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The Instability of Viscous Two-Layer Oscillatory Flows* 

Masafumi KAMACHI** ~ and Hiroyuki HONJI** 

Abstract: The instability of oscillatory flows in a two-layer fluid where the two layers differ 
in density and viscosity has been analysed using a perturbation method for long waves 
with special interest on effects of viscosity, time scale, density and depth of the fluid. The 
flow of a fluid with homogeneous density can be unstable, when the kinematic viscosity of 
the upper fluid layer is different from that of the lower one. Viscosity stratification results 
in unstable oscillatory flows. Two limiting cases of single-layer flow are also considered. 

1. Introduction 
The stability theories of steady flows of homo- 

geneous or stratified fluids have been well docu- 
mented (LIN, 1955; STUART, 1963; DRAZIN 
and HOWARD, 1966; NIINO, 1981; DRAZIN and 
REID, 1981). In particular, YIH (1967) found 
that a two-layer steady flow can be unstable 
when a fluid is stratified in viscosity, but not 
in density. 

In the stability theory of inviscid two-layer 
oscillatory flows, Bernoulli's equation and a 
kinematic condition yield Mathieu's equation. 
Hence, the instability characteristics of such 
flows are determined in terms of the eigenvalues 
of Mathieu's equation. The mechanism described 
by Mathieu's equation is well known as the 
parametric excitation of oscillations (KELLY, 
1965). Analysis of viscous oscillatory flows, 
however, are difficult, because their time-depen- 
dence precludes the method of separating the 
exponential time factor in the vorticity equations 
for disturbances. Thus the conventional Orr- 
Sommerfeld procedure fails. A few studies of 
the linear theory of viscous single-layer oscil- 
latory flows have been published (CONRAD and 
CRIMINALE, 1965; KERCZEK and DAVIS, 1974; 
HALL, 1978). CONRAD and CRIMINALE (1965) 
attempted to generalize Squire's theorem for 
application to unsteady flows, and also to obtain 
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a Rayleigh theorem for time-dependent flows. 
KERCZEK and DAVIS (1974) and HALL (1978) 
investigated the linear stability of viscous oscil- 
latory flows without stratification. They found 
that the flow may always be stable under certain 
conditions, although HINO and SAWAMOTO 
(1975) showed that the flow can be unstable for 
a different range of wavenumber and time scale 
of the flow from that was investigated by the 
above mentioned authors. 

A single-layer flow with a free surface excited 
by the lower boundary moving periodically in 
its own plane may be unstable. YIH (1968) 
examined the instability of the flow of this type. 
He used a perturbation method with a dis- 
turbance of small wavenumber, a, and extended 
Floquet's theorem to determine the criterion of 
instability from the kinematic condition of the 
free surface. He showed that the growth rate 
of the disturbance is of order a s. 

The interface of a two-layer fluid may have 
a destabilizing effect, and we have investigated 
the instability characteristics of viscous two-layer 
oscillatory flows. In Section 2, we obtain the ve- 
locity distribution of the primary oscillatory flow. 
In Sect. 3, we formulate the stability problem, and 
solve it in Sect. 4. Finally, in Sect. 5, we discuss 
the regions of instability in parameter spaces. 

2. Primary flow 
We consider two horizontal layers of fluid 

between two fixed rigid planes under the in- 
fluence of a periodic pressure gradient, which 
produces an oscillatory flow. This type of flow 
occurs, e.g., under the influence of a recipro- 
cating piston (see Fig. 1). The symbols d cj~, 
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Fig  1. A two-layer fluid system dealt with in 
this study. The y-axis is pointed upward. An 
oscillatory flow exists in both layers. 

pC1), ~cj), U0 and t are the depth, denisty, 
kinematic viscosity, maximum velocity amplitude 
and time, respectively; j = l  denotes the upper 
layer and j = 2  the lower. We  consider a two- 
dimensional parallel flow independent of X, and 
introduce the non-dimensional quantities 

Uot X Y 
r = - - ~ ,  x=--~--~, y =  d(2). (2.1) 

The  equations governing the pr imary flow are 

I a~ cl) a,b cl) 1 a~acl) 
~r 3x 4 R 3y~ ' 

a~cl) 
~y ' 

{ azTc2) a,~c~) --T;-~ =-~-~--~ ( 
�9 ~ ( 2 )  

Ty 

i a2a c2) 
~R ay ~ ' 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where ao')(y, r)=~2acJ)(y, r)/U0, R =  U0d(2)/v(1); 
Reynolds number,  ~=pCl)/p(2) ~=~(1)/~(2), and 
,fi(~) is the pressure containing the gravitational 
potential as 

pCl)=Fr-eYA-Pcl)' } 
~(2) = p-IFr-2y.4_~c2) ' (2.6) 

where F~= Uo/~/gd c2) is the Froude number,  
and the subscript d indicates a dimensional 
quantity. 

