
Journal of the Oceanographical Society of Japan 
Vol. 33, pp. 207 to 218, 1977 

A Numerical  Study on the Tidal Residual  Flow* 

Yukio OONISHI** 

Abstract: A fundamental mechanism of generation of the tidal residual flow, the steady or 
quasi-steady flow induced in the tidal current system, is studied by numerical methods. The 
model basin is a very simple one, a rectangular basin of 5 mx 10 m of constant depth and 
with a cape of 4 m length jutting out at a right angle from the center of the longer side wall. 
This basin has the same topography as that studied by YANAGI (1976)by means of the 
hydraulic model experiments. 

The steady, circular, horizontal current is found to be induced through the following 
processes. Horizontal friction at the coast makes the vorticity of vertical component in the 
oscillating flow. Self-interaction of this flow causes the vorticity transfer to the steady flow 
in frequency domain. This vorticity transfer is confined in the narrow coastal boundary 
layer. The steady flow advects the transferred vorticity and makes itself develop fully wide 
over the bay. In other words, there are two kinds of 'cascade-up', one with regard to time 
scale and the other with regard to horizontal space scale. 

When the tidal range, the tidal period and the horizontal eddy viscosity change under 
the condition that the model geometry is fixed, the nondimensional parameter which controlls 
the steady flow is found to be the Reynolds number of the oscillating flow. 

1. Introduction 
In  a coastal current system, as is well known,  

there are currents which have time scales longer 
than the period of the principal diurnal or semi- 
diurnal tide. "Constant  flow" or "constant  
current"  is the general term for these currents. 
The  studies on these currents are not so advanced 
as compared with the studies on tide or the 
current  of the tidal period (hereafter denoted 
by the tidal flows, or ' T F '  in this paper). The 
first reason for this is that the coastal currents 
have been studied mainly from the view point 

of safe navigations and tide preventions. Next 
reason is that the tidal flows are so prominent 
in inland seas and bays that it is difficult to 
measure the weak constant flows accurately. 
Another  reason is that constant flows involve 
the flows generated by various mechanisms 
which can not be easily identified quantitatively. 

Recently. the long-term variations of the 
distribution~ of materials in inland seas or bays 
have become an important problem in relation 
to the sea polution. In  this situation, hydraulic 
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model experimentalists paid attention to the 
effective dispersions of materials due to the 
steady flows induced in their models by the 
tide (e.g. HIGUCHI and YANAGI, 1974). The 
term "tidal residual flow" (hereafter denoted 
by ' T R F '  in this paper) is given to this flow, 
which is induced in their hydraulic models by 
T F  itself independently of the heat effects, the 
wind stress and the inflows from the outer 
seas. Results of observations in the actual seas 
have suggested that there are flows similar to 
T R F  observed in the hydraulic model ClrAMADA 
and YANO, 1971), and T R F  is now considered 
as an important component of the constant 
flows. 

There are many problems to be studied on 
TRF.  The first is how much this flow accounts 
for in the constant flows observed in the actual 
seas. The second is by what mechanism T R F  
is generated. The third is how T R F  depends 
on the parameters such as viscosity, tidal range 
and so on. 

In  the situation that the estimation of T R F  
in the observed constant flows can not be made 
well, the direct comparison of the flows in 
numerical models and the observed flhws is not 
a good way to study TRF.  One of the ways 
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out of the difficulty may be a mutual  compari- 
son of results obtained in a numerical model 
with those in a hydraulic model. If the numeri- 
cal model is designed well in simulating the 
phenemena observed in the hydraulic model and 
the generation mechanism of T R F  is under- 
stood, the method of calculation used in it may 
be useful in the simulation of the actual TRF.  

It  is now considered that  large part of the 
actual T R F  is generated in relation to the 
coastal geometry  and 'nonlinear  effect' (YAMADA 
and YANO, 1971; SUGIMOTO, 1975), but the 
detailed mechanisms have not been found. So, 
it is better  to investigate T R F  in a model 
having a simple coastal geometry  than compli- 
cated models represent ing those of the actual 
seas. F rom this view point, YANAGI (1976) 
studied the generat ion process of T R F  by a 
hydraulic exper iment  in a model having a simple 
geometry  as shown in Fig. 1. An  example of 
T R F  in the  model of YANAGI (1976) is shown 
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Fig. 1. The model basin (the same as that studied 
by YANAGI (1976)), of L=5  m, l= 1 m, l '=  14 cm. 
The water level oscillation is given at the open 
boundary by a tide generator in tee case of 
YANAGi, but is prescribed numerically in the 
case of the present study. 

in Fig. 2. I t  is seen that  the flow is a c ircular  
current ,  and spreads fully wide over the bay. 

