal 

periods with respect to all points for each of the periodic automorphisms of the approxima- 

tion; in return, the consistency of the approximation steps is stronger: Each permutation 

differs from the approximated automorphism only at one point of its layer and, as a function 

on the quotient space relative to the trajectories of a periodic automorphism with values 

in the (variable) group of permutations, is measurable relative to some additional partition 

to the trajectory partition of the subsequent term of the approximation (see below). Such 

a rigid requirement excludes in many respects the additional arbitrariness in the approxima- 

tion which one usually has. Thus we arrive at the concept of a Markov tower or adic auto- 

morphism model, whose existence is proved in this paper. The construction of these models or 

approximations in concrete cases is a complex problem; in Sec. 4 we give some examples. In 

Sec. 2 we give the definitions and in Sec. 3 we give the proof of the fundamental theorem. 

We recall that the existence of a periodic automorphism, approximating uniformly (in the 

sense of the theory of measure) the given one, is the content of the classical Rokhlin--Halmos 

lemma; the question of the sequences of periodic approximations, consistent in some sense, 

has been considered in different ways in a series of investigations (see, for example, the 

survey [7]) and the projective approximation (by multivalued mappings) has been introduced 

in [8]. We also mention that in our view such an approximation (multivalued; see [9]) must 

be an object of investigation also in hydrodynamics (in its metric variant) in close connec- 

tion with the approximations, so fruitfully investigated in the works of O. A. Ladyzhesnkaya. 

2. Markov Compactum and Adic Transformation 

In the sequel, for each automorphism of the Lebesgue space we construct a tower of 

periodic automorphisms. But first we define an appropriate model space and its transform, 

to which we wish to reduce (i..e, to establish an isomorphism) an arbitrary pair; in other 

words, we define a class of canonical towers. 

Let ~=i, ~4, ''' be a sequence of natural numbers ~ , ~=i~... ; let 

M I , M~ , .~ be a sequence of Z+ -matrices, where the matrix M~ =(~J~) has dimension %~-i ~ 

~ . ~ = i,... We shall assume that none of these matrices has zero rows or columns. 

We consider the graded graph ~[ ~I) whose vertices ~=0~{ are partitioned into finite 
~=0 

"levels" ~o = [~],~, .... and the number of elements is I~I=~ , ~0 ; the arcs of the 

graph join only vertices of adjacent levels and the number of arcs joining vertex j of the 

( ~-i )-st level with vertex ~ of the r level is equal to ~K , K=~,...,%~, j=l, .... 

~i , + =O,i~.'. By virtue of the conditions on the matrices, each vertex is joined 

at least with one vertex of the next level and (except for the vertex ~ 6~0. ) of the pre- 

vious level. By a path in the graph we mean a sequence of arcs (~o,~,'.') , where ~_~ and 
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have a common vertex from the ~-th level, ~=i,~,.... Let ~(P) be the space of all 

M the paths of the graph ~([ ~I~=~) ' equipped with the weak topology. (A neighborhood 

of a path is the collection of all paths coinciding with the given one up to some places; 

obviously, ~([~) is a compactum). 

Definition i. By a Markov compactum with parameters [~, M~ ~ i=i,...,J we mean 
~[~) , ~ =~{~il ) . If ~---- �9 and ~-_- M ~  , then the Markov compactum 

is said to be stationary. 

In topological dynamics one considers frequently stationary Markov compacta and their 

two-sided shifts. We shall consider arbitrary Markov compacta and their transformations of 

another kind. Various properties of the compactum ~ )  and of the measures on them, in 

dependence on the asymptotic behavior of the matrices ~ , will be considered elsewhere; 

they are related, in particular, to the properties of AF -algebras constructed over the 

graph ~ , as over the Bratteli diagram [i0]. 

We restrict ourselved to the case when the elements of ~ consist of zeros and ones. 

