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ON POLYNOMIAL CONGRUENCES
S. V. Konyagin and T. Steger

1. Introduction. For natural numbers n and ¢ we denote by M, the set of all polynomials of power
not higher than n with integer coefficients, by My, (g) the set of all polynomials of the form

f(z) =anz™+ -+ a1z + ap € Z[z]

with the condition (an,...,a0,q) = 1. For f € Z[z] and a natural number P we denote by p(f, P,q) the
number of solutions of the congruence

f(z) = 0(mod gq), 0<z<P. (1)

Let us put

nld = aPa ;Nn =Nn g}
Nu(P,q) ferg\lﬁq)p(f q); Nn(q) (g,9)

The quantity N,(q) is investigated in {1-3]. In [3] the best possible estimate
Na(g) < ¢'7H/" (2)

is obtained. (Here and below constants of the symbol “<«” may depend only on n and on ¢ > 0; in this
case unimprovability of (2) means that for a fixed n the order of N,(q) is regular for infinitely many values

of q.)
The quantity N, (P, q) is considered in [4-6]. In [6] it was shown that

Na(P,q) < PE(P'71/m46n 4 pg=t/m), (3)
where 6, = (n — 1)/n(n® —n? +1).
In the present paper we show that the set E(f,q) of roots of the congruence (1), which belong to the

interval [0, ¢), is uniformly distributed in some sense on this interval. The nonuniformity of the distribution
of the set E C [0,q) NZ on {0, ¢) can be measured by the quantity

D(E,q) = Sup IE[0,P)| - P|E|/q|.
SIrsgq

We denote by v(g) the number of different prime divisors of gq.
Theorem 1. For any polynomial f € M, the inequality

D(E(f,q),q) < n*® (4)

15 valid.
For fixed n the estimate (4) is regular with respect to the order.
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Theorem 2. For any n and q > 1 there exists a polynomial f € M,(q) such that

D(E(f,q),q) > n"(®. (5)

It follows from (2) and Theorem 1 that N,(P,q) < Pq~'/™ 4 ¢°. For P « ¢!/™ this inequality can be
strengthened by using the arguments of [6].

Theorem 3. For P > 1 the inequality

1+InP

Na(P,
(B0 < Sy pigm (6)

is valid.
In particular, N, (P, q) < 1for P < g=~¢. In [6] the corresponding result is established for P < g!/=(n+1),
Theorems 1 and 3 imply the following
Corollary. The inequality
- No(P,q) < Pg~'/™ + P* (7)

s valid.

For P <« ¢'/™ Theorem 3 states that Nn(P,q) < lng. However, we cannot rule out that in this case
Nn(P,q) < 1.

The authors are grateful to A. Granville and K. Pomerance for their attention to this work.

2. Proof of Theorem 1. An integer-valued arithmetic progression whose difference is the power of a
prime number p is called a p-progression.

Lemma 1. Let q be the power of a prime number p, f € M,. Then the set of solutions of the congruence

f(z) = 0(modg) (8)

is the union of at most n mutually disjoint p-progressions.

Proof. Let ¢ = p'. We use induction over t. For ¢ = 0 the statement is obvious. Let us verify its
validity for t = tg > 0, assuming that it holds for all t < ¢g. If all coefficients of the polynomial f can be
divided into p, then (8) is equivalent to the congruence f(z)/p = 0(mod ¢/p), to which we can apply the
inductive hypothesis. Now let us assume that f € M,(p). In this case we need the following statement,
easily obtained from the Hensele lemma [7], Theorem 2 in §3 of Ch. 4.

Lemma 2. Suppose that f € M, (p), f € (Z/p)[z] is the reduction of f modulo p, and f = gh, where
polynomials § and h are relatively prime in (Z/p)[z]. Then there exist polynomials g and h such that their
reductions modulo p yield § and h, respectively; deg g = degg and f = gh (mod gq).