The  purpose of the present numerical  s tudy 
is to clarify the meanings of the word 'non- 
linear effect' on the generation of T R F  and 
the dependence of T R F  on two parameters ,  i.e. 
the tidal range and the horizontal eddy viscocity. 
This study has been performed parallel to the  
s tudy of YANAGI (1976) and the model  sea of 
the same topography is t reated by method of 
the numerical  study. Calculations are performed 
by the finite difference method with 35x70, 
meshes shown in Fig. 1. 

2.  P r e l i m i n a r y  a n a l y s i s  

2.1. The  basic equations and the parameters  
The vertically averaged,  horizontally two- 

dimensional equations are used. The  basic 
equations are wri t ten as follows, 

Ou* Ou* , Ou* 

Ot----Z-.. + u* ~x* + v~ 6y ~' 

= - g~x'- '  ~- ,o,~z~h" u ~ ~ - ' c . * / ( h *  + ~ : )  (1) 

Or* . Ov* v ,  Ov* + u ~  + 
St* Oy* 

= - g o ~ j , + , ~ d ~ * z , * + v v * / ( h * + ~ * )  ( 2 )  

O~* O 
Ot~: + ~  {(h*+~*)u*} 

O 
+-~-=., {(h* + ~*)~*} =0 ( 3 ) 
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Fig. 2. Residual flow pattern after YANAGI 
(1976), the same figure as Fig. 6 in his paper 
except that the nondimensional magnitude of 
the velocity is written in the figure for the 
mutual comparison with the results of the 
numerical model. 

where (x*, y*) is the horizontal orthogonal co- 
ordinate system shown in Fig. 1, (u*,v*) the  
vertically averaged horizontal velocity in (x*, y*) 
direction, m~ the coefficient of the horizontal 
eddy viscosity which represents  the diffusing 
effects of eddies smaller than the mesh size, {* 
the surface elevation, (v,*,v~*) the bot tom 
stress in (x* ,y*)  direction and h* the mean 
depth which is assumed to be constant in this 
study. To match the condition of the present  
s tudy to that  of the hydraulic model, the 
Coriolis '  terms are not included. The  water  
motion is driven by the water  level oscillation 
of the tidal period T which is given on the open 
boundary shown in Fig. 1. 

T R F  in the Yanagi ' s  hydraulic model has  



A Numerical Study on the Tidal Residual Flow 209 

vorticity as clearly shown in Fig. 2. According 
to Helmholtz's theorem on vortex, this vorticity 
must be made by the viscous force. So in the 
numerical model, the vorticity should be made 
by the terms including ~ and/or (v~*, v~*). If 
the bottom stress in the model is taken to be 
linearly related to the average velocity (u*, v*) 
such as 

(v**, v~,*) = --(2'~h/h*)(u*, v*) ( 4 ) 

it can not make the vorticity of vertical com- 
ponent, because h* is constant. On the other 
hand, if the bottom stress is assumed that 

(v~*, vy*)= - r d  '/u*~+v~'~ v*) ( 5 ) 

as in the most of past studies on the tidal 
current system, it is able to make vorticity 
because of its nonlinear form. But up to 
now, it is not clear which of these forms is 
the better expression of the bottom stress in 
relation to the generation of TRF. In this 
study, the generation of TRF under the effects 
of the coastal geometry is treated and the 
effects of the bottom stress is neglected as the 
first approximation. 

Horizontal viscosity m, is so small that the 
terms including ~n have smaller values than 
other terms in Eqs. (1) and (2) except in the 
coastal oscillatory viscous boundary layer. The 
layer width vus{l' determined by the viscosity 
vh and the tidal period T is an important 
parameter. The magnitude of nonlinearity is 
determined by the magnitude of the velocity 
which is governed by the amplitude a* of the 
tide given at the open boundary. 