Since the pr imary flow is parallel in the x- 

direction and harmonic in time and considering 
(2.3,5), we put 

a~c~) a~c2~ 
= -p--~--x = Pe '' ', (2.7) 

which attributes a physical significance only to 
the real part,  and where P=ioJ is a constant 
and ~o is a non-dimensional angular frequency 
(SCHLICHTING, 1979: pp. 436-438; BATCHELOR, 
1967: pp. 353-355). The  boundary conditions 
for ~ci) are 

72~ at y=d(=dCl)/d(2)), (2.8) 

z2(2) = 0  at y=-- l ,  (2.9) 

t2(1) = z~ (2) at y=O, (2.10) 

onz2 cz) 1 az2 c2) 
0---if-= p~ ay at y = 0 ,  (2.11) 

The  solutions for (2.2) to (2.12) are 

z2c l) = 21-(ACl)cosh qy 

+ B  ~ sinhqy+l)et'~+c.c.], (2.12) 

a c2) = ~- [ (A c2) cosh 4~-qy 

+ B  c3) sinh ~/~qy+l)t'~+c.c.], (2.13) 

where 

q=fl(l +i), fl= ~/(oR/2, 

1) l (sinh q ~'-ff + ~ s i n h  qd) ' A c =--~ 

BCl) _ i f f ~ ( c o s h  q ~/D--cosh qd), 

AC2)=-~(sinh q 4T + ~ s i n h  qd), 

1 
B r =-~- (cosh  q 4~--cosh qd), 

X= - cosh qd sinh q ~/ 

- p ~ s i n h  qdcosh q ~/~_ (2.14) 

and c.c. denotes the complex conjugate. 

3. Formulation of the stability problem 
When  u~ (j) and v~ Cj) denote the velocity com- 

ponents in the X- and Y-directions, respectively, 
and pa (j) denotes the pressure in the disturbed 
field, and when 
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uCJ)=uaCJ)/Uo, vC~)=vaCJ)/Uo, 
pO)=paCj)/p~ (3.1) 

with j = l ,  2, the momentum equations are 
written as 

au (J) (j) Ou (J) q_vcj) au(J) 

Or Fu ~ Oy 

ao c J) 1 = - ~ , j ~ +  -ff-~,~u~s~, (3.2) 

OvCJ) ~-u (J) Or(j) v (J) a~_ 
a---C- -~-z + ~y 

1 Op (J) 
-- F ~ PF"~-y + vjR1-'~zlvCJ)' (3.3) 

~uCJ) Or(J)  
ax I- ---~--y = 0 ,  (3.4) 

where 

1 for j = l  {1 for j = l  
PJ= ~ for j = 2 '  vj= for j = 2  

d = a~/a~ + a~*OyL 

Decomposing the dependent variables into a 
primary part and a perturbation part, we have 

u (J) = acj~(y, r) + ~cJ)(x, y,  r),  

v cJ~ = ~cJ~(x, y,  r),  

(3.5) 

where the caret (^) denotes the perturbed 
quantities. Substituting (3.5) into (3.2)-(3.4), 
subtracting the terms for the primary flow from 
those equations, and neglecting the quadratic 
terms for perturbations, we have 

aft (J) _ as c j )  o,2cJ) 
a---~ + u C J ) ~  + r Oy 

a~cJ~ = -PJ-~-x ++z~uCJ), (3.6) 

Os z20') a'r'3( J ) - -  .-,}- 

OF Ox 

a~ cs) 1 
= - pj--~--y + - - ~  dr3(J), (3.7) 

a~cJ) a~o,) 
s ~ =0. (3.8) 

~x" . oy 

We introduce the stream function ,~.o') with 
j = 1 , 2  as 

~cj)= aqtcJ~ r a~cJ> 
Oy Ox (3.9) 

With (3.9), the momentum equations are written 
a s  

qt~ cJ~ + acJ)q~cJ~_zTz, cJ~,.~cJ~ 

: -- pj~.r. (J) .q- +z~'~y(J), (3. 10) 

= pj~y(J) --]- + , d ~ x  (j>, (3. 11) 

where the subscript denotes the partial deriva- 
tive. We look for a disturbance of the form 

~(j) = r r)e~X, (3.12) 

~)(J) = f ( J )  (y, r)e ~ax, (3.13) 

and substitute (3.12, 13) into (3.10, 11) to obtain 

q~vr c J> + ia~cJ)qb~ c J ) -  ia~cj)r 

= -- iapjf <J> q- + ( r  <J> --a2~u<J)), (3.14) 

iaqb,cJ ) --a~acj>~cJ) 

=p~f cj) + u_~(r cj)_a2r (3.15) 

Eliminating fcj) from (3.14, 15), we have 

( ff--'-~ + ia~cJ) ) ( OO-~e --a' ) OcJ> -- ictau~(J) r <'> 

1 (O.~i .~)ZOo j)" ='v jR -- as (3.16) 

With the displacement of the interface % the 
kinematic condition is 

(O-~-+t~cJ)(0, r ) ~ ) 7 7 = - ~  (,), (3.17) 

where j = l  or 2. 

