ON POLYNOMIAL CONGRUENCES

S. V. Konyagin and T. Steger

1. Introduction. For natural numbers n and q we denote by M_n the set of all polynomials of power not higher than n with integer coefficients, by $M_n(q)$ the set of all polynomials of the form

$$
f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]
$$

with the condition $(a_n, \ldots, a_0, q) = 1$. For $f \in \mathbb{Z}[x]$ and a natural number P we denote by $\rho(f, P, q)$ the number of solutions of the congruence

$$
f(x) \equiv 0 \pmod{q}, \qquad 0 \le x < P. \tag{1}
$$

Let us put

$$
N_n(P,q)=\max_{f\in M_n(q)}\rho(f,P,q);N_n(q)=N_n(q,q).
$$

The quantity $N_n(q)$ is investigated in [1-3]. In [3] the best possible estimate

$$
N_n(q) \ll q^{1-1/n} \tag{2}
$$

is obtained. (Here and below constants of the symbol " \ll " may depend only on n and on $\epsilon > 0$; in this case unimprovability of (2) means that for a fixed *n* the order of $N_n(q)$ is regular for infinitely many values of q .)

The quantity $N_n(P,q)$ is considered in [4-6]. In [6] it was shown that

$$
N_n(P,q) \ll P^{\varepsilon}(P^{1-1/n+\theta_n} + Pq^{-1/n}),\tag{3}
$$

where $\theta_n = (n-1)/n(n^3 - n^2 + 1)$.

In the present paper we show that the set $E(f,q)$ of roots of the congruence (1), which belong to the interval $[0, q)$, is uniformly distributed in some sense on this interval. The nonuniformity of the distribution of the set $E \subset [0, q) \cap \mathbb{Z}$ on $[0, q)$ can be measured by the quantity

$$
D(E,q)=\sup_{0\leq P\leq q}\bigl||E\cap[0,P)|-P|E|/q\bigr|.
$$

We denote by $v(q)$ the number of different prime divisors of q.

Theorem 1. For any polynomial $f \in M_n$ the inequality

$$
D(E(f,q),q) < n^{v(q)}\tag{4}
$$

is valid.

For fixed n the estimate (4) is regular with respect to the order.

The work of the first author was supported by the Russian Foundation for Fundamental Research, Grant 93-011-240.

Moscow State University. University of Georgia, Athens, Georgia, USA. Translated from Matematicheskie Zametki, Vol. 55, No. 6, pp. 73-79, June, 1994. Original article submitted November 25, 1993.

Theorem 2. For any n and $q > 1$ there exists a polynomial $f \in M_n(q)$ such that

$$
D(E(f,q),q) \gg n^{v(q)}.\tag{5}
$$

It follows from (2) and Theorem 1 that $N_n(P,q) \ll Pq^{-1/n} + q^{\epsilon}$. For $P \ll q^{1/n}$ this inequality can be strengthened by using the arguments of [6].

Theorem 3. For $P \geq 1$ the inequality

$$
N_n(P,q) \ll \frac{1 + \ln P}{\ln(1 + P^{-1}q^{1/n})} \tag{6}
$$

is valid.

In particular, $N_n(P, q) \ll 1$ for $P \leq q^{\frac{1}{n} - \epsilon}$. In [6] the corresponding result is established for $P < q^{1/n(n+1)}$. Theorems 1 and 3 imply the following

Corollary. *The inequality*

$$
N_n(P,q) \ll Pq^{-1/n} + P^{\varepsilon} \tag{7}
$$

is valid.

For $P \ll q^{1/n}$ Theorem 3 states that $N_n(P,q) \ll \ln q$. However, we cannot rule out that in this case $N_n(P,q) \ll 1.$

The authors are grateful to A. Granville and K. Pomerance for their attention to this work.

2. Proof of Theorem 1. An integer-valued arithmetic progression whose difference is the power of a prime number p is called a p-progression.

Lemma 1. Let q be the power of a prime number p, $f \in M_n$. Then the set of solutions of the congruence

$$
f(x) \equiv 0 \pmod{q} \tag{8}
$$

is the union of at most n mutually disjoint p-progressions.

Proof. Let $q = p^t$. We use induction over t. For $t = 0$ the statement is obvious. Let us verify its validity for $t = t_0 > 0$, assuming that it holds for all $t < t_0$. If all coefficients of the polynomial f can be divided into p, then (8) is equivalent to the congruence $f(x)/p \equiv 0 \pmod{q/p}$, to which we can apply the inductive hypothesis. Now let us assume that $f \in M_n(p)$. In this case we need the following statement, easily obtained from the Hensele lemma [7], Theorem 2 in $\S 3$ of Ch. 4.