Based on these considerations, the basic 
equations (1)~(3) are made nondimensional as 
follows, 

Ou I Ou Ou \ O~ 

Ov / Ov Ov O~ 
+~ 0-~-)= -,~ ~ +Ezl~ (7)  

0~ + 0 ~ { ( l + ~ ) v } = 0  8 )  -G {(1 + ~).} + ( 

where 

u*=eLT- 'u ,  v*=eLT- ' v  ] 

t:*=eh*~, t*=Tt,  e=a*/h* 

and L is the horizontal scale of the bay shown 
in Fig. 1. As the basic oscillation of the water 
level is given uniform on the open boundary, 
the solution of Eqs. (6)~(8) is prescribed by 
three parameters r 2 and E. 

The parameter r defined as the ratio of the 
tidal amplitude to the depth of the bay is pro- 
portional to the Strauhal number; and represents 
the magnitude of nonlinearily. In the Yanagi's 
hydraulic model, a*=0.5cm, h*=10cm and 
e=0.05. Therefore, in this study, the range 
z=0.0125~0.1 is treated. The parameter E is 
the square of the ratio of the boundary layer 
width to the bay scale, and represents the 
magnitude of the viscous force. It is chosen 
in the range from 0.0001 to 0.01, which cor- 
responds to the range of vu from 0.07 to 7 cm2s -1 
with T = 6 m i n  and L = 5 m  in the hydraulic 
model. The parameter 2 is proportional to the 
square of the ratio of the tidal period to the 
fundamental period of the proper oscillation of 
the external gravity waves in the bay. It is 
taken to be 5,000, almost the same value as 
5,080 in the study of YANAGI (1976). Generally 
speaking, 2 is much larger than i in the most 
of inland seas or bays. 2 is not important on 
the generation of TRF so long as it is much 
larger than 1 (see Appendix 1). Therefore, the 
parameters controlling TRF are reduced to e 
and E. 

2.2. Analysis 
The tidal flow system is considered to consist 

of TF and TRF. In order to examine the 
generation mechanism of TRF, it is convenient 
tb separate the basic equation system into two 
parts governing TRF and TF. First, each of 
variables u, v and ~ is expressed as the sum 
of the time-independent part (TRF) with suffix 
s and the fluctuating part (TF) with suffix r 
such as 

u = us(x, y) + ur(x, 71, t) (10) 

Substituting u, v and ~ of the form of Eq. (10) 
into Eqs. (6)~(8) and taking the time average, 
the following Eqs. (11) and (12) are obtained, 

j" The Strauhal number is defined as UT/L where 
U is the order of magnitude of the tidal velocity. 
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where the over-bar denotes the time-average. 
Eqs. (11) and (12) express the dynamical 
balance in TRF and TF,  respectively. Eqs. 
(11) show that TRF is accelerated by the 
horizontal divergence of the Reynolds stress 

/ Our Our~ [ Ovr Ovr \~ 
s~ur-~x +vr -~y  ], S~ur--~-~x +vr-~--y ]] and 

the horizontal divergence of excess mass flux 

(e~rur, S~r~r). 
Excess mass flux can be one of the driving 

terms of TRF. It is caused by the fact that 
the phase lag between the tide and the tidal 
velocity differs from 90 ~ . This phase difference 
is caused by the viscosity and/or the bottom 
stress. Therefore, the effect of excess mass 
flux on TRF is important when the bottom 
stress have an effect on the tidal phase. HUNT 
and JOHNS (1963) investigated the case of this 
type. In their case, TRF has vertical shear 
and is characterized by the strong current con~ 
fined in the bottom viscous boundary layer. In 
the present study, however, TRF of the type 
discussed by them is not considered because 
the cases of small viscosity and small bottom 
stress is concerned and only the vertically 
averaged flow is concerned. Now, TRF can 
be treated approximately as a flow having no 
horizontal divergence. Therefore, TRF is pre- 
scribed by the vorticity equation. 

