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On Nonlinear Planetary Waves: A Class of Solutions Missed 
by the Traditional Quasi-Geostrophic Approximation* 

Toshio YAMAGATA** 

Abstract: Weakly nonlinear quasi-geostrophic planetary waves on a beta-plane and topographic 
waves over a linearly inclined bottom are examined by use of shallow water equations :[or a 
small beta parameter. Long solitary wave solutions missed by the use of the traditional 
quasi-geostrophic approximation are found in a channel ocean with neither a sheared current 
nor a curved (non-linearly inclined) bottom topography. The solutions are missed in the tradi- 
tional approach because the irrotational motion associated with the geostrophic divergence is 
neglected by the quasi-geostrophic approximation. Another example which calls attention to 
the limitation of the traditional quasi-geostrophic approximation is the nonlinear evolution of 
divergent planetary eddies whose scale is much larger than the Rossby's radius of deforma- 
tion. Some aspects of a new evolution equation are briefly discussed. 

1. Introduction 
Solitary waves of planetary scale have been 

discussed by CLARKE (1971), SMITH (1972), 
GmMSHAW (1977), BOYD (1977), ODULO and 
PELINOVSKIY (1978), and MALANOTTE RIZZOLI 
and HENDERSHOTT (1980). Solitary planetary 
waves in zonal shear flows were studied by 
LONO (1964), LARSEN (1965), BENNEY (1966), 
CLARKE (1971), MAXWORTHY and REDEKOPP 
(1976), REDEKOPP (1977), HUKUDA (1979) and 
FLIERL (1979). Among them, MAXWORTHY 
and REDEKOPP (1976) applied the shear soliton 
theory to the Great Red Spot observed in the 
Jovian atmosphere. FLIERL (1979) presented 
a two-dimensional baroclinic shear soliton which 
is similar to observed atmospheric or oceanic 
isolated eddies. Recently, MILES (1979) has 
laid the variational foundations of the planetary 
shear soliton with no critical layers. 

In these studies, authors except CLARKE 
(1971), SMITH (1972), GRIMSHAW (1977) and 
BOYD (1977) adopted the potential vorticity 
equation or the quasi-geostrophic potential vorti- 
city equation (Q-G.P.V.E.) as a model equa- 
tion; they were obliged to include sheared cur- 
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rents or curved (non-linearly inclined) bottom 
topography in their systems in order to obtain 
the Korteweg-de Vries (K-dV) dynamics. 

CLARKE (1971), SMITH (1972) and GRIMSHAW 
(1977) discussed the K-dV dynamics of ageo- 
strophic and/or semigeostrophic long waves over 
a continental shelf. In particular CLARKE (1971) 
noticed the significance of the lateral divergence 
in the long wavelength limit. Solitary equatorial 
waves were discussed by BOYD (1977, 1980). 
These four authors adopted the shallow water 
equations in their analyses; this is natural since 
they examined those ageostrophic and/or semi- 
geostrophic waves in which irrotational motion 
is important. 

The present article starts from shallow water 
equations, which are less restrictive than the 
Q-G.P.V.E., and discusses the limitations of the 
Q-G.P.V.E. for long quasi-geostrophic waves. 
The major difference from the traditional ap- 
proach lies in the significance attached to the 
irrotational motion due to lateral divergence 
which is neglected by the traditional quasi- 
geostrophic approximation. 

The format of the present work is as follows: 
Section 2 presents the K-dV equation which 
governs the evolution of long divergent quasi- 
geostrophic planetary waves of odd cross-channel 
mode. The deficiencies in the Q-G.P.V.E. are 
discussed in detail. In Section 3, long topo- 
graphic waves over a linearly inclined bottom 
are discussed, and it is shown that the K-dV" 
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dynamics holds when the free surface is not  
included. In  Section 4, the role of lateral shear 
of mean currents and /o r  curved bot tom topo- 
graphy is discussed. This  section clarifies the 
special nature of a linear bot tom slope and a 
beta-plane without  mean sheared currents. In  
Section 5, a new two-dimensional nonlinear 
evolution equation* is derived which governs 
the motion on a lateral  scale much larger than 
the Rossby ' s  radius of deformation. This  section 
again shows that  one should be cautious when 
using the tradit ional  quasi-geostrophic approxi- 
mation.  The  final section is a summary.  