In this case the graph does not have multiple arcs and a path is a succession of vertices; 

this assumption does not diminish at all the generality since by introducing new vertices one 

can get rid of multiplicities. In this case the Markov compactum acquires a usual description: 

it is a closed subset in the compactum ~ ~ , consisting of all sequences [~I for 

which ~ ~*i = i @ 

We give a direct description of the structure of a Markov compactum. 

Proposition I. Every Markov compactum is a totally disconnected separable compactum X 

with a distinguished sequence of finite partitions ~ ~ ~lJ , possessing the fol- 

lowing properties: 

O0 

l) V 

2) for each K>~i and any set ~ of the partition element ~ the correspondence 

defines a homeomorphism 

V ' 

Here V denotes the product of the partitions, i.e., the partition consisting of all pos- 

sible intersections of the multiplied partitions; 6 is the partitioning into isolated points. 

Condition i) means that for ~ ~ ~ there exists ~ such that ~(~ ~ ~(9) , where 

~(~ is the element of ~ containing ~ . In condition 2) the s~bol ~/~ denotes the 

factorization of ~ with respect to the partitioning and the meaning of the condition is 

the following: If ~,~6~, then there exists ~ for which the projection onto 

~/~ for ~<~ is the same as for ~ and onto ~/~ for ~ is the same as for 

If one denotes the number of elements of ~ by ~ and the intersection matrix of ~-i 

and ~ by M~ , then the compactum X from this proposition becomes ~ [~M~)) ; 

conversely, denoting by ~ the partitioning of ~ into the classes of paths passing through 

a given vertex of the ~ -th level, we can see that the conditions of the proposition holds. 

We shall use the definition from the proposition. 
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A subset of a Markov compactum ~ that is measurable with respect to ~ ~ for some 

, will be said to be cylindrical; these subsets form an algebra, denoted by ~ ; a 

transformation leaving "'[.~ ~ invariant and .9 ~ fixed is K -cylindrical. Each E - 
~=~ 

cylindrical invertible transformation of a Markov compactum is a periodic transformation whose 

trajectories lie on the elements of the partition ~ .  By a transformation of class 

we mean a homeomorphism T for which there exists a nowhere dense closed invariant set 

such that, in the complement of any of its open neighborhood, T is a ~-cylindrical (peri- 

odic) transformation, where ~ depends on the neighborhood. Thus, the transformation of class 

are limits of ~-cylindrical (periodic) transformations in the sense of uniform conver- 

gence on any closed set lying in the complement of some nowhere dense set. 

An example of a transformation of class ~ of a very general form, to which we shall 

restrict ourselves in the sequel, is obtained in the following manner. 

We index the elements of the partitions ~ by natural numbers from i to ~ , ~=~... 

Thus, we can introduce a lexicographic ordering on the set of elements ~i for all 
I 

assuming (~,...,~)~(~,00.,~) , if ~ = ~  ~=0,~,.o,,~ ; ~_~ > ~_~~ On the 

space ~ there emerges a partial ordering in which the sequences coinciding from some place 

are comparable; the order type in each class of comparable elements is either i~" , or 

~+, or ~_ , or ~ A Markov compactum together with the ordering of the parti- 

tions is said to be minimal if all except two classes are ordered by type Z , one by type 

~+ and one by type Z_ Minimality can be expressed in a simple manner as a condi- 

tion on the matrices ~ : 

Proposition 2. There exists a sequence El< K~ < ... such that the matrices ~' ~§ 

"...'~,~i do not have zero elements ~=i,~,... Clearly, it does not depend on the 

ordering on ~ ; by the change of the indexing only the one-sided orbits are changed. 