Eliminating the pressure terms from Eqs. 
(11) and (12), we obtain 

O=sFrr+sFss+EAoJs (13) 

where 

and 

O r 8  OU s 

Ox Oy 

O - -  O - -  
FTr= -- 7xx Urar-~-~.~ Vrar 

O O 
Fss=-OZT"s |  (14) 

Ocor = E ACOT + s Fsr (15) 
Ot 

where 

OVT BUr 
O.)T ~ - -  - -  

8x Oy 

Fs~ = - ~ (o2~ur)- (| 

o 
0x (COrUs)- (a, rvs) (16) 

Eqs. (13) and (15) express the vorticity balances 
of TRF  and TF,  respectively. There are three 
nonlinear terms, Frr,  Fss and Fsr. The term 
Fr r  expresses the nonlinear vorticity transfer 
from T F  to TRF, or a kind of 'cascade-up' of 
the vorticity in frequency domain. The physical 
meaning of F:,r is as follows: Suppose, for 
example, that the vorticity of TF  is positive 
and the direction of its velocity is eastwards 
in the phase of rising tide (ur>0,  cot>0, 
.'. urcor>0). In the ebbing tide, the vorticity 
must be negative and the direction is westwards 
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(ur<0,  coT<0, .'. UrC0r>0). Consequently there 
must be left the eastwards net vorticity flux 
during one tidal period (i.e. urCor>0). The 
divergence of this net vorticity flux is expressed 
by the term FTT. The term Fss expresses the 
re-distribution of the vorticity of TRF  by the 
advection of TRF  itself. Eqs. (13) and (15) are 
coupled through the nonlinear term Fsr. In 
the following sections, the generation mechanism 
of TRF  is investigated based on these vorticity 
e:tuations. 

3. The asymptotic solutions in the limit of  
~--~0 
In this section, the asymptotic solution in the 

limit of weak nonlinearity (s--~0) is considered 
as the first step. The variables are in the 
following orders of magnitude on s, i.e. UT = O(1), 
vr=O(1) ,  coT=O(1). Substituting these into 
the expressions of Err ,  Fss and Fsr in Eqs. (14) 
and (16), it is found that us=O(e), vs=O(a), 
OJs=O@), FTT=O(1), Fss=O(s 2) and Fsr=O@). 
Therefore, the lowest order equations on r are 
obtained as follows, 

0 = SFTT + EAcos (17) 

and 

0C0r 
- -  EAcoT (18) 

Ot 

Eq. (17) expresses that the transferred vorticity 
from TF  to TRF balances locally with the 
viscous dissipation of the vorticity of TRF; 
Eq. (18) expresses that the vorticity of TF is 
generated by the horizontal viscous stress. 

Now, let us examine the distribution of FTT 
for small value of E. Based on Eq. (18), the 
solution for TF  must consist of the irrotational 
interior solution, which is independent of E, and 
the viscous correction (g, 3)=(0~/Oy, -O~,lOx), 
which decays exponentially from the coast into 
the interior region. Taking the coordinates e 
and 7] such that they are normal and parallel 
to the coast line, respectively, the equation 
and the boundary conditions governing ~ are 
written as 

0 02~ 04~ 
at O~ 2 --E'0~4-- 

~=0 ,  -~R~[-g(r])e" ] at ~=0 

~--*0 as ~ c o  (19) 

where V(r/) is the irrotational velocity of TF  at 
the coast. Solution of Eq. (19) is 

1 + i  

From this solution, it is easily shown that F r r  
has large values only in the viscous boundary 
layer whose width is proportional to ~/~" and 
that it has the order of magnitude proportional 
to i / v ' E .  Therefore, the total vorticity trans- 
ferred per unit length of the coast line or the 
integral of Fr r  with respect to ~ approaches a 
non-zero value (independent of E) as E--~0. 

Numerical calculations are made for two 
finite values of E such that E=0.01 and E =  
0.001. First, TF  is obtained by solving Eq, 
(18) (see Appendix 2) and then FTT is calculated. 
Figs. 3a and h show Fr r  in cases of E=0.01 
and E=0.001, respectively. It  is seen that FTT 
is confined in a coastal boundary layer near the 
tip of the cape and that FrT is positive in the 
inner bay but is negative in the outer sea. 
This distribution of FTr originates from the 
coastal geometry of the cape. TRF is calculated 
from Eq. (17) (see Appendix 2) in both cases 
and is shown in Figs. 4a and b. 