(3.17) becomes 

Using 

77 = h(r)e ~az, (3.18) 

E ~ + iaft~ r)~h(r) 

=-ia~cs)(0, r).  (3.19) 

The boundary conditions at the rigid bound- 
aries are 
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(1) r r ) = 0 ,  (3.20) 

(2) Cvc;)(d, r ) = 0 ,  (3.21) 

(3) r r ) = 0 ,  (3.22) 

(4) Cuc~)(-1, r )=0 .  (3.23) 

The boundary conditions of the continuity of 
~(~) and ~d) at the interface are 

and 

(5) r r)=Cc~)(0, r) ,  (3.24) 

av(t)(0, r)h+r r) 

=~2v(*)(0, r)h+Cvc*)(0, r), (3.25) 

respectively (el. YIH, 1967, 1968). 
The continuity of the tangential stress at the 

interface is 

(7) awc~)(0, r)h(r)+Cvvcx)(0, r)+a~r r) 

=--~-~ {z2~(~)(O, r)h(r) 

+r r) + a~r r)} (3.26) 

(cf. YIH, 1967, 1968). The boundary condition 
for continuity of normal stress at the interface is 

(8) iceFr-eh - Rl'-~(Cuuu (~)-3a~cu (~)) 

+ Cu, c~ + ia~cz)r ca) - ia~vcz~r 

i r ~ i c~) ~ c~ =-~[iaF~- h-~(r -3a Cu ) 

-- ia~u c~) -- ia~uC~)r } (3.27) 

(cf. YIH, t967, 1968). 

4. Solution of the problem 
We assume the solution to be in the form 

of pseudo-periodic function 

r v)= eO'Z(S)(y, r),  (4.1) 

h(r) = eO~H(r), (4.2) 

where 0 is a growth or decay rate of the 
disturbance, and X r and H are periodic func- 
tions of r. We use a perturbation method after 
YIH (1968) with a small wavenumber, and write 

z(J ) = ~o(J)(y, r) + aC~W(y, r) 
+a~#~(~)(y, r ) + . . . ,  (4.3) 

H =  ho(r) +ahl(r) +a~h~(r) + . . . ,  (4.4) 

e = Oo + aOl + a~O~ + . . . .  (4.5) 

where #(J)'s and h's are periodic functions of r, 
and 6's are real constants. 

We substitute (4.3)-(4.5) into (3.16)-(3.27), 
expand the resultant equations by a, and equate 
the coefficients of like powers of a. The kine- 
matic condition (3.19) becomes 

dho 
dr +goho=0 �9 (4.6) 

Since ho must be periodic in r and 8o are a real 
constant, we have 

o0 = 0 (4.5) 

and without the loss of generality h0=l  (see 
YIH, 1968). 

Equations (3.16) become 

~.-~r = + Oo~vv,, (s', (4.8) 

and the boundary conditions become 

(1) #o(1)(d,v)=0, (2)  r 

(3) #o(~)(-1, r)=0, (4) #0v(2)(-1, v)=0, 
(5) r r)=r r), 

(6) a~(1)(0, r)+Cov('(0, r) 
= a~(~(0, r) + ~0y(~)(0, r), 

(7) a~cl)(0, r)+Co~ucl)(0, r) 
1 (2) (2) =-=-. (~w (0,r)+C0yy (0,r)) ,  pv 

(8) --~r r) +r T) 

The solution of this system of equations is 

~0(J)(y, r) =-~{[Ao (:~ + Bo(S)y 

+ Co (s) cosh ~.vsqy 

+Do (~) sinh dvsqy]e*~+c.c.}, (4.10) 

where the coefficients Ao q~ B0 cJ~, Co (j) and Do c j) 
are determined with the boundary conditions 
(4.9), and the explicit forms are shown in the 
Appendix 1. 
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To the next approximation, (3.19) becomes 

dh~ 
dr t-01= --i[u(~)(O, v) +~o(J)(0, Z')], (4.11) 

where j = l  or 2. Because ~(t), C0(a) and hi are 
periodic in r, and 0~ must be a real constant, 
we have 01=0, and 

hi = - i I  {ac~)(O, r) + r r)}dr 

=--~-~{A~e " - - A n  e -''~ J, (4.12) 

where 

A~r=Ao( t )+Co(I )+A(~+I ,  (4.13) 

and A~*=complex conjugate of Ag.  Equation 
(3.16) becomes 

~ ( ~ ) - -  v~R~l~(~  ) 

