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This paper deals with the problem of designing a least-cost digital data service 
(DDS) network that connects a given set of locations through digital switching offices 
with bridging capabilities. We present several alternative mixed 0-1 integer programming 
formulations and evaluate analytically their relative strengths by comparing their respective 
linear programming relaxations. By exploiting the structures inherent in a particularly 
strong formulation, we develop several classes of valid inequalities and cutting planes 
in order to tighten the initial formulation. For several problems of real-world data, 
computational results show that the strong formulation with valid inequalities and cutting 
planes generates a very tight lower bound (over 98% of the optimality) and so finds an 
optimal solution well within an acceptable time bound. 

1. Introduction 

We consider a network design problem of connecting several customer locations 
with dedicated digital communication links provided by a regional telephone company. 
Such a communication network is called a digital data service (DDS) network and 
has the following unique features. First, to receive digital data service, each customer 
location must be linked directly to exactly one of  the digital switching offices with 
bridging capabilities, called hubs. Second, if more than one hub is used for that 
purpose, the chosen hubs must also be interconnected by links so that all customer 
locations can communicate with each other. Third, the cost of  each link is calculated 
according to the tariff charges established by the Federal Communications Commission 
(FCC). In addition, there is also a fixed charge for each hub used in the network. 
The network design problem addressed in this paper, called problem DDS, seeks to 
design a least-cost DDS network that connects a given set of  customer locations. 

To formulate the problem, consider the following mathematical description. 
Suppose  that there are m customer locations, called target nodes, indexed by 
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i ~ M = { 1 . . . . .  m} and that there are n switching offices with bridging capabilities, 
called hubs, indexed by j E N = { 1 , . . . ,  n }. Each target node i E M must connect  
to exactly one hub j ~N,  incurring a connection cost of cij. Each hub j that is 
connected to at least one target node or other hubs incurs a fixed cost b, Also, two 
distinct hubs j and k that are connected in the solution incur a connection cost of  
djk, which is symmetric (i.e. djk = dkj). We assume that all the costs are positive and 
the connection costs satisfy the triangle inequality, i.e. Cik < ci.i + djk and djt < djk + dkt 
for all i ~ M, j, k, l ~ N. This triangle inequality assumption, which is verified by the 
real data, allows us to develop a family of valid inequalities that plays a key role 
in solving the problem. 

An alternating sequence of distinct nodes and edges is called a path. If such 
a sequence has the first and the last node identical while the remaining nodes are 
distinct, then it is called a cycle. Let L denote the set of  all cycles consisting of only 
hub nodes. 

Let xij be a 0-1 variable, where xij= 1 if and only if target node i E M  
connects to h u b j  EN. Let uj be a 0-1 variable, where uj = 1 if and only if h u b j  E N  
is selected. Such a hub is called an active hub. Finally, let Yjk be a 0-1 variable, 
where Yjk = 1 if and only if hub j ~ N connects to hub k ~ N, j < k. Then, problem 
DDS can be formulated as follows. 

DDSI" minimize Z ~.,cijxij + Y~ ~_~ djkYjk + Y~ buj 
i~M j~N j~N j<k,k~N j~N 

subject to ~,  xij = 1, i ~ M, (1) 
j~N 

xij <u  j,  i ~ M, j ~ N, (2) 

Yjk < uj, j < k, j , k  ~ N, (3) 

Yjk <-- Uk, j < k, j , k  ~ N, (4) 

~_, ~.~ Yjk = ~ uj - 1 ,  (5) 
j $N  j<k,k~N j$N 

~_~ Yyk < w C w - 1 ,  
j,keC, j<k 

Xij -->0, 

uj e {0, 1}, 

Yjk ~ {0, 1}, 

'v'C e L (anti-cycle inequalities), (6) 

i e M ,  j e N ,  

j e N ,  

j < k ,  j ,  k e N .  