2. Long planetary waves in a shallow layer 
of homogeneous fluid 

2 . 1 .  Formula t ion  
The  nonlinear shallow water  equations** on 

a mid-lati tude beta-plane are 

ut + uu~ + v u v -  f v  = - q ~  , 

vt  + uvz  + vv~ + f u  = --  q ~ ,  (2.1.1) 

( ( H  + ~ ) u ) x +  ( ( H  +~)v)~  +G---O . 

Here the Coriolis parameter  f is given by 

f = f  o+ fly , (2.1.2) 

and the mean fluid depth H is assumed to be 
constant.  The  other notations follow conven- 
t ional usage. W e  adopt a channel ocean with 
north-south extent  L. Let  L,  (ilL) - l ,  U and 
q - ~ f U L  denote a length scale, a t ime scale, a 
velocity scale and a scale of surface elevation, 
respectively. Then  we obtain the nondimen- 
sional equations: 

i 

6ut + Ro(uu~ + v u ~ ) -  (1 + @ ) v  = - ~ , 

6 v t +  R o ( u v ~ + v v ~ ) + ( l  + 6 y ) u = - ~  , (2.1.3) 

uz + v~ + F (  6~t+ Ro(~u)~ + Ro(~V)v ) = 0 ,  

* FLIERL (1980) recently discussed a similar problem. 
** Strictly speaking, the approximations to obtain 

(2.1.1) should be improved step by step as we 
proceed to higher order nonlinear problems by a 
small parameter expansion. Here (2.1.1) is taken 
as the model equation. The shallow water 
equations are less restrictive than the traditional 
quasi-geostrophic potential vorticity equation and 
they are sui~.cient for our purpose of revealing 
the source of nonlinearity missed by the tra- 
ditional approach. 

where 6 ( = f l L f o  - t )  is the beta parameter ,  F 
(= fo2L~q- lH  -1) is the rotat ional  Froude number  
and Ro(= Ufo - lL  - l)  is the Rossby number.  Al- 
though CLARKE (1971) assumed B~O(1),  we 
assume 6<<O(1) hereafter.  The  present assump- 
tion is valid for meso-scale motions which have 
a north-south extent  L smaller than O(10 a km) 
in mid-latitude. W e  further  assume Ro=76 ~ 
where r is of the order of unity.  The  lat ter  
assumption is made in order to discuss weakly  
nonlinear waves and is valid for flows of a few 
cm s -1 velocity in mid-latitude. The  rotational 
Froude number  F is assumed to be O(1) para- 
meter  except for Section 5. 

2 .2 .  K - d V  Equat ion 
W e  adopt, a coordinate system moving with 

the long wave speed co and introduce the long 
length scale and time scales: 

X =  6 ( x -  c o t -  6r , 
(2.2.1) 

T = 6 a t ,  

where ci denotes the O(~) correction of the long 
wave speed determined later. These  scales are 
introduced by considering the Mor ikawa-Gardner  
t ransformation and the assumption that  R0= r6 ~. 

Then  we can write (2.1.3) in the form: 

- -  6 2 CoUx -- 63 C l U x -[" 64ur + ~'62( 6uu.r -[- vuy ) 

- - ( l  + 6 y ) v =  - -6~x  , 

- -  62COVX-- 6aClVZ -~- 64vr -{- ~'6 ~(6u'ox -~- vvy) 
+ ( l + $ y ) u =  - - ~ ,  (2.2.2) 

6 Uz + "Oy + F ( -- 6~C0~X- 63Ct~X + 64~r 
+ r63(~u)x + r62(~v)~} = O. 

W e  seek an asymptotic solution of (2.2.2) with 
the form: 