-----iv.~R(~(J)r ~(-~)r176 (4.14) 

and the boundary conditions become 

( 1 )  r  z') = 0 ,  ( 2 )  ~ ly( l ) (d ,  z') = 0 ,  

(3) r r )=0,  (4) r r )=0 ,  

(5) r r )=r  r), 

(6) ziuo)(0, v)h~+0~uc~)(0, r) 

= zTu(2)(0, v)h~ +~(~)(0 ,  r), 

1 = ~ (~2~c~)(0, v)ht + ~ c ~ ) ( 0 ,  r)}, 

1 C1) iF~ - ~ - - ~ - r  (0, r ) + r  r) 

+ iam(0, r)r r) 

-ia~,m(O, r)r m(0, r) 

= ~ { i F r - '  I (3) - ~ - r  (0, r) 

+r r )+  ia(~)(O, r)r r) 

r)r r) ~. (4.15) ~ i U ~ 2 ~ O  ~ 

(7) 

(8) 

Using the method of undetermined coefficients 
(e.g., WYLIE, 1975: pp. 53-59) with (2.12), 
(2.13) and (4.10), the particular solutions of 
(4.14) for ~1 (~') are 

10 14 
r (1~ = iu~R [ E h~  + e ~| E hO)(y) 

k=l  k = l l  
10 14 

+ ~ I~(~)*(y)+e -~'~ ~.. h(~)*(y)], (4.16) 
k=l  k=l l  

where the asterisk denotes a complex conjugate, 
and I~ ~) (o/=1,2; k = 1 - 1 4 )  are given in the 
Appendix 2. Because the boundary conditions. 
(6)-(8) in (4.15) are independent of r, the com- 
plementary solutions must be composed of r-  
independent terms and e "~ -dependen t  terms. 
Therefore, we have the complementary solutions. 

r =A~(~ ) +B~Ci)y+ Cl(.Oy 2 + DtC~)y s 

+ EI (J) Vl  CJ).-}-FI CJ) VtzI (J) + EI(J)* VI (J)* 

+ F I  (~* WI r + Gl(l)(r) +K~(l)(r)y, (4.17) 

where 

VI ~ = cosh( ~/2u~ qy)e n*'~, ] 

W, (~) = sinh( ~/~-qy)e  ~i'~, I 
GlC~)(r) = G~Cl)e~,o~ + Gl C~)*e -~,~, [ 

K1 c~) (r) = Kl (~)e ~ ~ + Kt  c~)*e -~i~, 

(4.18) 

and A~ (j), B1 (-~ (71 (-~ D I  (-~ El  (r FI  el), G~ (l> 
and K~ (~) are constants to be determined with 
the boundary conditions (4.15); these are pre- 
sented fully in KAMACHI (1980), and the ex- 
plicit form of A~ (1) is shown in the Appendix 
3, because only the explicit form of A~ r is 
necessary for the calculation of the growth rate  
0~ in (4.25). 

As mentioned above, we have 

r = r  + r c~), (4.19) 

and put 

O,(J)---- ~1(1)(y) +r162 ~ 

(4.20) 

where 

r cj~(y) = 1-I~ (J~(y) + A~ cJ~ + 8~ Cj~y 

+ C~(~)y 2 + DlC~)y ~, 
10 I0 

H l (~)(y) = JR( E I~ (~(y) + Z hcj),(y)), 
~=1 k--1 
14 

~n (J~ = iu ~R E h(~)(y) + El r176 cosh 
k = l l  

x ( ~/2u~ qy )+Fl  Cj) sinh ( ~/2vj qy) 

+ GIo ) +K~C~)y, 
14 

~1~(~ ) = ivlR E. hcJ)*(y) +ElO)*cosh 
k=l l  

X (~/2u~ q 'y)  + F I  (~)* sinh( ~/2uj q 'y)  

+ G~ o~* + KlC~)*y. 

(4.21) 
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Now,  according to (3.19), 

dh~ _ 8~--i~(J)(O, r)ht--ii~l(J)(0, r), (4.22) 
d r  

where j = l ,  though j may be 1 or 2. Because 
1z3 must be periodic in r, 

--02--{i~(1~(0, r)hl}~_~,~.-ir (4.23) 

where  the suffix " r - ind ."  indicates the terms 
~ndependent of r in iacJg(O,r)h,, i.e. 