Lemma 2. Suppose that $f \in M_n(p)$, $\overline{f} \in (\mathbb{Z}/p)[x]$ is the reduction of f modulo p, and $\overline{f} = \overline{g}\overline{h}$, where polynomials \bar{g} and \bar{h} are relatively prime in $(\mathbb{Z}/p)[x]$. Then there exist polynomials g and h such that their *reductions modulo p yield* \overline{g} and \overline{h} , respectively; $\deg g = \deg \overline{g}$ and $f \equiv gh \pmod{q}$.

The polynomial \bar{f} can be represented in the form

$$
\overline{f}=\overline{g}_0\ldots\overline{g}_{p-1}\overline{h},
$$

where $\overline{g}_i(x) = (x - j)^{n_j}$ and \overline{h} has no roots in \mathbb{Z}/p . Note that

$$
n = \deg f \ge \deg \overline{f} \ge \deg \overline{g}_0 + \dots + \deg \overline{g}_{p-1} = n_0 + \dots + n_{p-1}.
$$
\n(9)

Applying p times Lemma 2, we see that there exist polynomials $g_0, \ldots g_{p-1}, h$ such that $g_i \equiv$ $(x-j)^{n_j} \pmod{p}$ $(j = 0, ..., p-1)$, $h(x) \not\equiv 0 \pmod{p}$ for $x \in \mathbb{Z}$, $\deg g_j = n_j$ $(j = 0, ..., p-1)$, and $f \equiv g_0 \dots g_{p-1}h \pmod{q}$. It follows from these properties that if E is the set of solutions of the congruence (8) and E_j is the set of solutions of the congruence

$$
g_j(x) \equiv 0 \pmod{q} \tag{10}
$$

for $j = 0, \ldots, p-1$, then

$$
E_j = \{x \in E : x \equiv j \text{ (mod } p)\}.
$$
\n⁽¹¹⁾

For $n_j = 0$ we have $g_j \equiv 1 \pmod{p}$ and $E_j = \emptyset$. Let $n_j \ge 1$. By (11) each number $x \in E_j$ is representable in the form $j + py$, where $y \in \mathbb{Z}$. Moreover,

$$
g_j \equiv (py)^{n_j} \; (\text{mod } p) \equiv 0 \, (\text{mod } p),
$$

that is, $g_i(x) = ph_i(y)$, where $h_i \in \mathbb{Z}[y]$. The congruence (10) is equivalent to the congruence $h_i(y) \equiv 0 \pmod{q/p}$. By the inductive hypothesis the set of solutions of the last congruence, and therefore the set E_j , are representable as the union of at most n_j mutually disjoint p-progressions. By (11) the set E of solutions of the congruence (8) is the union of mutually disjoint p-progressions, whose amount does not exceed $n_0 + \cdots + n_{p-1}$. Taking (9) into account, from this we obtain the statement of the lemma.

Now we pass directly to the proof of Theorem 1. Let us represent q in the form $\prod_{i=1}^{v(q)} p_i^{t_i}$, where $p_1, \ldots, p_{\nu(q)}$ are prime divisors of q. We denote

$$
X = \{x : f(x) \equiv 0 \pmod{q}\},
$$

\n
$$
X_i = \{x : f(x) \equiv 0 \pmod{p_i^{t_i}} \quad (i = 1, ..., v(q))\}
$$

Then $X = \bigcap_{i=1}^{v(q)} X_i$. By Lemma 1 each of the sets X_i is representable in the form $\bigcup_{j=1}^{N_i} X_{i,j}, N_i \leq n$, where $X_{i,j}$ ($j = 1, \ldots, N_i$) are mutually disjoint p_i -progressions. Therefore,

$$
X = \bigcup_{j=1}^{N} Y_j,\tag{12}
$$

where

$$
N = \prod_{i=1}^{v(q)} N_i \le \prod_{i=1}^{v(q)} n = n^{v(q)},
$$
\n(13)

 Y_j are all possible intersections of the form $\bigcap_{i=1}^{v(q)} X_{i,j_i}$ $(1 \leq j_i \leq N_i)$. Note that the sets Y_j are mutually disjoint, and each of them is an arithmetic progression; therefore, for any P , $0 \le P \le q$, we have

$$
||Y_j \cap [0, P)| - P|Y_J|| < 1,
$$

and by (12)

$$
||X \cap [0, P)| - P|X|| \le \sum_{j=1}^{N} ||E \cap [0, P)| - P|E|| < N,
$$

whence and from (13) we obtain the conclusion of the theorem.