Constraint (1) indicates that each target node connects to exactly one hub, and (2) 
indicates that a hub is active if some target node connects to it. Constraints (3) and 
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(4) compel hubs j and k to be active if hubs j and k are connected. Since every 
feasible solution to problem DDS has a tree structure (i.e. a solution does not 
contain any cycle), (5) compels the number of connections between hubs to equal 
one less than the number of active hubs. Constraint (6) is a standard "cycle-breaking" 
constraint. Members of this set of constraints may be generated adaptively, as 
needed, in the framework of the branch-and-cut algorithm. Together, these constraints 
ensure all variables are 0-1 integer valued, assuming values for the xij variables are 
obtained by an extreme point linear programming algorithm given values for the Yjk 
and uj variables. 

Remark 1 

Note that if the fixed cost of the hub node is negative, then we need additional 
contraints, which prevent each active hub node from being a leaf node (i.e. a node 
connects to exactly one other node) in the solution tree. For each k ~ N, we have 
the following constraints: 

~.~ Xik + ~_~ Ykl -I- ~ Ylk > Yjk, j < k, j ,  k E N,  
i~M l>k,l~N l<k,l~j , l~N 

~ x i j +  ~_~ Yjl + ~_~ Ylj >Yjk, j < k ,  j, k E N .  
i~M l>j, l~k, l~N l<j,l~N 

Since the fixed cost b of problem DDS is positive, the subgraph associated with the 
optimal (minimum) solution of model DDSI is also minimal in the sense that no 
active hubs appear as leaf nodes. Furthermore, since connection costs satisfy the 
triangle inequality, the foregoing constraints can be further strengthened as follows: 

~.~ Xik -t- ~a Y~l + ~_~ Ylk >- 2yjk, j < k, j, k ~ N, 
i~M l>k,l~N l<k,l~j , l~N 

xij + ~ Yjl + ~ Ylj > 2yjk, j < k, j, k E N. 
ieM l> j,l:gk,l~N l< j , l~N 

This paper is organized as follows. Section 2 presents several alternate 
formulations of the problem and evaluates analytically the relative strength of the 
formulations. Section 3 reports computational results and compares the formulations 
empirically. Section 4 concludes the paper. 

2. Valid inequalities and alternate problem formulations 

Observed that problem DDS can be conceptualized as a degree-constrained 
node-weighted Steiner tree problem on a simple undirected graph in which hubs are 
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Steiner nodes (a node is called a Steiner node if it does not always need to be selected 
in the solution), and each customer location must be connected to exactly one hub 
node. The node-weighted Steiner tree problem with degree constraints is an extension 
of the standard Steiner tree problem by the addition of node-associated weights and 
some degree constraints. The Steiner tree problem on graphs has been extensively 
investigated by many researchers for the last twenty years because of its simple 
combinatorial structure and its numerous practical applications (see Aneja [1], 
Beasley [2], Beasley [3] and Hakimi [10]). Winter [22] and Maculan [14] have 
presented excellent surveys of various applications and algorithms. Recently, Hwang 
and Richards [12] have provided a comprehensive bibliography which covers various 
important classes of Steiner tree problems including Euclidean, rectilinear, graphic 
and phylogenetic problems. For the node-weighted Steiner tree problem, Segev [ 19] 
investigates a single point weighted Steiner tree problem as a special case. This 
special case occurs when the set of nodes, which must be included in the solution 
tree, consists of a single node and all Steiner nodes have negative weights. However, 
in this paper, we consider a node-weighted Steiner tree problem in which there are 
several target nodes that must be connected to exactly one of the hub (Steiner) 
nodes. 

Several recent advances have been made in the development of branch-and- 
cut algorithms for combinatorial optimization problems. (See, for example, Crowder 
et al. [8], Hoffman and Padberg [11], Martin [15], Padberg and Rinaldi [17], Van 
Roy and Wolsey [18], Wolsey [23].) In particular, Fischetti [9], and Chopra and 
Rao [5] presented the study of polyhedral structure of the (node-weighted) Steiner 
tree problems, and Chopra and Gorres [4], and Chopra et al. [6] showed the promising 
computational results of the branch-and-cut approach based on the polyhedral results. 
As emphasized by Sherali [20], at the heart of these approaches is a sequence of 
linear programming problems that speed up tightening of the lower (upper) bounds. 
The success of these approaches strongly depends on the strength or tightness of 
the linear programming representations employed. In this research vein, this paper 
presents the key role played by tight linear programming representations generated 
through a reformulation process, which augments the initial model by defining 
appropriate additional variables and constraints, and generates suitable valid inequalities 
and strong cutting planes. Next, we address some families of valid inequalities for 
problem DDS, which effectively strengthen initial formulations. 