According to the sign of FTT, the calculated 

(a) 

(b) 
J 

>1@ ...... <-104 

Fig. 3. Patterns of the vorticity transfer FrT 
in the limiting case of ~-~0, (a) with E=0.01, 
(b) with E=0.001. Contour interval is 5x104. 
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T R F  rotates anticlockwise in the inner bay and 
clockwise in the outer  sea. This  sense of 
rotation is consistent with that  of the hydraulic 
model exper iment  (Fig. 2). The  pat terns  of 
T R F  in the present  model, however,  do not 
resemble well to those in the hydraulic model, 
i.e. the center  of the vortex in the numerical  
model is closer to the tip of the cape than that  
in the hydraulic model. Confinement of the 
calculated flow in the neighbourhood of the tip 
is the direct reflection of the distribution of F r r ,  
because Fr~, locally balances with the viscous 
dissipation te rm in the limit of e---,0. 

4. Cases of finite amplitude 
It  is considered that  the main discrepancy 

between the results in the numerical  model 
mentioned above (the case of s--~0) and those 
in the hydraulic model, is a t t r ibuted to the  
finiteness of e. The  terms Fss and Fsr are 
both the  second-order quantities on s in Eqs. 

(a) 

, f  

, 
i I 
J 

(b) 

L 
Fig. 4. Calculated patterns of TRF in the limiting 

case of s~0, where (a) and (b) correspond to 
Fig. 3a and b, respectively. 
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L, ' ~ i  ~ ,, 

(b) ~:=0.1 E=3xl() 3 Re=1000 

~ x  '1 I 

O ~ ' ~ - " J l  t~' i l~-~i ~,~ ' - -  . -  

(c)~=0.075 E=103 Re=-2250 

(d)~=0.1 E=I03 Re=3000 

\ \ ,  

z ,~ ,~-- 2 , \ , .  

} 6 i 

/ ;It 

(e) ~=0.05 E=104 Re=15000 

Fig. 5. Patterns of TRF by the primitive method for various 
combinations of two parameters ~ and E. 
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(13) and (15), respectively. As seen in these 
equations, Fsr  would affect T F  and so vary 
Frr via TF. If F r r  would spread fully wide 
over the bay under the effect of Fsr, T R F  
would do so. On the other hand, Fss directly 
affects TRF.  The  question is which is the 
more effective of these two terms Fsr and Fss. 

To solve this problem, the time integration 
of Eqs. (6)~(8) are performed by the primitive 
method (see Appendix 2). Since no separation 
of T F  and T R F  is made in this method, they 
are separated later by averaging the calculated 
flow with time over one tidal period. Starting 
from the state of rest, T RF  approaches a steady 
state in 4 ~  20 tidal periods, whose length depends 
on the values of the parameters. The resulting 
patterns of T R F  are shown in Fig. 5. Numerals 
in the figures denote the magnitudes of the 
nondimensional velocities. In the case of Fig. 
5a, the flow pattern resembles that in the 
previous case of the limit of e---*0, but in other 
cases of Fig. 5c~e ,  the flow develops fully wide 
over the bay as that in the hydraulic model. 
Discussions on this difference in the flow pattern 
will be made later. Now, let us examine the 
vorticity balance of TRF.  For example, distri- 
bution of Frr, Fss and the viscous dissipation 
term (E/~)Acos in the case corresponding to Fig. 
5c are shown in Figs. 6a, b and c, respectively. 
In the case of the finite amplitude as well as 
in the case of the limit of ~--,0, Frr is large 
only in the neighbourhood of the tip of the 
cape. As shown in Fig. 6b, the advection term 
Fss has the opposite sign to F r r  and the similar 
absolute value to it. Fig. 6c shows that the 
vorticity of T R F  is dissipated on the surrounding 
coast of the bay. As seen from the distri- 
bution of F r r  in Fig. 6a, the development of 
T R F  fully wide over the bay is not caused by 
the wide spreading of the large value of FTT 
over the bay. The transferred vorticity is not 
d_issipated locally, but advected to the coast of 
the inner bay, and dissipated there. Thus the 
full development ig attained. 

The  distributions of F r r  for all cases are 
shown in Fig. 7. In some cases, e.g. Fig. 7e, 
Frr shows rather complicated pattern. But the 
fact that it has two peaks in the neighbourhood 
of the tip of the cape is preserved as in the 
limiting dase of ~--*0. It implies that the inter- 
action term Fsr is not so important even in the 

(a) 

';<-1o' 

: . . . /  

(b) 

~!<-,0' 

(c) 

~] <-3x10 s 

v 

! 
Fig. 6. The balance of terms in TRF, where 

(a), (b) and (c) show Fvr, Fss (contour intervals 
are both 5x 10'1), and (E/*)d~os (contour interval 
3• and contours for zero-value excluded), 
respectively. 

case of finite amplitude, and that Fss must be 
essentially important to the wide spreading of 
TRF.  