{i~c1~(0, x)hl} ~-t,,e. =-- --  4--~[Au(ACX~*+ 1) 

--  A n * ( A  C1~ + 1)]. (4.24) 

T h e n  we have 

83= -~o [An(ACt)*  + l ) - A n * ( A  ~ + l)~ 

- i f l l ~  (4.25) 

Therefore,  using (2.14), (4.13), (4.21) and the 
Appendices, we can calculate the value of ~3. 
T h e  flow is unstable for ~ > 0 ,  neutral for 83=0, 
and stable for 83<0. Considering the values of 03, 
we  discuss the stability characteristics in Sect. 5. 

The result obtained is 

(9 = O3a 3 + O(a3) , (4.26) 

and the instability so far discussed is a kind of 
secular instability, since the growth rate is of 
the order of a 3. 

5. Results and discussion 
The parameters which have appeared in the 

present st, ability calculation are R, (0, fi, d, Fr 
and ~. In  this section we discuss instability 

characteristics in the parameter spaces. In  the 
figures presented in Sect. 5, diagonally lined 
regions indicate that the flow is unstable and 
blank regions indicate that it is stable. 

Figure 2 shows the region of instability in the 
(0-R plane, when d = l . 0 ,  fi=0.01 and /~=1.01 
The  non-dimensional frequency is 

( 0 ~  

(0ad c2> dc2Vuo r~o 

U0 " '=  1/(0~ r , '  

where rw is a time scale of wavy disturbances 
propagating in the direction normal to the walls 
and r~ is a time scale for the diffusion of vorti- 
city. In  the figure, the values of oJ for the 
neutral curves decrease with R, because the 
flow has time scale of wavy disturbance propa- 
gation that  is smaller than that of the diffusion 
of vorticity when the inertial forces are much 
more dominant compared with the viscous ones. 
When  the values of (0 are very small, the flow 
is always stable. Use of (2.12, 13, 14) as ~o--*0 
leads to A (I) = --  1 + O((0), B <~ = O((0), A (2) = --  1 

+ 0((0) and B (~) = O((0). Then  we have ~c;') = 

l [ O ( ( 0 ) @ ' ~ + c . c . ] ,  where j -~ l ,  2. The velocities 

of the primary flows therefore are very small, 
and the two-layer liquid is statically stable. 

Figure 3 shows the dependence of the regions 
of unstable disturbance on ~ and R, when p =  
1.0, F , = I . 0 ,  d = l . 0  and (o=0.1. When  0.0<fi 
<1 .0  (the lower fluid is more viscous than  the 
upper), and p = l . 0  (homogeneous density), the 
oscillatory flow can be unstable. The flow is 
neutral to O(a 2) when ~=0.0. These two cases 
correspond to a single-layer flow. W e  shalI 
discuss the two cases separately�9 

To see what happens if the density and kine- 

~O 

2.0 w \ / , "  ;~ "< -//,~, "~'[, ~ 

0.0 
0.0 1.0 2.0 

R x 10 3 

Fig�9 2�9 Instability characteristics, d=l .0 ,  fi=0.01 
and /5=1.0. The flow is unstable in the 
diagonally-lined region. 

1.0 

0.5 

0 . 0  T ~ . . . . .  . ,  . . . . .  
0.0 1.0 2.0 

R x 10 3 

Fig. 3. Instability characteristics. ~=1.0, d= l .0  
and (o=0.1. The flow is unstable in the 
diagonally-lined region�9 
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matic viscosity of one layer become equal to 
those of the other (i.e., ~=0=1.0) ,  consider the 
result (4.25). Recalling (2.14), (4.13), (4.21), and 
the Appendices 1, 2 and 3, it is seen that all 
coefficients of Ib0 (j) and I~1 (r are zero and 82=0. 
When/3=1.0 ,  therefore, 83 has a factor ( 0 - I ) .  
When/3=~=1.0,  r (-~ and i~/~') are zero. There- 
fore the flow is a simple oscillatory flow with- 
out disturbances, and our perturbation theory 
does not contain the stability theory for the 
single layer oscillatory flow as a limiting case. 
When 0<1.0, therefore, the instability charac- 
teristics are different from those of KERCZEK 
and DAVIS (1974), HINO and SAWAMOTO (1975) 
and HALL (1978). The unstable disturbance in 
the present theory, therefore, may be a 'soft 
wave'  in an oscillatory flow; the soft wave in 
a steady flow was discussed by YIH (1963, 1967). 