Note that if the optimal solution requires at least two active hubs, than each 
active hub must be connected to other active hubs. Hence, we have the following result. 

PROPOSITION 1 

If ~,je~uj > 2, then the following inequalities are valid for problem DDS: 

~.~ Ylj + ~ Yjk >- uj, j ~ N. (7) 
l<j,l~N j<k,k~N 
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PROPOSITION 2 

Suppose that 02, Y, u) is an optimal solution to problem DDS with ~ j ~ N  t~j > 2. 
Then (~, Y, t~) satisfies 

i~M l<j,l~N j<k,k~N 

Proof 
Suppose that there exists an optimal solution (X, y, ~) to problem DDS that 

violates the inequality (8). Then, since the optimal solution to problem DDS has a 
tree structure, (8) is reduced to 

E ,J+ Z YlJ+ Z yj =2, 
i~M l<j,l~N j<k,k~N 

and so it suffices to consider the following two cases. 

(i) Suppose that ~i~1~ Ycq = 0. Then, the active hub j is connected only to 
other active hubs, say s and t. However, since dsj + djt > dst and b > 0, we can reduce 
the total cost by connecting hub s and hub t, which still maintains feasibility. This 
contradicts the fact that (~, y, ~) is an optimal solution. 

(ii) Suppose t h a t  ~ i ~  M YciJ = 1. Then, a single customer is connected to active 
hub j and hub j must be connected to another hub, say t. However, since cij + djt 
+ b >cit, we can reduce the total cost by connecting this customer directly 
to hub t, which is a contradiction. This completes the proof. [] 

PROPOSITION 3 

Suppose that (~, Y, a) is an optimal solution to problem DDS with ~ j e lv  ~j > 2. 
Then 02, Y, ~) satisfies 

aj < K, (9) 
j~N 

where K = min{n, max(l, m - 2)}. 

Proof 
The number of edges in the solution tree is 

m+j~j-l={ ~N I ~M.~ij+ ~.~ dlj+ ~ ~'jkl+m}/2. 
j i l<j,l~ j<k,k~N 

Now, from (8) in proposition 2, we have that 
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m+ jeNs t~ j -  1 > { jeNs 

It follows that ~jeN~lj  --< m -  2. This completes the proof. [] 

Motivated by the observation that the solution to problem DDS has a tree 
structure, we develop an alternative formulation with additional interesting features. 
We conceive of a flow that enters a single hub from an artificial hub of supply 
s  U j ,  denoted by hub 0, and seek to send the flow to other appropriate hubs 
to satisfy the connectivity conditions. Toward this end, define )~k to be a directed 
flow from hub j to hub k, j ,  k, and introduce an artificial hub which must send the 
flow. With these flow variables, we obtain the following formulation for problem 
DDS. 

DDS2: minimize Z ~.~cijxij + ~.~ ~_, djkYjk + ~.~ buj 
i eM j e N  j e N  j<k, k e N  j e N  

subject to ~ x/j = 1, i �9 M, (10) 
j ~ N  

s Xij <_ muj, j E N, (1 1) 
i~M 

'~  foj = ~,  u j, (12) 
j e N  j e N  

Remark 2 

foj - ~ (fjk - f~j) = uj, j E N, (13) 
j~k,keN 

foj  < nYoj, j E N, (14) 

fjk < nyjk, j, k E N, j < k, (15) 

fkj < nyjk, j, k E N, j < k, (16) 

~ Y o j  = 1, ( 1 7 )  
jeN 

Xij >---0, i E M ,  j E N ,  

fjk >_0, jr jENu{O}, 
Uj e {0, 1}, j e N, 

yj~ E{O, 1}, j < k ,  j E N u { 0 } ,  

k E N ,  

k E N .  