= 

(2.2.3) r / \ r / 1 

Subst i tut ing (2.2.3) into (2.2.2) yields, to O(62), 

~ , , x C ~  ~ ) ~ x c ~  , (2.2.4) 

with boundary conditions: 

~x(~ at y = 0  and 1. (2.2.5) 

The  solution is 

~(o) = A ( T ,  X )  sin rmry , (2.2.6) 
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with the phase speed of the long wave: 

- 1  ( r e ' l ,  2, 3 . . . .  ). (2.2.7) 
c o =  m~r2+ F 

Here m denotes the mode number in the cross- 
channel direction. Proceeding to O(~S), we get 

= 2 A  x(, rmc cos m~ry + F y  sin m~y)  

C l  �9 

- A x - ~ 0  ~ sm r e n y ,  (2.2.8) 

with boundary conditions: 

~x c1~ = - Axcomn  cos mrcy " 

at y = 0  a n d ' l .  (2.2.9) 

The forced solution is 

~r = - c o r o n A  cos nury+ A y  sin r e l y  

+ ~. p ~ A  sin n,~y, (2.2.10) 
n = l  (~m) 

where 

P~={ 

0 for r e + n  even , 

- - 1 6 m n F  ' for m + n  odd. 
(m 2 -  n2)3~4 

The phase speed correction cl is determined in 
the process of removing the linear resonance at 
the present order; we obtain 

c l = F c d  . (2.2.11) 

Notice that the above phase speed correction 
vanishes for the nondivergent case (F=O).  This 
is not surprising because the solution (2.2.6) is 
an exact solution of the nondivergent shallow 
water equations. Proceeding further to O(~4), 
we obtain 

~ v x ( ~ ' - ( F + ~ o  )~Xc~J=F , (2.2.12) 

with the boundary condition: 

~x cs~ = c o y ~ x  (~ - cor 1~ -- cl~x(O~ 

--~'~vc~176 at y = O  and 1, (2.2.13) 

where F is shown in the appendix. Applying 
the solvability condition and integrating by parts 
by use of (2.2.13), we find the evolution equation 

for A: 

A r + a l A x + a s A A x + a s A x x x = O ,  (2.2.14) 

where the values of the coefficients a, ( i=1 -3 )  
are shown in the appendix. Equation (2.2.14) 
reduces to the well-known K-dV equation by 
use of the transformation: 

Then we find 

A r + a s A A x + a s A x x x = O .  (2.2.16) 

Since a2 is non-zero when re is odd, (2.2.16) 
reduces to the canonical form: 

7It + 67pie + 7]eee = 0, (2.2.17) 

where the transformation is adopted such that 

The progressive wave solution which moves 
with the speed 2 in the ~-direction and satisfies 
the condition ~7(~__+~)--*0 is obtained for posi- 
tive 2 by integrating (2.2.18)twice with respect 
to ~. The solution is 

~2= 2sechS { 1  ~ /7 (~ -2T)  } . (2.2.19) 

Since both as and as are negative, (2.2.19) 
represents a solitary wave of surface elevation. 
This can be explained as follows. The magni- 
tude of the long wave speed becomes large as 
the fluid depth increases (see (2.2.7)). Hence an 
anticyclonic eddy with surface elevation has a 
tendency to steepen if the nonlinearity is con- 
sidered. The weak dispersion cancels that effect, 
thus enabling the solitary wave of surface ele- 
vation to exist. If  re is even, there is no net 
surface elevation. Hence we cannot obtain the 
K-dV equation in such a case. This is because 
the eigensolution (2.2.6)  is antisymmetric. 
CLARKE (1971) asssumed ~ O ( 1 ) ,  and so the 
eigensolution is not antisymmetric when m is 
odd. This is the reason why the solitary solu- 
tion was obtained for even re by CLARKE (1971). 