The limiting case of ~=0.0 and /3=1.0 will 
now be discussed, w h e n  /3=1.0 and P=0.0 on 
using (2.14), A (n, B (t) and A (~) are of O(1), 

I 

but B(~)=O. There, ~<~)=-~[(A(~)+l)e~'~+c.c.], 
d . J  

and this solution does not satisfy the boundary 
condition (2.9). The value 0=0 is also a singu- 
larity of the basic equation (2.4). We cannot, 
therefore, discuss the case of ~=0 based on the 
present formulation. 

KERCZEK and DAVIS (1974) investigated a 
'fully' unsteady flow in the range of small wave- 
numbers. HINO and SAWAMOTO (1975) investi- 
gated a quasi-steady flow in the range of large 
wavenumbers, because the Strouhal number 
investigated by them is 0.05. The single-layer 
oscillatory flows may be stable in the range of 
small wavenumbers (KERCZEK and DAVIS, 1974), 
though the flow can be unstable in the range 
of large wavenumbers (HINO and SAWAMOTO, 

I 
0.75 

0.0 1.0 2.0 
R x 10 3 

Fig. 4. Instability characteristics. /3=1.0, iv=0.1 
and 0=0.01. The flow is unstable in the dia- 
gonally-lined region. 

1975). The difference in characteristics of each 
of these workers instability treatment is due to 
differences in the range of wavenumbers and the 
time scale of the primary flow considered. The  
stability characteristics of the two-layer 'fully' 
oscillatory flow is different from that of the 
single-layer one, which may be stable in the 
range of small wavenumbers (KERCZEK and 
DAVIS, 1974). This indicates that the viscous 
stratification (i.e., 0<1.0 and /3=1.0) has a de- 
stabilizing effect. YII-I (1967), however, showed 
that steady two-layer flows are always unstable 
when /3=1.0, 0<1.0 and d = l . 0 .  This indicates 
that the oscillatory flows have a stabilizing effect, 
because the oscillatory flow has a zero mean 
velocity of the primary flow. 

Figure 4 shows the dependence of the regions 
of unstable disturbance on d and R when /3= 
1.0, (o=0.1 and 9=0.01. In Fig. 4, the insta- 
bility characteristic above the line d=0.57 is 
different from that below the line. We call the 
regions above and below this line the upper and 
lower regions respectively. When /3<O(1), the 
upper region disappears and only the lower one 
exists. The unstable disturbance in the lower 
region is therefore similar to that of surface 
wave type in the oscillatory flow (Yn-I, 1968), 
because the flow with /3<O(1) is a limiting case 
with a free surface. The unstable disturbance 
in the upper region is a soft wave (/3=O(1) and 
9<O(1)) in the oscillatory flow. 

Figure 5 shows that the dependence of the 
regions of unstable disturbance on F~ and R, 
when /3=0.5. This parameter dependence is 
similar to that shown in YIH (1968). 

With respect to the stability theory for a 
flexible boundary, it is well known that there is 
a threefold classification of unstable disturbances 
(BENJAMIN, 1960, 1963, 1966; LANDAHL, 1962; 

Fr 

4.0 

2"0 I 

0.0 
0.0 

/ X_C/ 

I 

i .0 2.0 
R x i0 3 

Fig. 5. Instabilily characteristics./3=0.5, d=0.5, 
fi=l.0 and (o=1.0. The flow is unstable in 
the diagonally-lined region, 
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TAKEMATSU, 1968, 1969, 1970; TURNER, 1973: 
pp. 92-94). The effect of viscosity is negligible 
in Class C disturbances (e.g., Kelvin-Helmhltz 
type; BENJAMIN (1963, 1966). The regions of 
unstable disturbances appear at small values of 
R in Fig. 5, and the viscosity has a destabilizing 
effect. Thus, the instability may not be classi- 
fied into Class C type. 

Figure 6 shows the dependence of the regions 
of unstable disturbance on ~ and R when ~'= 
0.01, / ; ,=1.0,  d=0.5 an (o=0.1. When ~=1.0,  
in the figure, the flow is always unstable. The 
instability in the upper region in Fig. 6 is due 
to the  soft wave in the oscillatory flow. At 
the limit /3--*0.0, the flow may be the oscillatory 
with free surface waves similar to those treated 
by YIH (1968) and may be a flow of Class B 
type (after BENJAMIN, 1966). When fi--*l.0, 
the regions of unstable disturbance in the figure 
disappear. In other words, the unstable dis- 
turbance in the lower region in Fig. 6 is a soft 
wave of surface wave type (~<O(1), cf. YIH, 
1968) in the oscillatory flow which is unstable 
at ~<O(1) (cf. YIH, 1967). Because the fluid 
viscosity has a destabilizing effect, the instability 
is not of Class B type (cf. Table 1 of BENJAMIN, 
1966), although the fluid viscosity has a stabilizing 

1.0 

0.5 

0.0 . r I 

i 

0.0 �9 1.0 2.0 

R x 10 3 

Fig. 6. Instability characteristics. ~=0.01, Fr 
=1.0, d=0.5 and ta=0.1. The flow is unstable 
in the diagonally-lined region. 