The polynomial f can be represented in the form

f= 9o - 'gp—lh’7
where §;(z) = (z — j)™ and k has no roots in Z/p. Note that
n=degf > deg7 > deggo+ -+ degg,_y =no+ - +np-1. (9)

Applying p times Lemma 2, we see that there exist polynomials go,...gp—1,h such that g; =
(z — 7)™ (modp) ( = 0,...,p— 1), h(z) # O0(modp) for z € Z,degg; = n; (j = 0,...,p — 1), and
f =go...9p—1h(modgq). It follows from these properties that if E is the set of solutions of the congru-
ence (8) and E; is the set of solutions of the congruence

9i(z) = 0 (mod g) (10)
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for j=0,...,p—1, then
Ei={z € E:z=j(modp)}. (11)

For nj = 0 we have g; = 1(modp) and E; = @. Let n; > 1. By (11) each number z € E; is representable
in the form j + py, where y € Z. Moreover,

g; = (py)™ (mod p) = 0(mod p),

that is, gj{(z) = phj(y), where h; € Z[y]. The congruence (10) is equivalent to the congruence
hj(y) = 0(mod ¢/p). By the inductive hypothesis the set of solutions of the last congruence, and therefore
the set E;, are representable as the union of at most n; mutually disjoint p-progressions. By (11) the set
E of solutions of the congruence (8) is the union of mutually disjoint p-progressions, whose amount does
not exceed ng + - - - + np—1. Taking (9) into account, from this we obtain the statement of the lemma.

Now we pass directly to the proof of Theorem 1. Let us represent ¢ in the form H:’iql) pﬁ‘, where

P1,---,Pu(q) are prime divisors of g. We denote

(modq)},

X={z:f(z)=0
0(modpi)} (i=1,...,v(q)).

Xi={z: f(a)

Then X = N9 Xx,. By Lemma 1 each of the sets X; is representable in the form N X; i, N; < n, where
i=1 j=1 ¥

Xij (7 =1,...,N;) are mutually disjoint p;-progressions. Therefore,
N
x=w, (12)
Jj=1

where
v(gq) v(q)

N=]] ™ <]]n=n", (13)
=1 i=1

Y; are all possible intersections of the form ﬂiiql) Xij (1 <3: < N;). Note that the sets Y; are mutually
disjoint, and each of them is an arithmetic progression; therefore, for any P, 0 < P < q, we have

I¥; 0 [0, P)| - PIYs|| < 1,

and by (12)
N

1X n[o,P)| - PIX|| < Y |IEn [0, P)| - PIE]| < N,

i=1

whence and from (13) we obtain the conclusion of the theorem.

3. Proof of Theorem 2. For f(z) = z™ we have E(f,q) = {0} and D(E(f,q)) = 1 —1/¢q > 1/2,
which implies the validity of Theorem 2 in the case where v(q) is bounded by a value dependent only on n.
Therefore, we can assume that

v(q) > N = 4n?. (14)
Let g = H:’iq]) pi', where pi1,. .., Py(q) are increase-ordered prime divisors of g, ¢; = q/p¥ (4 =1,..., v(q))- By
the Chinese theorem there exists a number z; which satisfies the congruences z; = 0 (mod pf‘)

(1 <7< N)and z; = g (modpl) (N < i < v(qg)). We put g(z) = H?__,l(m — Jz1). A number z sat-
isfies the congruence g(z) = 0(mod g) if and only if for 1 < i < N the congruences z = 0 (mod p}) are
fulfilled and there exist numbers jy 41, ... vJu(g) (1 £ Ji € n)such that z = j;q; (modpf") for N <1 < v(q).
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The system of congruences for & that we have written is equivalent to the congruence 2 = m (mod q), where

m= Z:’i"}, +1Jigi- Note that values of m incongruent modulo g correspond to different sets (jn41, - - -, Ju(g))-
Denoting by M the set of all possible values of m, we have

|M| = n*@=N 5 pv(@, (15)

One can consider M as the set of values for the sum of a stochastic quantity £ = {nq1 + -+ + £u(q)s

where €41, -+, &u(q) are independent stochastic quantities and ¢; takes each value jg; (7 = 1,...,n) with
probability 1/n. Let us estimate the dispersion of £

v(q) v(g) 5

n-—1
D= Y D= Y Tl
i=N+1 i=N+1
2.2 ¥@) 2.2 = 2,2
g°n 1 g‘’n 1 q°n
<12 Z;_;2"<12 > <N
i=N41°"? 1=N41