For a non-divergent case ( F = 0 )  the coefficient 
as also vanishes. This is .not surprising; the 
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linear solution (2.2.6) is an exact solution of 
the nonlinear shallow water equations on a 
beta-plan~. In  this case the motion is purely 
rotational. Hence we see that the lateral con- 
vergence in front of the wave crest and the 
lateral divergence behind it are prerequisites for 
obtaining the K-dV dynamics of long planetary 
waves. 

2.3. Deficiencies of the Q-G.P.V.E. in the 
long wavelength limit 

Now let us start tentatively from the baro- 
tropic quasi-geostrophic potential vorticity equa- 
tion, which is written as 

~(F2-F)~t+RoJ(~, V 2 ~ ) + ~ = 0 .  (2.3.1) 

Here  J denotes the Jacobian operator and 172 
denotes the two-dimensional Laplacian operator. 
Focusing our attention on the case*: 

R0 = r62, (2.3.2) 

as before and introducing the same time and 
length scales (with c~=0) as in the preceding 
section, we obtain 

(620r- coax) ( 6202 xx+ O ~ -  F)C 
+ r6(~xOu- ~uOx) (62a~xx+ O%y)~ 

+ ~ x = 0 ,  (2.3.3) 

where Or, 0x and 0u denote partial derivatives. 
Expanding ~ in terms of 0, we have the lowest 
order equations such as (2.2.4) and (2.2.5). 
Therefore the solution is identical with (2.2.6) 
and (2.2.7). To O(6),  we have an equation: 

~uxc~--(F+@o )~x~ , (2.3.4) 

with boundary conditions: 

~xC1)=0 at y = 0  and 1. (2.3.5) 

A t  this point we should choose the solution 
forced by the lower order solution. Thus we 
decide to adopt 

~cl)=0.  (2.3.6) 

To  0(62), we obtain 

* Strictly speaking, (2.3.1)is valid for ~NR0. The 
condition is derived from the beta-plane approxi- 
mation (see, CHARNEY (1973)). Violation of the 
above condition does not affect the point at issue. 

with boundary conditions: 

sin tarry, (2.3.7) 

~xCZ)=0 at y = 0  and 1. (2.3.8) 

The solvability condition yields the evolution 
equation for A:  

A t -  co~Axxx= 0. (2.3.9) 

Thus we have a linear dispersive equation regard- 
less of the value of m. As we have seen in the 
preceding section, the consequences are quite 
misleading when m is odd. The root cause of 
this problem lies in the fact that, in traditional 
quasi-geostrophic dynamics, the irrotational 
motion associated with the nonlinear terms in 
the integrated form of the mass concervation 
equation is neglected. Thus if we adopt the 
traditional quasi-geostrophic equation on a beta- 
plane, we might conclude erroneously that a 
sheared current is essential for the existence of 
solitary planetary waves even for a divergent 
case (cf. REDEKOPP, 1977). 

3. Long topographic waves in a shallow layer 
of homogeneous fluid 
In this section the assumption of a constant 

fluid depth is adopted, and in order to elucidate 
the point at issue, we choose a linear depth 
profile: 

H = H 0 -  a y ,  (3.1) 

and assume the Coriolis parameter f is constant. 
Introducing the nondimensional value 6(= aL/Ho) 
(which corresponds to the beta parameter in 
Section 2) and nondimensionalising the shaIlow 
water equation by use of L, (f6) -1, U and g-t 
f L U  as a length scale, a time scale, a velocity 
scale and a scale of surface elevation respectively, 
we obtain the nondimensional equations: 

6ut + Ro(uu~:+ v u ~ ) -  v = - ~ , 
6m+Ro(uv~+vv~)+ u =  - ~ y ,  (3.2) 

(1 - ~y)u~ + ( 1 -  6y)v~- ~v 
+ F( 6~t+ Ro(~U)~+ Ro(~v)v} = 0 .  