The constraints (12)-(17) guarantee the connectivity of the solution because 
the variable 3~k provides the flow between the active hubs. 
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We now compare the relative strength of the foregoing two models. Toward 
this end, let P denote the linear programming (LP) relaxation of model P and let 
v(P) denote the optimal objective function value of a given model P. Then, we have 
the following result. 

PROPOSITION 4 

There exists an optimal solution (~, y, f ,  ~) to DDS2 of the form 

Yjk =- O, 

fjk =-0, 

_ [1,  i f j = t ,  t=argmin{ci j  " j E N }  i E M ,  

xij = l O, otherwise, 

j < k ,  j, k E N ,  

j c k ,  j, k E N ,  

j E N ,  ~j = ~ ~ijlm, 
i ~M 

~foj = ~ ~ij/m, j EN, 
i~M 

Y0j = ~_~ij/m, j EN. 
i~M 

Proof 

Suppose that there exists an optimal solution to DDS2 such that Yjk > 0 for 
some j < k, j, k ~ N. Then, without losing feasibility, we can put Yjk = 0 for all 
j < k, j, k ~N,  which in turn reduces the total cost. This contradicts the fact that 

~)optimal to DDS2. Moreover, from constraints (15) and (16), we have 
that fjk - O, Vj ~ k, j , k  E N, and the rest of the result follows by solving the 
following trivial linear programming problem. 

minimize 

subject to 

cijxij + auj 
i ~M j c N  j ~ N  

~,x i j  =1, i E M ,  
j ~ N  

~_~ xij < muj, j E N, 
i ~M 

xij >0, i E M ,  j E N ,  

uj >0, j E N .  
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Letting (2, ~) be the optimal solution of the above linear programming problem, we 
have that roy = X i ~ g X i j / m ,  J E N and Y0j = Xi~MXi j /m ,  J E N. [] 

Note that if some ~j of an optimal solution (~, y, f ,  ~) to DDS2 is fractional, 
then (~,y,  f ,  ~-) violates the constraints (2) of DDS1. That is, the constraints of 
DDS1 cut off the optimal solution of DDS2. Furthermore, it can easily be shown 
that there always exists a feasible solution to DDS2 corresponding to a given feasible 
solution to DDSI. Hence, DDS1 is a stronger formulation in the sense that DDS 1 
generates a tighter LP relaxation and so provides a tighter lower bound for problem 
DDS. 

PROPOSITION 5 

v(DDS1) > v(DDS2). 

Glover [13] and McCrady [16] developed an alternative formulation based on 
a different flow concept. We present the model in order to compare the relative 
strength of models and select the best model for implementation. Toward this end, 
we can define the value XieM xij to be flow that enters hub j from the nodes i E M, 
and can transmit this flow through other hubs to satisfy the desired connectivity 
conditions. For this, we introduce a master sink, which must receive flow from a 
single hub. Accordingly, let ~0 denote the flow from hub j to the master sink hub, 
denoted by hub 0, and let Yjo be a 0-1 variable where Yjo = 1 if and only if the flow 
fj0 is positive. Then, we have the following formulation. 

DDS3: 