Y 0.5 ~ . . . ~  

0"0 1 t t I 
5 . [  5.~3 10.0 15.0 

-1.0 
Fig. 7. Distribution of the values of the produc- 

tion term. d=0.5, ~=0.01, #=i.0, (o=0.1 and 
R=1500. 

effect on Class B type disturbances at large 
Reynolds numbers. 

To  estimate the distribution of the kinetic 
energy production term for the disturbances, we 
derive the kinetic energy equation for them. 
The equations are 

• Ecj) + ac j~Ec j )  - pc j) + T u )  - sc~) 
ar ax - 

where 

= �89 {ul (s))2 + ( ~ c j ) ) q ,  E(S) 

aE~(s) 
ay ' 

TCS)=_ a Eit~(s,p,pc,)_ 2_~2~cs,Skt~, 
ax~ uric, I 

tot =--X" i ~  -t- - - ~ " ~  J, Z \ xt o.:v~ / 
k = l ,  2, l=l ,  2, 

(aLes ~, ~,<J))--(au~, VJ~), 

(x~, x , ) -  (x, y). 

We rewrite p(~) as 

pq~ = ia~q)qi, cJ)~vcJ) 

= iae~*2a2~[Z(l)~y(t)~u(s) j 
--iae***"2*[p~(y)+ P2(y, r)], 

where Pz(y) is a function independent of r in 
Xcs)Z~ct)a~ cr and P~(y, r) is periodic in r. Then 
we put 

<PC~)(y))-- ~ f 2o'~[P~(y)+ P~(y, r)]d(~v) 

=P~(y) 

and <pc~)> is an approximate value of the time 
mean of the production term p(.o. We evaluated 
the y-contribution to <P(1)>, and plotted the 
values of (pc~)> against y for d=0.5, ~=0.01, 
p = l . 0 ,  (o=0.1 and R=1500 in Fig. 7. It  can 
be seen that the values of the production term 
have an extremum at the interface, although 
KERCZEK and DAVIS (1974) showed that the 
production term has a negative minimum value 
in the outer region of the boundary layer. This 
indicates that the interface of fluid viscosity has 
a destabilizing effect. 



354 KAMACHI and HONJI 

In  conclusion, the unstable disturbances do 
not belong to any of the three classes A,  B and 
C developed in the instabili ty theory for a flexi- 
ble boundary,  but  are of the soft wave type for 
oscillatory flows. T h e  disturbances are  also of 
the surface wave type,  which are  unstable for 
two-layer  oscillatory flows in a viscous fluid. 
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Appendix 1. 

The  explicit forms of Ao (J), Bo (j), Co (J) and 
Do (~) are as follows; 

A0(t)= ~o[--(~5~--l)B(1){#( ~/~q cosh q ~/--ff 

- sinh q ~/~ ) - ~/9 ( # -  (~-- 1) cosh q ~/~ ) 

x (sinh qd--qd cosh qd)} 

- ( h - l )  ~/~ A(l~{$(2-2cosh q ~/~ 

+q~ / f i s i nh  q ~/~) 

- ~/fi sinh q ~/fi (sinh qd-  qd cosh qd) 

+ (cosh q ~/~ - 1)(1 + qd sinh qd-  cosh qd)}'], 

/3o (1~ = --~o[-(tSb-- 1)BC~[cosh q ~/T(cosh qd-  1) 

--# cosh qd (cosh q ~/fi --1)} 
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_ _  m 

+ (@-- 1)A~ a/~ sinh q ~/fi (1 - cosh qd) 

- s i n h  qd ( 1 - cosh  q ~/fi"-)]'], 
- _ 

C 0 ( l )  = [ - -  ()b-- 1)B(t){ ~/b cosh q ~/fi 

x (sinh q d - q d  cosh qd) 

+~  cosh qd(sinh q V fi - q  ~/fi cosh q ~/~ )} 

+ ( ~ -  1)A ( ' ) [ (1 -  cosh q 4 fi ) 

x (1 + (2~-  1) cosh qd) 

- ~/'-~'sinh qd sinh q ~/~" 

+ q  V'-ff(@+ d) cosh qd sinh q V ~--}'], 

=+o [(~--1)B ~ sinh qd Do( l~  

x (sinh q V ~ --q V ~ cosh q V ~ ) 