CLARKE (1971), SMITH (1972) and G~MSHAW 
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(1977) assumed ~ O ( 1 )  and derived the K-dV 
equation for ageostrophic long topographic 
waves after expanding variables by powers of 
R0 ~/~. Here we assume ~(~O(1), and thus con- 
sider quasi-geostrophic long topographic waves. 
We also assume Ro~O(e~ 2) as before. Hence, 
introducing long length and time scales as in 
Section 2 and expanding dependent variables by 
powers of ~, we obtain, to O(c~e), the same 
equation and boundary conditions as (2.2.4) and 
(2.2.5). Thus the solution is given by (2.2.6) 
and (2.2.7). To o(~a), we have 

1 
~c~ = _ cormrA cos rnrry +--flAy sin tarry 

+ ~. q,~Asin tory, (3.3) 
l*l=l 

where 

0 for m + n  even , 

87n3n 
for m + n  odd. 

The phase speed correction is now determined as 

C l = -- -~coem~r 2. (3.4) 

Proceeding to O(~ ~) and applying the solvability 
condition, we finally obtain the evolution equa- 
tion for A: 

A r + b ~ A x + b 2 A A x + b ~ A x x x = O ,  (3.5) 

where the values of the coefficients b~ ( i = i - 3 )  
are shown in the appendix. Note here that the 
coefficient b2 has a positive sign. Thus we have 
a solitary wave of surface depression or low 
pressure in contrast to the case of long planetary 
waves in which we have a positive surface dis- 
placement. Also note that the coefficient b2 
does not vanish at the limit F---,0. Therefore 
the presence of the free surface is not necessary 
to obtain the solitary solution. This is because 
the lateral convergence in front of the wave 
trough and the lateral divergence behind it are 
provided by the existence of the bottom slope. 
This also explains why we have a solitary wave 
of low pressure in contrast to the case of long 
planetary waves. If m is even, there is no net 
convergence in front of the wave trough and 
no net divergence behind it. Hence we cannot 

have the K-dV equation in such a case. 

4. Long topographic waves  in  a la tera l ly  
sheared current 
In this section we incorporate a laterally 

sheared current of O(d -1) and consider the 
general topography of O(d). Then the non- 
dimensional shallow water equations are 

~ut + ~u~ux + r~(uux + vuy) + ~ v u ~ -  v 

~vt+~u,~vx+r~2(uv~+vv~)+u=--~z,,  (4.1) 

(1 - ~h)u.~ + (1-- ~h)v~-- ~h~v + F ( ~  
+ ~ u . ~  + ~s + ~,,,~,v + J~v~, 

where the underlined parts are added in this 
section. We assume that the mean current is 
in geostrophic balance: u,~=-~,~v. If the weak 
dispersion is to be balanced by the nonlinearity, 
we must introduce the slow space and time 
scales 

X =  ~1/2 (x-- cot), 
(4.2) 

T =  t~a/2t . 

Note here that the above scales are different 
from those for u,~=0 and h v = l  in the preceding 
section. The difference is due to the fact that 
the ratio of the wave amplitude to the mean 
current, in other words the effective amplitude 
of the wave, is now O(~). 

Expanding variables by powers of ~1/2, we 
obtain, to O(d3/2), 

(c0- u m K . x  c~ 

+(u,,,~v-h~-Fco)~xC~ (4.3) 

with boundary conditions: 

~xC~ at y = 0  and 1. (4.4) 

The solution is obtained in the form: 

~(o~ = A ( T ,  X)r  , (4.5) 

where r is the solution of the regular eigen 
value problem: 

(co-u~)r162  (4. 6) 

with the boundary conditions: 

4=0  at y = 0  and 1. (4.7) 
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Here we assume for simplicity that co is outside 
the range of u,~: i.e., critical layers do not 
exist. Proceeding to O(~a/2), we find 

(co- u~)G~x ")  

+ ( u ~ v v - h v - F c o ) ~ x ( l ) = G ,  (4.8) 

with boundary conditions: 

~x(1)=(u ,~-co)~vz  (~ at y = 0  and 1, (4.9) 

where G is shown in the Appendix. Applying 
the solvability condition, we obtain the evolution 
equation for A: 