We denote by E{ the mathematical expectation of €. It follows from (14) and the Chebyshev inequality
that

E¢ 3n? 1
PI'(K _Eél > q/4) < W < W = g
Hence, 0
[M 0 [B€ — a/4, BE +a/4]) > Z|M]. (16)

We put | = [E€ — q/4], f(z) = g(z +1). Let us calculate the lowest bound for D(E(f,q),g). Taking into
account (16), we get

|E(f,q) N {0,124 ¢/2]) > |E N[0, [EE + q/4]]]
= M1 [BE — o/4,BE +q/4]] > 5 |M].
Consequently,

D(E(f,9),9) 2 |E(f,9) N [0,[2+¢/2])| - [2 + ¢/2]|E(f, 9)l/q

2 [2+4q/2
> <§ - [“LT‘I/]> M| > 0.1|M].

From this and from (15) we obtain the conclusion of Theorem 2.
4. Proofs of Theorem 3 and of the Corollary.
Proof of Theorem 3. Let

1/n ].IIT

1<T< N=24+{—=—< 17
ST < 5, + gy (17

N =

M be an arbitrary number, f € M,(g). Suppose that zi,...,z,n are different solutions of the congru-
ence (8); moreover,

z; E MM +T) (i=1,...,nN). (18)

When proving Lemma 1 in [3], it was established that there exists a polynomial g € M,(g) with coefficient 1
of the term z™ such that any solution of (8) satisfies the congruence g(z) = 0 (mod q). Thus,

g(z:) =0(modgq) (:=1,...,nN). (19)
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Let us consider the Vandermonde determinant

A = det(z] )P,

If to columns of the matrix ||1‘f 1 :‘;V:l , beginning with the (n+41)th one, we add suitable linear combinations

of previous columus, then we obtain the matrix ||a;, j||?'§v=l,whose ith row is of the form

(1,26, 2 g(zi), zig(zs), .., 2l " g(z), ., 2l g(z:)) V),
moreover, A = det(a;, J):‘ff__l Taking into account that by (19) all elements of the jth column are divided
by ¢° for j > ns, we see that A is divided by ¢*N(N=1)/2_ On the other hand,

A= H (xj —‘Ti)’

1<i<j<nN

whence and from (18) it follows that 0 < |[A| < T*N(N=1)/2 Hence ¢"N(N-1)/2 « TrN(N-1/2 which,
taking into account (17), is equivalent to the inequality N —1 < (l—nq—/"]ﬁ,ﬁ, contradicting the choice of N,

We have shown that under the conditions (17) the number of solutions of the congruence (8) on the
half-interval [M,M + T) is less than nN. This implies immediately the conclusion of the theorem for
P < Py = max([2¢'/™],1). But if P > Py, then the interval [0, P) is covered by [P/P,] + 1 intervals of the
form [7Po,(j + 1)Py); on each of these intervals the number of solutions of the congruence (8) < 1 +1Ingq

by what has been proved. Consequently, in this case
Na(Pg) < (1+1Ing)([P/Po]+1) < (1 +1Ing)Pg!/",

and the estimate (6) also holds in this case. The theorem has been proved.
Proof of the corollary. For P < ¢*/(7) the statement is valid, since in this case Nn(P,q) < 1 by
Theorem 3. Let ¢'/(?®) < P < g; then for any polynomial f € M,, we have

p(f,P,g) < gp(f, 7,9) + D(E(f,q),¢) < gNn(q, q) + D(E(f,q),9)-

Substituting inequalities (2) and (4), we obtain p(f, P,q) < Pq~'/" 4+ n*® or N, (P,q) < Pq~ /" 4 n*®,
Since v(q) = o(Ing), we have n*(9 « ¢°"¢ < P¢, and for the case ¢!/(?®) < P < ¢ the corollary has been
proved. Finally, if P > q, then N,(P,q) < ([P/q] + 1)Nn(q) and to complete the proof it remains to use
the inequality (2).
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