3. Proof of Theorem 2. For $f(x) = x^n$ we have $E(f, q) = \{0\}$ and $D(E(f, q)) = 1 - 1/q \ge 1/2$, which implies the validity of Theorem 2 in the case where $v(q)$ is bounded by a value dependent only on n. Therefore, we can assume that

$$
v(q) > N = 4n^2. \tag{14}
$$

Let $q = \prod_{i=1}^{v(q)} p_i^{t_i}$, where $p_1, \ldots, p_{v(q)}$ are increase-ordered prime divisors of $q, q_i = q/p_i^{t_i} (i = 1, \ldots, v(q))$. By the Chinese theorem there exists a number x_1 which satisfies the congruences $x_1 \equiv 0 \pmod{p_i^{t_i}}$ $(1 \le i \le N)$ and $x_1 \equiv q_i \pmod{p_i^{t_i}}$ $(N < i \le v(q)$). We put $g(x) = \prod_{j=1}^n (x - jx_1)$. A number x satisfies the congruence $g(x) \equiv 0 \pmod{q}$ if and only if for $1 \le i \le N$ the congruences $x \equiv 0 \pmod{p_i^{t_i}}$ are fulfilled and there exist numbers $j_{N+1},...,j_{\nu(q)}$ $(1 \leq j_i \leq n)$ such that $x \equiv j_i q_i \pmod{p_i^{t_i}}$ for $N < i \leq \nu(q)$.

The system of congruences for x that we have written is equivalent to the congruence $x \equiv m \pmod{q}$, where $m = \sum_{i=N+1}^{v(q)} j_iq_i$. Note that values of m incongruent modulo q correspond to different sets $(j_{N+1},...,j_{v(q)})$. Denoting by M the set of all possible values of m , we have

$$
|M| = n^{v(q)-N} \gg n^{v(q)}.\tag{15}
$$

One can consider M as the set of values for the sum of a stochastic quantity $\xi = \xi_{N+1} + \cdots + \xi_{\nu(q)}$, where $\xi_{N+1},\ldots,\xi_{v(q)}$ are independent stochastic quantities and ξ_i takes each value jq_i $(j = 1,\ldots,n)$ with probability $1/n$. Let us estimate the dispersion of ξ

$$
\mathbf{D}\xi = \sum_{i=N+1}^{v(q)} \mathbf{D}[\xi_i] = \sum_{i=N+1}^{v(q)} \frac{n^2 - 1}{12} q_i^2
$$

$$
< \frac{q^2 n^2}{12} \sum_{i=N+1}^{v(q)} \frac{1}{p_i^2} < \frac{q^2 n^2}{12} \sum_{i=N+1}^{\infty} \frac{1}{i^2} < \frac{q^2 n^2}{12N}.
$$

We denote by $E\zeta$ the mathematical expectation of ζ . It follows from (14) and the Chebyshev inequality that

$$
\Pr(|\xi - \mathbf{E}\xi| > q/4) < \frac{\mathbf{E}\xi}{(q/4)^2} < \frac{3n^2}{4N} = \frac{1}{3}.
$$

Hence,

$$
|M \cap [\mathbf{E}\xi - q/4, \mathbf{E}\xi + q/4]| > \frac{2}{3}|M|.
$$
 (16)

We put $l = [E\xi - q/4], f(x) = g(x + l)$. Let us calculate the lowest bound for $D(E(f, q), q)$. Taking into account (16), we get

$$
|E(f,q) \cap [0, [2+q/2])| > |E \cap [0, [\mathbf{E}\xi + q/4]]|
$$

= |M \cap [\mathbf{E}\xi - q/4, \mathbf{E}\xi + q/4]| > $\frac{2}{3}|M|$.

Consequently,

$$
D(E(f,q),q) \ge |E(f,q) \cap [0, [2+q/2])| - [2+q/2]|E(f,q)|/q
$$

$$
\ge \left(\frac{2}{3} - \frac{[2+q/2]}{q}\right)|M| > 0.1|M|.
$$

From this and from (15) we obtain the conclusion of Theorem 2.