A r + d t A x + d ~ A A x + d a A x x x = O  , (4.10) 

where d, ( i = 1 - 3 )  are shown in the Appendix. 
Generally, the coefficient d~ takes a non-zero 
value, and so incorporation of O(~ -t) mean shear 
and/or general curved topography changes the 
length and time scales of the solitary solution. 
For the special case of no mean shear and no 
curved bottom slope, as discussed in the pre- 
ceding section, we need to introduce the longer 
length and time scales in order to keep a balance 
between the phase dispersion and the non- 
linearity. 

As is easily verified, the Q-G.P.V.E. approach 
leads to the evolution equation for A such as 

A r + d ~ A A x + d 3 A x x x = O  �9 (4.11) 

The above equation is identical to that obtained 
by REDEKOPP (1977). Equation (4.11) is also 
equivalent to (4.10) except for the phase speed 
correction which cart be removed by the Galilei 
transformation. Thus we cart conclude that the 
Q-G.P.V.E. is accurate enough to predict the 
nonlinear evolution of long waves in a general 
sheared current of O(~ -~) and/or over curved 
bottom topography of O(~-t); the results of Sec- 
tion 2 and Section 3 reflect the special proper- 
ties of the conditions of no mean shear and no 
curved bottom topography. 

5. Nonlinear planetary and topographic eddies 
whose scale is much larger than the radius 
of  deformation 
In this section we consider the evolution of 

nonlinear planetary eddies whose scale is much 
larger than the Rossby's radius of deformation. 
It is again shown that the simple use of Q-G. 

P.V.E. is misleading. The significance of a new 
evolution equation is discussed in MATSUURA_ 
and YAMAGATA (1982) along with its appli- 
cation to anticyclonic eddies off the Pacific coast 
of Central America (STUMPF and LEGECKIS, 
1977). Its application to the Jovian atmosphere 
will be reported elsewhere. 

The basic equations are given by (2.1.1). The 
variables are nondimensionalised in the same 
way as in Section 2 except for a time scale 
which is now ( f lL)-IF.  In particular we focus 
our attention on the case: 

F = s ~  -1 , (5.1) 

where ~ is of the order of unity. We assume 
Ro=~'~ 2 as before. The planetary wave dis- 
persion appears at O(~), and so we introduce a 
long time scale such as 

T =  ~t. (5.2a) 

We adopt a coordinate system moving with the 
long wave speed c as in the preceding sections: 

X =  x -  c t .  (5 .2b)  

Then the nondimensional equations are written as 

- e - l ~ c u x +  e-l~3ur + ~ '~ (uux+ vuv) 

- (1 + ay)v  = - ~ x ,  

_ ~ - l ~ 2 c v x +  e- t~3vr  + T ~ ( u v x +  vvv)  

+ ( l + ~ y ) u = - - s  (5.3) 

u x + v v -  ~c~ x + ~ r  + sr~ ( ( ~u)x  

+(~v)~) =0 .  

We seek an asymptotic solution similar to (2.2.3). 
To O((~~ we obtain 

- - , U  (0) ~ - -  ~ X  (0) 

u ~  = - G ~  , ( 5 . 4 )  

u x  (~ + vv (~ = 0 .  

Therefore ~(o) denotes the geostrophic stream- 
function. To O(~1), we obtain 

_ V ( t )  _ y . o ( 0 )  = - -  ~ x C t ) ,  

u ( "  + y u ~  - ~ ( ~ )  , (5.5) 

u x  ("  + vy (~) - cG.C0) 
+ er((s u(O))x+ (s = O. 