- )  4-~ + (P-  ~) ,/~cosh q , /T  

+ ~/~-cosh q J--~(eosh q d - q d  sinh qd)} 

+ (/~-- 1)A('){ ~/~ (1--2~) sinh qd 

• ( 1 - cosh  q , / f i )  

--fi(l+/~q)sinh qdsin  q ~/fi 

+fi sinh q V--~(cosh qd--qd sinh qd)}], 

= 1y [_)()fi_ 1)B(~) {(1+ ( ~ -  1) cosh qd) A0 (2~ 

• (sinh q ~/fi - q  J fi eosh q ~/fi ) 

+ ~/~(sinh q d - q d  cosh qd)} 

- ( t~ - l )A(n{s inh  qd ()(sinh q ~/ 

- q 4~cosh q ~/'-ff)-- q ~/b--d) 

-- ~ /T(1-cosh  q d ) ( 2 + $ ( - l + c o s h  q ~/ 

- q  J fi sinh q V fi ))}], 

"7-- 

.B0(~)= *v:q[-(t~fi--1)B('){cosh q 

• (-- i + cosh qd) 

+/~ cosh qd(1-cosh q ~/~ )} 

+ (~5-1)A('){sinh qd ( -- 1 + cosh q ~/fi ) 

+ ~/fi---sinh q ~ / T ( -  1 + cosh qd)}'], 
- _ 

COC2)= [--(#~--l)~B('){~/~coshqx/5 

• (sinh q d - q d  cosh qd) 

+~ cosh qd (sinh q ~/b - q  V ~ cosh q ~/b )} 

- (~-- 1)AO){ ~/~ cosh qd ( -  ~ + (~-  2) 

• coshq ~/fi-)- sinh qd (~ sinh q x/ 

--q J-ff-($+d) cosh q V ~--)+ 4-~cosh q V Y 

-- ~/"~ (--t~+ (/~-- 1)cosh q ~/9 )}], 

1 
Do(a) = --~[(p~-- l(B(l){p--t~ VTsinh qd 

• sinh q ~/~ +t~ cosh qd[(t~- 1) 

+ q ~/~ (# + d) sinh q ~/~ -- # cosh q ~/b ] } 

+ (~--  1 )A  c'~ { - ~ sinh qd (1 + q ~/b s inh  q ~/ 

--eosh q ~-~') + ~/~sinh q ~/-'ff 

x ( ( # - 2 ) - q d  sinh qd--  (t5-2) cosh qd)}'], 

where 

Yo= -- 2~ ,/ f~ 

- -  2~ ~/b (~-- 1) cosh qd 

+2 J ~ (~-- 1)coshq ~/b 

+)(i +.0) sinh qd sinh q ~/b 

--q ~/fi (t~+d) sinh qd cosh q 4' b 

-@qf,(~+d) sinh q ~/fi cosh qd 

+ 2  v' b--(t ~ - ~ + 1 )  cosh qd cosh q ~/~. 

A p p e n d i x  2. 

The  explicit forms of I~ (./) ( j=1 ,2 ,  k= l -14 )  
are shown as follows; 

/1(./) Co (./) = cosh ~/uj qy ,  4~./q 2 

Do(J) 
/2(./) = 4---~jq~ sinh ~/~ qy,  

A ( j ) *  / 4 \ - -  I3(J)=-:-----~. ( , - .B0(P--A0(J)}cosh ~/~ q'y,  
4u./q" \ V uj q / 

B (J)* ~ 4 
I4(s)- ~ [  - -  -B0(J)-A0(J)~ sinh ~/~q*y, - 4ujq2 \ ~/~j q* ] 

A(./)= i A(J)*Bo(J)y cosh V~-Tq*y, 

Ie(J) = B (J ) *Bo  (J) ,y sinh ~/uj q ' y ,  
4u./q~ 

i 
IT(J) = 32v.//~2 (A C~)*Co (J) + B(J)*Do C j)) cosh s./y, 

- (B(./~*Co(~) +ACJ)*Do ~./~) sinh sl y, is(.~) i 
- 32,i~2 

i . ( l  ) _  z (A ( I ) *Co( . / ) -B ( j ) *Do  ct)) cos s./y, 
. - 32ujf12, 

i10(./)= i (A(J)*D0(J)-B(J)*C0(./))isin s./y, 
32uifl ~ 

i i , ( . / )_  1 ] _ _  2 (_A(J)Bo( . / ) )  
- 4,~j q~ L 4~Tq 

- -  (Co(J) - -  Ao (J) A (./)) ~ cosh ",/~qy , 
) 
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