Definition 2. By an adic transformation of a Markov compactum with ordered partitions 

~ , we mean a transformation T which assigns to an element ~ the element ~/ which is 

directly larger in the sense of the ordering. (If ~ does not exist, then T is not de- 

fined.) If ~ is minimal, the we define an adic transformation by combining the semiorbits 

~+ and ~_ 

Proposition 3. An adic transformation of a minimal Markov compactum belongs to the 

class 

The proof follows directly from the definition of the ordering, the exceptional and in- 

verse set in this case consisting of one point (the end of the orbits of type ~- and the 

origin of the orbits ~+ , respectively). 

Remark. The trajectory partition of an adic transformation is the tail partition of 

(i.e., ~ ~ ~ , where the symbol ~ is the set theoretic intersection). 

Thus, an adic shift is the limit of cylindrical transformations, i.e., of the substitu- 

tions of the first coordinates of the sequence. It can be visualized as a tower of succes- 

sive substitutions of the elements of the partitions ~I~ ~ .... It is the model to 

which we reduce an arbitrary ergodic automorphism of the Lebesgue space (see the examples 

in Sec. 4). 
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3. Fundamental Theorem 

THEOREM. Let CX,~) be a Lebesgue space and let ~ be its ergodic automorphism with 

invariant measure ~ ; 0~o is the countable algebra of measurable sets in $ , invariant 

with respect to X There exists a set of full measure XocX , Xo~ o and an auto- 

morphism S/=~0) ~'X, =xo as well as a minimal Markov compactum ~ (with ordered ele- 

ments of the partitions (~) ~i ), such that CX,, $/, ~o) and (~, T , ~) are iso- 

morphic, i.e., one has a mapping ~:X, )~ , defined everywhere on Xo and ~'~ =~o 

( ~ is the algebra of cylindrical sets) and ~$'~'I=T , where T is an adic transforma- 

tion. 

Our problem consists in the construction of a sequence of partitions X on ~ with the 

required properties. But we start with the construction of periodic approximations, which 

will correspond to cylindrical periodic transformations in the image. 

If ~ is an arbitrary measurable set, ~>0 , in X , then each ergodic auto- 

morphism can be represented as an integral over the derivative ~B relative to the subset 

(see [ii]). We fix an automorphism and we form partitions ~) =~CB)~) and ~B) = 

~C~,$) in the following manner. K~) consists of at most a countable number of elements 

x~ and the elements of ~) are ordered in the natural Bo=B ,.Bt:S%\Bo,,. ,B~:SB~,\ B~, 
~sOs 

manner; the element ~(8)(~)) containing the point ~eB , consists of all points of the form 

~ , where ~ ; ~ and ~ are mutually complementary. If %6[~)= I~C~)[~)I , 

since 5 is ergodic, we have %5 ~) < co almost everywhere; we denote ~8,5 =Su~55 ~s <~) �9 

Let S~B)~ =S~ if S~e~B) C~) and ~8)~ =~-~t~)Z if ~ ~ ) ~ )  ; ~B) is a 

periodic automorphism with period depending on the point. 

LEMMA. Let ~0 be an everywhere dense algebra of measurable sets, invariant with re- 

spect to the ergodic automorphism 5 There exists a sequence of sets A 4 D ~ ~..., 

~<9 ~) :0 , A{6% , for which %A~<~176 for all ~ = i , . . .  
' :a a 

Proof. We select an arbitrary A, 6~o ' ~AI < " We denote A i 1 ~ ' 
" 

where A~ is the union of all but a finite number of elements of the partition ~ 

~ ~Ai since ~o is invariant then ~CAI) is measurable relative having the measure < ~ 

to ~= and therefore A~ and A4 lies in ~ We note that DA~,~ <co We con- 
I I 

sider , ~ = ~A~ , the derivative of ~ on A4 and A~c A~ , ~A~ < ~ ~ ~ we 
I 

apply the same method to A4 , ~4 and ~'z as for X , S , A~ in the first step. As a 

result, we construct A ~ A 4  , %~,$ <co and, therefore ~A~,S <co " Since 

' =~ , we have .~& < ~ + ~ = ~ . Continuing this process, we 

obtain a system of sets A, . . .  from (~,.),rt)A.<C~)" and ~A~,S <oo , which is what we 
intended to prove. 