Let us examine this idea by solving the 
vorticity equations neglecting the interaction 
term Fsr, i.e. by solving Eqs. (13) and (17). 
As Reynolds number R d  is proportional to s /E,  

The nondimensional velocity u.~r of TF at the 
mouth of the bay is determined as u.u=2zrS/l 
with the area S of the bay and the width l of 
the mouth. In this study, u.u is about 30 with 
S=1 and l=0.2. Using u.u, the scale of the bay 
L and the horizontal viscosity ~h, Reynolds number 
R~ is written as Re = (su.uLT-l)L/'-~ and therefore 
as Re=u.us/E. 
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Fig. 7. Patterns of Frr corresponding to 
Fig. 5, where contour interval is 5• l04. 
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Eq. (13) is rewritten as 

O= Frr+ Fss+u.~Re-iAo)s (21) 

Now, a system of Eqs. (18) and (21) is to be 
solved and the basic parameters are two, i.e. E 
and R, .  It is, however, shown that the important 
parameter is only one, i.e. Re. 

When the viscosity parameter E varies, as 
shown in Figs. 3a and b, the distribution of Frr  
varies. In the case of the finite amplitude, 
however, the transferred vorticity is advected 
out of the viscous boundary layer. Therefore, 
changes of the distribution pattern of Fr r  are 
not important. Important is the integrated 
value of FTr over the boundary layer width. 
On the other hand, as shown in the previous 
section, this integral approaches a constant 
value in the limit of E~0.  From these facts, 
the parameter E is not important to determine 
TRF so long as E is small. 

Numerical calculations are made based on 
Eq. (21) (see Appendix 2) for several values of 
Re under the condition that F~-r is fixed to that 
shown in Fig. 3a for the case of E=0.001. The 
change of TRF pattern with Re is shown in 
Figs. 8a~f. In the case of R~=375, the center 
of the vortex is situated near the tip and the 
flow pattern resembles that of Re---,0 (s---,0) 
discussed in the last section. As Re becomes 
large to 750, the vortex pattern becomes to 
break up into two parts which have the opposite 
senses of rotation each other, In the case of 
/~=1,125, the center of the vortex appears in 
the interior region of the bay. When Re= 1,500, 
the flow spreads wide over the bay. As the 
horizontal content of the bay is limited, it is 
considered that the flow can not grow un- 
limetedly even if Re becomes larger~ In the 
case of Re=2,250 and 3,000, the flow intends to 
meander. It suggests that TRF may become 



A Numerical Study on the Tidal Residual Flow 215 

(o )  Re=-3 75 

p~ .o~ .ol .o, 

o z  o ~  z ] 

( b )  Re= 750 

1 .~ ~ .r .o .s 9 

/ 

. . . .  " f i b '  . . . . . . .  

11 os 

I I '9 0* D.4 

t o ,  o / ( 

(r Re= 1125 
2 6 a 

i " I " .  I 

(d)Re=1500 

(e) Re= 2250 

( f )  Re = 3000 

Fig. 8. The change of TRF pattern with Re, obtained by the method neglecting .Fs7'. 

unstable for the larger values of R~. Considering 
these facts, the value of Re between 1,125 and 
1,503 may be 'critical' to the condition whether 
T R F  spreads over the bay. Comparing Fig. 8 
and Fig. 5, it is seen that this change of T R F  
with Re explain well the change obtained by 
the primitive method. Now it is concluded 
that the spread of TRF  is controlled by the 
value of Re. 

Finally, the ratio K of the total kinetic energy 
of T R F  to that of T F  as a function of Re is 
shown in Fig. 9. Because the total kinetic 
energy of T F  oscillates with time, its maximum 
value with respect to time is taken as the 
denominator. It is seen from Fig. 9 that the 
kinetic energy of T R F  is larger than that of 
T F  for a Reynolds number larger than about 
1,000. It  seems that K(Re) becomes larger al- 
most monotonously with R~ except that it stag- 
nates near the 'critical' Reynolds number. The  
dimensional kinetic energy of T R F  is pro- 
portional to s"K(u,ve/E) and increases monoto- 
nously and more rapidly than that of T F  with 
the tidal range. 