Eliminating s by cross-differentiation and 
using the equation of continuity, we obtain 
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(c+l)~xC~ ( 5 . 6 )  

namely, we obtain c = - - 1  as the long wave 
speed at this stage. Thus the solution can be 
written in the form: 

~co, = ~c0>(X ' y, T ) ,  (5.7) 

X = x + t ,  

which represents non-dispersive planetary eddies 
(WHITE, 1977; MEYERS, 1979). To 0(~), 
we obtain 

e-lux<O> + z(uC~ (~ + vC~ (~ 

6-~vx<O> -l-)'(uC~ c~ + vc~176 

+u<~>+yu<~>= _~ c2>, (5.8) 

ux <2>+vuc~>+~c~>+~r<~ 
+ ~r((~ <'>u<~ + (~<~ 
+ 6~<~ + (~~ >vc~ = 0. 

Eliminating C~ c2> by cross-differentiation and using 
the equation of continuity and (5.7) we obtain 

~r<0>_ ~-~tT~zco> + rj(tT~Co>, ~<0>) 

-er~<~176 + 2y~z<~ , (5.9) 

where V2=82xx+Oeuu and J(A,B)=OxAOuB 
--OuAOxB. The above equation reduces to 

~ r + r y ( t r ' ~ , ~ ) - ~ r ~ z + y ~ z = 0 ,  (5.10) 

where ~=~c~ If  we start from the 
traditional quasi-geostrophic potential vorticity 
equation, we obtain 

~r+ZJ(V2~,~)=0 (5.11) 

instead of (5.10). Thus the use of the Q-G.P.  
V.E. again leads to an erroneous result. For 
divergent topographic waves, however, the evo- 
lution equation resulting from the shallow water 
equations is identical to that resulting from the 
Q-G.P.V.E.  This is because O(6) motion is in 
geostrophic balance and is laterally nondivergent; 
the convergence (divergence) due to the topo- 
graphy is exactly cancelled by the divergence 
(convergence) due to the free surface for the 
divergent topographic waves. 

I t  is interesting that (5.9) is a kind of two- 
dimensional K-dV equation. From the result 
in Section 9. we expect that an eddy with sur- 
face elevation (anticyclonic eddy) will keep its 

identity longer than an eddy with surface de- 
pression (cyclonic eddy). This point will be 
discussed in detail in MATSUURA and YAMA- 
GATA (1982). I t  is also interesting that (5.11) 
has an arbitrary solution with radial symmetry. 
The evolution of this type of solution, which is 
now governed by (5.10), is shown in MATSU- 
URA and YAMAGATA (1982). The initial pattern 
is found to show little changes for a simulation 
time interval; this might suggest the existence 
of a two-dimensional soliton in (5.9) or (5.10). 
The reader is referred to MATUURA and YAMA- 
GATA (1982) as to the detailed numerical results. 

6. Summary 
First, using shallow water equations, we have 

derived the K-dV equation governing the zonally 
elongated quasi-geostrophic divergent planetary 
waves of odd cross-channel mode on a beta-plane 
without a mean current. The solitary solution 
is found to be of an elevation type. The non- 
linear term of the evolution equation is missed 
by the use of the Q-G.P.V.E. This is because 
the source of nonlinearity is due to the irrota- 
tional mot ion which is neglected in the tradi- 
tional quasi-geostrophic approximation. A 
similar result is obtained for long quasi-geo- 
strophic topographic waves over a linearly in- 
clined bottom. The solitary solution (in the 
latter case), however, is of a low pressure type 
because the irrotational motion is mainly due 
to the inclined bottom topography. The effects 
of O(~ -1) mean shear and/or curved bottom 
topography mask the above stated dynamics; 
the traditional quasi-geostrophic approximation 
gives a correct result for the nonlinear evolution 
of long waves, except for the correction term 
of the phase velocity. 