We denote ~.= 6{~h.) ; the required periodic automorphisms have been constructed. 

Obviously, ~I~: ~ ~ ~ =0 Now we construct a sequence of refinements K(A~) 

which brings in the structure of a Markov compactum. 

Let ~./~ 6 be an increasing sequence of finite partitions (here 6 is the partition 

into points .~0~0 ), consisting of sets from ~o and generating 0~o We identify 

X/~) and A~ , associating to an element its unique point from ~ Let 
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Obviously, ~ ~_~ = ~ 

Let ~ = ~  ;~) V.p~ �9 

% : -- , -  A,,. 

for all ~ since A~ c h~. 
We define by induction the pattitions ~ : 

~=~,$, .... The elements of ~K inherit the ordering of ~(AK; SAKe) . We 
V - t  -I verify that the required properties hold. Since ~CAK~ %C~C~;S~))...~.IC~CAK;~A~_~)) , 

we have ~ ~) "~'~'~=I ~ and, therefore, the last partltlon" " is complementary to ~(A~; ~) , 

i.e., to the trajectory partition of the periodic automorphism S~ �9 Now, ~ ~ ~ , 

since ~'<~(~;~) V~ ; consequently,~_i~- ~fn p~=6 . By construction, the sequence 

~[~ is Markov and in one element ~De~ the automorphism $~_~ has the same periods for 

all points, the elements of ~4 ~ being moved while the elements of .~ remain fixed. 
~=~ 

Finally, all elements of all ~ lie in ~0. 

Now we define a Markov compactum ~ with respect to the partitions [~;I and we re- 

flect ~ into the space ~ X 4 =~ considered as the infinite product of the finite sets 

~ with the weak topology. From what has been said it is clear that the mapping 

e : 0~ ~)~ ,..)~ ~ is a ~o~O monomorphism and the closure of the image of a set of 

complete measure is a Markov compactum ~c ~ ; the image ~ is the algebra of cylin- 

drical sets; the Markov property of ~ follows from the Markov property of i~l~ ' 

where the elements ~ are ordered, and the transformation ~ goes into the adic shift as 

one can see from the construction. Finally we verify the minimality of ~ ; for this 

we note that from the erogodicity of ~ there follows that for any elements ~)~ and 

E E ~s there exists ~ = ~(~,6) 

matrix of the interactions ~ and 

Sec. 2). The theorem is proved. 

Remarks 

for which ~5~)~ E) >0 ; this means that the 

~S consists of positive elements (see Proposition 2, 

i. Our method of construction of {~I is not economical since the refinement of ~ 

is not accompanied by the lengthening of the trajectories of ~K ; as far as possible, 

~ must be "almost" an independent complement to ~ The construction of economical 

realizations is a complex problem (see the examples). 

2. By the theorem of [12], there exist an invariant algebra ~o and a relatively 

ergodic automorphism, consisting of strictly ergodic sets. If in the theorem one starts 

from this algebra, then the corresponding adic transformation will be strictly ergodic. 

3. The asymptotic properties of the matrices of the intersections of the partitions 

[~i contain ample information about the metric invariants of the automorphism of the 

scale type (see [6]). 

4. The theorem can be easily generalized to nonergodic automorphisms; in this case the 

Markov compactum will not be minimal. 

5. The theorem is valid for any countable group G of automorphisms for which the 

Rokhlin--Halmos lemma holds. 
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4. Examples 

i. Let ~ be an ergodic automorphism with rational spectrum, i.e., with a spectrum 

which is the union of finite subgroups of roots of unity of order PI, P2,". ; Pil~§ ; 

P~§ = ~ �9 In this case the adic realization is the following. The compactum 

= ~Z/~ Z and the transformation T is given by r~ = ~+i , addition being con- 

sidered in the additive group ~ Since the Markov compactum ~ is Pl ~Z ' the 

matrices M~ = {~} ~ , j~--- i If ~ = ~ , then ~ is the additive group of 

integer ~ -adic numbers which explains the term "adic automorphism." 