5 . . . . . . . . . . .  i 
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Fig. 9. The ratio of the integrated kinetic energy 
of TRF to that of TF. The integrations are 
made over the inner bay. 

5. D i scuss ion  
The vorticity transfer FTT from T F  to T R F  

occurs in the narrow viscous boundary layer. 
This is a kind of 'cascade-up' with regard to 
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t ime  scale. The  fully wide spreading of T R F  
in the bay is attained by the advection of the 
vort ici ty of T R F  by T R F  itself. This  is also 
a kind of 'cascade-up'  with respect to space 
scale. These  two kinds of 'cascade-up '  are the 
contents  of the 'nonlinear effect' on the gener-  
ation of TRF .  Therefore ,  even if T R F  with 
a large horizontal scale is concerned, the process 
with small spatial scale (i.e. the generat ion of 
the vorticity in the boundary layer along the 
coast) are important  in its generat ion process. 
T h e  numerical  model of T R F  must have a small 
mesh size which can resolute this process, be- 
cause this process can not be parameterized by 
a so-called eddy viscosity. 

Viscosity plays two kinds of roles. One is a 
role in the generat ion of the vorticity of T F  in 
the boundary  layer. I t  should be noted that  
though this process is fundamental  in the gener- 
ation of T R F  itself the value of the viscosity 
coefficient is not necessarily important  in the 
generat ion.  The  width of the boundary layer 
and the s t rength of the shear of the velocity 
are proportional to ~/~h and 1/v'2)~, respectively. 
So, the total amount  of the  vort ici ty trans- 
ferred to T R F  does not so strongly depend on ,.2~. 

Viscosity has the other role as a dissipating 
factor in the vort ici ty balance in TRF .  Rey- 
nolds number  which prescribes this balance 
controlls the pat tern  and the s t rength of the 
s teady flow. In this study, the bot tom stress 
is not included. In an actual shallow sea near 
the coast, however,  the bottom friction may 
have a larger effect than the horizontal friction 
as a dissipating factor. In  such a case, Rey- 
nolds number  should be re-defined from the 
balance between the advective terms and the 
bot tom friction terms.  Corresponding to two 
expressions of the bot tom friction in Eqs. (5) 
and (4), Reynolds number  has two forms as 
R~= h*/(LTb 2) and R~=~uMh*2/(2~T), respec- 
tively. The  former is independent  of the non- 
dimensional tidal ampli tude e, while the lat ter  
is proport ional  to it. The  followings should be 
noted here:  
1: In the former case, the pat tern of T R F  
would not change with ~ but its energy would 
change proportional to e2. 
2. In the lat ter  case, the pat tern of T R F  
would change with e and the so-called power 
dependence of the kinetic energy on e may be 

larger than 2 as shown in Fig. 9. 
In any case, T R F  becomes s t ronger  with the 

tidal amplitude. F rom this reason, T R F  in the 
actual sea is not exactly steady, but it should 
have long-term variations corresponding to the 
ampli tude oscillation of the tide. 

The  bottom friction may induce a vertial  
shear in the flow. The  flow with the horizontal 
circulation and the vertical shear may induce 
the secondary vertical flow through a process 
which is analogous to the Ekman suction. 
These  problem will be investigated in the 
following paper. 
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Appendix 1 
If ,!, is much larger than 1, the variables are 

expressed as the power series of 1/2 as 

~ =~0~ + ( 1 )  ~(') + (1)2~c2) + . . . .  

Subst i tut ing u, v and ~ of the forms as this 
into Eqs. (6)~(8),  the following 0-th order  
equations are obtained,  
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~(0) 0Uo) autO) 0v(o) U0) 0~(0) 
0~ =-~-y =0, -g ;+  0-V= l+~qo) 0t 

0u(~ / o 0u(~ Ou(~ OUl)+Edur 

Ov(O) / Or(O) v(o)OV(~ 0~(1 ) 
+s tu (~  + 6y / -  ~y +EAr(~ 

These equations mean that the 0-th order surface 
elevation ~(0) is independent of x and y and 
that the divergence of the 0-th order velocity 
(u (~ v (~ is prescribed by ~r In other words, 
~(0) can be interpreted as a vertical displacement 
of a rigid lid over the sea. In this sense, this 
system is a kind of a 'rigid-lid' approximation. 
The parameter 2 does not appear in the resulting 
system, i.e. 2 does not work on the flow. 