4. Proofs of Theorem 3 and of the Corollary.

Proof of Theorem 3. Let

$$
1 \le T \le \frac{1}{2} q^{1/n}, \qquad N = 2 + \left[\frac{\ln T}{\ln(T^{-1} q^{1/n})} \right], \tag{17}
$$

M be an arbitrary number, $f \in M_n(q)$. Suppose that x_1, \ldots, x_n are different solutions of the congruence (8); moreover,

$$
x_i \in [M, M+T) \quad (i=1,\ldots,nN). \tag{18}
$$

When proving Lemma 1 in [3], it was established that there exists a polynomial $g \in M_n(q)$ with coefficient 1 of the term x^n such that any solution of (8) satisfies the congruence $g(x) \equiv 0 \pmod{q}$. Thus,

$$
g(x_i) \equiv 0 \pmod{q} \quad (i = 1, \dots, nN). \tag{19}
$$

599

Let us consider the Vandermonde determinant

$$
\Delta = \det(x_i^{j-1})_{i,j=1}^{nN}.
$$

If to columns of the matrix $||x_i^{j-1}||_{i,j=1}^{nN}$, beginning with the $(n+1)$ th one, we add suitable linear combinations of previous columns, then we obtain the matrix $||a_{i,j}||_{i,j=1}^{nN}$, whose *i*th row is of the form

$$
(1, x_i, \ldots, x_i^{n-1}, g(x_i), x_i g(x_i), \ldots, x_i^{n-1} g(x_i), \ldots, x_i^{n-1} (g(x_i))^{N-1});
$$

moreover, $\Delta = \det(a_{i,j})_{i,j=1}^{n}$. Taking into account that by (19) all elements of the jth column are divided by q^s for $j > ns$, we see that Δ is divided by $q^{n(N-1)/2}$. On the other hand,

$$
\Delta = \prod_{1 \leq i < j \leq nN} (x_j - x_i),
$$

whence and from (18) it follows that $0 < |\Delta| < T^{nN(nN-1)/2}$. Hence $q^{nN(N-1)/2} < T^{nN(nN-1)/2}$, which, taking into account (17), is equivalent to the inequality $N-1 < \frac{n-1}{(\ln q/\ln T)-n}$, contradicting the choice of N.

We have shown that under the conditions (17) the number of solutions of the congruence (8) on the half-interval $(M, M + T)$ is less than *nN*. This implies immediately the conclusion of the theorem for $P \le P_0 = \max(\frac{1}{2}q^{1/n}, 1)$. But if $P > P_0$, then the interval $[0, P)$ is covered by $[P/P_0] + 1$ intervals of the form $(jP_0, (j+1)P_0)$; on each of these intervals the number of solutions of the congruence $(8) \ll 1 + \ln q$ by what has been proved. Consequently, in this case

$$
N_n(P,q) \ll (1+\ln q)([P/P_0]+1) \ll (1+\ln q)Pq^{-1/n},
$$

and the estimate (6) also holds in this case. The theorem has been proved.

Proof of the corollary. For $P \n\t\leq q^{1/(2n)}$ the statement is valid, since in this case $N_n(P,q) \ll 1$ by Theorem 3. Let $q^{1/(2n)} < P \leq q$; then for any polynomial $f \in M_n$ we have

$$
\rho(f,P,q)\leq \frac{P}{q}\rho(f,q,q)+D(E(f,q),q)\leq \frac{P}{q}N_n(q,q)+D(E(f,q),q).
$$

Substituting inequalities (2) and (4), we obtain $\rho(f, P, q) \ll Pq^{-1/n} + n^{\nu(q)}$ or $N_n(P, q) \ll Pq^{-1/n} + n^{\nu(q)}$. Since $v(q) = o(\ln q)$, we have $n^{v(q)} \ll q^{2n\epsilon} < P^{\epsilon}$, and for the case $q^{1/(2n)} < P \leq q$ the corollary has been proved. Finally, if $P > q$, then $N_n(P,q) \leq (P/q) + 1)N_n(q)$ and to complete the proof it remains to use the inequality (2).

REFERENCES

- 1. E. Kamke, "Zur Arithmetik der Polynome," *Math. Z.,* 19, 247-264 (1923/24).
- 2. S. B. Stechkin, "Estimate of a total rational trigonometric sum," *Tr. Mat. Inst. Steklov Akad. Nauk SSSR,* 143, 188-207 (1977).
- 3. S. V. Konyagin, "On the number of solutions for a congruence of the nth power in one unknown," *Mat. Sb.,* 109, No. 2, 171-187 (1979); 110, No. 1, 158 (1979).
- 4. N. M. Korobov, "Double trigonometrical sums and their applications," *Mat. Zametki,* 6, No. 1, 25-34 (1969).
- 5. D. A. Mit'kin, "On estimates and asymptotic formulas for rational trigonometric sums close to total ones," *Mat. Sb.,* 122, No. 4, 527-545 (1983).
- 6. I. E. Shparlinskii, "On polynomial congruences," *Acta Arith.,* 58, No. 2, 153-156 (1991).
- 7. Z. I. Borevich and I. R. Shafarevich, *Number Theory* [in Russian], Nauka, Moscow (1985).