2. Let ~ =C~+~) ~ , where ~e[0,1) .If =L~[O,i) is irrational, 

then ~ is ergodic and its adic realization can be given in the following manner. Let 

~=C~I,~,...) be the expansion of o& into a continuous fraction; ~=.~_1~,%~=[~il=n~+~ ; 

we consider the matrices ~ = [~] ~ of order ~x ~+i : ~'~ =i for j ~ ~ ; ~i~=0 for 
d~ 

~-~+i ~§ =~ ; ~=~,~, .... In other words, 

The Markov compactum ~C ~ is constructed on {~J and [~I The adic shift in 

it is isomorphic to the shift ~ ; more precisely: there exists an isomorphism of the space 

with measure (on * there is a unique measure, invariant relative to the adic shift) re- 

ducing ~ to an adic shift. Indeed, in this case the isomorphism is the Borel isomorphism 

of the topological spaces (circumference and ~ ). This model is the modification of the 

constructions from [2, 13]; however, there, the constructions are used for other purposes. 

At the suggestion of the author, M. and L. Gandel'sman have established the isomorphism which 

has been mentioned above. 

Another adic realization of the rotation of the circumference is the folllowing: =$o=~ , 

{~i--i ] [_=~-~_~ " t =i for ~:i- @~=~$~ I ]+it ~=i,~,.. ; M~ is a matrix of order ~ M~=(~) , 

all j,R except (~,~§ ~i~,~ =0 . i.e., 

. . . . . .  

. ' . . . o  . . . .  . .  

J. . . . . . . . . .  ~ �9 

Thus, in each matrix M i there is exactly one zero (see Sec. i). ~ (FC[~;], [M~]) gives 

the required compactum. 

3. A shift on tori and so much more the automorphisms with continuous spectrum involve 

more complications. Here the Perron algorithm and the generalized expansions into a continuous 

fraction are useful. It is interesting to pose inverse problems, i.e., to investigate the 

ergodic properties of an addic shift in given Markov compacta and graphs. The Pascal graph, 

the Young graph generate examples of shifts about which one does not know anything. 
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EXISTENCE AND UNIQUENESS THEOREMS FOR A -REGULAR GENERALIZED 

SOLUTIONS OF THE FIRST BOUNDARY-VALUE PROBLEM FOR (~,~) - 

ELLIPTIC EQUATIONS 

A. V. Ivanov UDC 517.9 

For second-order quasilinear degenerate elliptic equations, having the structure 

of ~,~) -elliptic equations in a bounded domain ~c~ , ~ , one estab- 

lishes theorems of existence and uniqueness for the generalized solutions of the 

first boundary-value problem, bounded together with their ~ -derivatives of 

first order and also of first and second order. The case of linear second-order 

(A,O) -elliptic equations are separately considered. 

In the early sixties, O. A. Ladyzhenskaya and N. N. UraL'tseva have constructed the 

theory of solvability of boundary-value problems for quasilinear second-order uniformly 

elliptic and parabolic equations [i, 2]. These results have formed the necessary founda- 

tion for the subsequent development of the theory of boundary-value problems for quasilinear 

elliptic and parabolic equations. The overwhelming majority of the subsequent investigations 

in this area is based to a certain extent on the mentioned results of Ladyzhenskaya and 

Ural'tseva. In this respect, the present paper is not an exception; we investigate the 

question of the existence and uniqueness of the regular solutions of the first boundary- 

value problem for a class of quasilinear degenerate second-order elliptic equations. The 

results obtained here are new even for the case of linear equations with a nonnegative char- 

acteristic form. Other results regarding the existence and the uniqueness of regular solu- 
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