minimize 

subject to 

X 
ieM 

X Xij = 1, 
jeN 

X X i j  + X (fiJ -- f # ) - -  fjo = 0 ,  
iEM j~k,k~N 

f #  < my#, 

fkj < myjk, 

~ f j o  = m, 
jeN 

fjo = myjo, 

Xij >--0, 

fjk >-O, 
Yjk ~ {0, 1}, 

jeN jeN j<k, keN j j<k,k~N 

i E M ,  

j E N ,  

j < k ,  j, k E N ,  

j < k ,  j, k E N ,  

j E N ,  

i E M ,  j E N ,  

j c k ,  j E N ,  

j c k ,  j E N ,  

k E N u {0}, 

k E N u {0}. 
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Remark 3 

Note that model DDS3 reveals that node-associated variables uj, j EN, are 
not necessary for formulating problem DDS. Also note that model DDS3 is a 
compact formulation in the sense that model DDS3 is a polynomial size formation, 
while model DDS 1 requires an exponential number of "anti-cycle" constraints (6). 
Although model DDS2 is also a polynomial size formulation with "superfluous" 
variables uj, j E N, model DDS3 contains only the necessary variables. However, 
as in the case of the symmetric traveling salesman problem, the compact formulation 
is not necessarily a strong formulation that provides a tight lower bound to the 
problem. The following proposition shows that the LP relaxation of model DDS3 
provides the same (weak) lower bound as model DDS2 to the problem DDS. 

P R O P O S I T I O N  6 

v(DDS2) = v(DDS3). 

Proof 

Let ( ~ , y , f , ~ )  be an optimal solution to DDS3. In the same way as for 
proposition 3, it is readily verified that the optimal solution of DDS3 is of the form 

_ [ 1, if j = t, t = arg rrfin{cij �9 j E N} i E M, 

Xij : ~ 0, otherwise, 

Yjk =0, j < k ,  j, k E N ,  

]jk =-0, j , k ,  j, k e N, 

?jO = 2 "Xij, j e N, 
i~M 

YjO = 2 Xij/m, 
i~M 

j e N .  

This completes the proof. [] 

The foregoing propositions provide a foundation for generating a strong 
formulation susceptible to solution by available commercial branch-and-bound codes. 
In particular, the constraints (2)-(5)  can be incorporated into the model DDS2 as 
cutting planes. Also note that an inequality of the form Yoj < uj, j ~ N, is also a valid 
inequality to the problem DDS. Furthermore, by proposition 3, constraint (14) can 
be tightened as foj < Kyoj, and the constraints (15) and (16) can be tightened as 
follows: 

fjk + fkj <-(K-1)y jk ,  j < k ,  j, k E N .  
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Accordingly, we can obtain another equivalent formulation for the problem DDS 
by including all of these inequalities in model DDS2. Let us denote this model by 
model DDS4. 

DDS4: minimize ~ 2CijXij Jr 2 2 djkYj k "t- 2 bttj 
i~M j~N j~N j<k,k~N j~N 

subject to ~ x o  =1, i E M ,  
jeN 

Xij <_Uj, i � 9  j � 9  

Yjk  <-- u j ,  j < k, j, k �9 N, 

Yjk <-uk, J < k, j , k  �9 N, 

Yoj <-u j, j �9 N, 

2 ~.~ Yjk ---- ~.,Uj--1, 
j~N j<k,k~N j~N 

Y. fo j  = Y .u j ,  
j~N j~N 

foj- (h -fkj)--uj, j � 9  
kCj, k~N 

foj <- kYoj, J �9 N, 

fjk + fkj <-(K-1)yjk,  j < k ,  j , k � 9  

2 YOj = 1, 
j~N 

Xij >--0, 

fjk >_0, 
Uj E {0,1}, 

Yjk �9 {0, 1}, 
Remark 4 

It can easily be proved that if ~jeNUj >_ 3, then there exists an optimal 
solution to the problem DDS which satisfies the following inequality: 

2 Yq + ~_. Yjk > 2yoj, j �9 N. (18) 
l<j,l~N j<k,k~N 

Note that constraints (7), (8), (9) and (18) can be utilized to strengthen the formulation 
for the case when 2 j  ~ N uj ~ 3. This observation motivates the following two-step 
solution procedure for problem DDS. 

Step 1 {Enumeration Phase}: Find the minimum solution by enumerating the feasible 
solution of problem DDS for the cases where ~jeN uj = 1 and ~.jeN uj = 2. 

i E M ,  j E N ,  

jC:k,  j E N u { 0 } ,  k E N ,  

j e N ,  

j < k ,  j e N u { 0 } ,  k E N .  
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Step 2 {Optimization Phase}: Solve the augmented model, called DDS4E, which is 
obtained by adding the constraints (7), (8), (9) and (18) to model DDS4. Then, 
compare the solutions of step 1 and step 2, and so generate the optimal solution to 
problem DDS. 