Second, another example which calls attention 
to the deficiencies of the Q-G.P.V.E.  has been 
presented concerning the nonlinear evolution of 
divergent planetary eddies whose scale is much 
larger than the Rossby's radius of deformation. 
A new evolution equation, which is a kind of 
two-dimensional K-dV equation, is derived. The 
nonlinearity in the equation is derived from the 
irrotational motion associated with the move- 
ment of the free surface. I t  is therefore sug- 
gested that an eddy with surface elevation will 
keep its identity longer than an eddy with sur- 
face depression; the traditional quasi-geostrophic 
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approximation misses this point. 
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A p p e n d i x  

This appendix presents explicit forms of F, G, 
a~ (i= 1-3), bi (i= 1-3) and d~ (i= 1-3) : 

F = ~1 ~'wr~~ ~-o ~r~~ + { -  4y~vx~~ co 

(o) 1 2-  co) ct) " ct) 
- y  ~.~" + T o  y Cx + 2 ~ x  +yCwx 

+ 2c~ ~vxCO)__l__y~zC~ )+ 
Co C o  Co 

+ c~ ~x~O)} + r ~2o, r (o)r ~o~ 
CO W L  y~y "~yX 

- 2y~x(O)~vvco)- ~vco)~vxC'-~vc~)~vx(O) 

+ ~z(~ + G~c~ " ) -  ~xCO)GCo) 

+ coG~C~ c~ ~ + % (Gc~ (~ 

- ~(o,G~r ) - FT{ Gco)Gx(~ + ;co)G,,z(o) 
% 

G = ~ w < -  F~r ~~ u,~(hv +Fco)~x ~ 

- u , .w(co-  u~)Gx c~ - u=~u~v~x ~~ 

+ h(hv + Fco)~z (~ + hv ((co-- u~)~vx (~ 

+ u~v~.x (~ --F([,~(hv +Fco)~z ~~ 

+ u,~(u,~- co)Gx ~~ u ~ u ~ x  ~~ 
- r (Gco)Gx~o~_ ~xo)G~co) ) 

- (co- u.,)~xxz c~ (A-2) 

2Co I -  co 2 ~ P,*mmr~((- 1) '~+'-  1) a t  
( 

C~:m) 

~, mn(m~+'* ') 
+ 3coem2rc2--co Pn 

4 . = 1  (m2--n2) 2 
(*m)  

x((--1)-+~--l) + 3 co+~-ctl F 

a2 ~ 

(vm) 
1 oo i 2 

C.m) 

4 m 2 K  ~ 
(A-3) 

2?Fc0(1 - ( - 1)'~)(man 2 + 2m2zc 2 + 2F) ( < 0) , 
mzt(m~n 2 + F) 

(A-4) 

a 3 = - c d  ( < 0 ) ,  ( A - 5 )  

f i 3 -  1 ~ 
b , =  

2 ~[i 3 1 
t- -~co - -com 

4m2~ 2 

nrn 
+ ~, ~2-}+4co2mazr  ~ 

n=ln --m / n=l 7 / 2 - m 2  
(~m) (~m) 

_4maco ~, nrn } 
. = 1  (n2- -m2)  2 ' 

(*m) 
(A-6) 

b 2~co ii ( 1 ~ 

2=----5-~ - , -  ) ) 
• (4comS~r3-2m:r+Fcom~r)) (>_0), (A-7) 

ba=-co 2 ( < 0 ) ,  (A-8) 

# }-1 
dl=  < ewe > - F <  > 

CO -- ~ CO -- Um 

• { _  < Fcou~V#Co - u,,= > - < u = ~ # v >  

_ < u,.vvu,.~# > + < hhj_~_ ~ > 
CO - -  $1m CO - -  U m  

+ < hFc~ > + < hvq~v > 
Co-- Ua.. 

-- < F~hvr > -- < c~162 > 
CO -- Um CO -- Um 

Fu"u"'#Zco-u~ > } '  (A-9) + <Fu,~C~v> + < 

r } -i 
& = r  < r 1 6 2  > 

Co -- t/~ CO -- U~ 

d3=- < r162 >-F< > �9 
Co -- Z/~ C2 -- ~n 

(A-If) 
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~vhere 

0 ~or m+n even , 

rn = --  8 m n  
(m~_n~)%r~ for m + n  odd ,  

.and < >  denotes the integral  in the interval  
' 0 _ < y < l .  
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