3. Computational results 

In this section, we report on our computational results using a set of suitable 
real-world test problems in order to evaluate the relative strength of the models 
developed in section 2. Toward this end, we examine three models, DDS2, DDS4 
and DDS4E, over ten real-data problems. We use the CPLEX/MIP package [7] to 
solve the LP relaxation of these models and to find the optimal solution of the test 
problems. All the reported computation times include model generation time and 
run time on a SUN SPARC station 2. In all the test problems, the fixed charge cost 
assosiated with each hub is b = $41.00, and the connection cost consists of two 
parts, a fixed cost and a unit cost per mile, as shown in table 1. 

Table I 

Connection cost of test problems. 

Mileage Fixed cost Unit cost per mile 
($) ($) 

0 30.00 0.00 

1 - 15 1 2 5 . 0 0  1 .20  

16- 1000 130.00 1.50 

The number of hubs in the problem is either n = 10 or n = 20, while the 
numbers of target nodes are m = 10, 15, 20, 25 and 30, respectively. Table 2 shows 
the problem sizes corresponding to the foregoing three models. 

In the computational experiments, we examine the CPU time and also the 
tightness of the LP solution (table 3) measured by the ratio of v(P)/v(P), which is 
the relative gap between the optimal LP solution and the optimal integer solution. 
Table 3 shows the superiority of DDS4E over DDS4 and DDS2 in providing a tight 
lower bound for the test problem. In all the test problems, the optimal solution has 
at least three active hubs. The CPU time for the enumeration phase in the two-step 
procedure using model DDS4E is less than 0.5 second in all the cases. The results 
indicate that DDS4E generates a much tighter lower bound (LP solution), solution 
bounds (always over 98%), and runs much faster than DDS4, especially for large 
size problems, while model DDS2 is practically unsolvable for large size problems 
such as problems 3-10 .  In particular, it also shows that valid inequalities and 
cutting planes (7), (8), (9) and (18) in model DDS4E play a key role in providing 
effectively tight lower bounds for the test problems. 
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Table 3 

Computational results of test problems. 

DDS2 DDS4 DDS4E 

Problem (m, n) Ratio CPU time Ratio CPU time Ratio CPU time 
(%) (min) (%) (min) (%) (min) 

Problem 1 (10,10) 67.2 964.4 86.6 0.7 98.6 0.04 

Problem 2 (15,10) 72.3 4853.4 89.1 1.4 98.5 0.1 

Problem 3 (20,10) 77.5 >> 14000 91.6 1.9 98.3 0.2 

Problem 4 (25,10) 79.8 >> 14000 92.9 4.3 98.7 0.3 

Problem 5 (30,10) 80.0 >> 14000 93.6 13.7 98.7 0.5 

Problem 6 (10,20) 65.4 >> 40000 85.1 100.8 98.3 0.6 

Problem 7 (15,20) 69.5 >>40000 88.4 16.8 98.3 0.7 

Problem 8 (20,20) 70.4 >> 40000 91.1 357.1 98.3 1.1 

Problem 9 (25,20) 71.9 >> 40000 93.7 405.9 98.3 1.3 

Problem 10 (30,20) 70.2 >> 40000 93.1 30415.0 98.5 7.0 

4. Concluding remarks 

This paper has presented several mixed zero-one integer programming 
formulations for a digital data service network design problem (DDS) and has incorporated 
some classes of valid inequalities and cutting planes for strengthening these formu- 
lations. Especially the strong formulation DDS4E generates a very tight lower bound 
and so finds an optimal solution within an effort that is well within acceptable time 
standards for practitioners. In particular, the lower bounds obtained by solving LP 
relaxation of the model DDS4E are over 98% of the optimality for the test problems. 
These strong formulations can be naturally extended for cases where the fixed charge 
is negative and/or depends on the location of the hubs. The facial structure (facets 
and strong valid inequalities) of the problem DDS appears to be a viable candidate 
to be further studied in the framework of a suitable branch-and-cut procedure. 
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