A p p e n d i x  2 

1) The method for solving Eq. (18): 
The horizontal velocity (ur, vr) can be ex- 

pressed as follows 

ar 0r } 
, , ~=  - 7xx + ~-y 

vr = Oy Ox 

(A-l) 

where r and r are the velocity potential and 
the stream function, respectively. As 2 is much 

Our Ovr Ar larger than 1, the divergence -~--x d Oy 

is prescribed as a function of time only as shown 
in Appendix 1. If we consider the limiting 
case of s--,0, we obtain the following system 
of equations. 

Ar sin 2~t 

0cot 
At=--COT, --~-[-=EAcor 

with the boundary conditions as 

0r ar or 0r =o 
- 0 . - ~ -  + - -  = Oy Oy Ox 

at the coast 

c'r Or at the open boundary 
0x ~y 

(A-2) 

Because the system is linear, the solution is 
expressed as the forms 

(/,= r sin 2~t+r cos 2gt 

COT=CO, sin 2gt+CO2 cos 2gt (A-3) 

r162  sin 2~t 

Substituting Eqs. (A-3) into Eqs. (A-2), we 
obtain 

Ar = 2re 

Ar = - co,, 

- -  2 ~ : C O t  = EAco2, 

0r 9r 
Ox 8,y (A-4) 

_ 0r 0r 
8y Ox 

ar 0r or or 
Ox Oy Ox Oy 

at the open boundary 

Taking a usual finite difference versions of these 
equations, we obtain a system of simultaneous 
linear equations. The resuking system is solved 
by an iterative method. 

2) The method for solving Eq. (7) or Eq. (13): 
With the stream function Cs, us and vs can 

be expressed as 

Z • r  ~ --602 

2~2 = EI~ol 

Oy Ox 

- - = 0  at the coast 

aCs 0r 
l l S ~ - - ~ y  3 V S ~  OX 

Eq. (13) and the corresponding boundary con- 
dition are rewritten as 

a / or 0 / o9~\ 

= Frr+---E Acos 
s (A-5) 

ACs = -cos 

9r _ O@s =0 at the boundary 
0x ay 

When Eq. (17) is concerned, the left hand side 
of the first equation of (A-5) is neglected. Then 
the system is linear and it is solved by a similar 
method used to solve Eq. (18). When Eq. (13) 
is concerned, the first equation of (A-5) is 
replaced by 

0co  + 0 (cos _ 

= F r r  + E-~-Ao~s 
8 
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The resulting system is integrated with respect 
to time t by a finite difference method till the 
solution converges to a quasi-steady state. 

3) The method for solving Eqs. (6)~(8): 
Eqs. (6)~(8) and the boundary conditions are 

replaced by its finite difference versions, which 
is integrated with respect to time. The time 
integration is performed by a semi-implicit 
method. It is as follows. If  the variables at 
t=ndt is expressed with overscript n, e.g. u" 
etc., Eqs. (6)~(8) are transformed to 

ar  "+~ 0 r  , 
= _ a2 ~ _  (1_  a)2___O_~x + Edu,-1 

(A-6) 

2at + " [(l+e{~){au"+l 

+(l-a)u~-'}] +-g~ [(1+~ ~) 

x {av "+~ + ( 1 -  a )v"-q]  = 0  

These equations are solved with respect to 
u ~+~, v T M  and ~"+~ by an kerative method, and 
a step of time integration is performed. The  
time integration is made by continueing these 
steps. A comparison of the results with a : 0 . 5  
and a = 0 . 6  (in the case of s=0 .1  and E=0.001)  
showed that the results are similar each other 
but the latter result is a little smooth hori- 
zontally. The  other cases of the runs are per- 
formed under a=0 .6 .  The advantage of the 
method when c6>1/2 is that CPUt ime  is saved 
in the cases that 2 is much larger than 1 as 
the C-F-L's condition Zt<=6x ~/r~(Zx expresses 
the horizontal mesh size) with regard to the ex- 
ternal gravity waves is not necessarily satisfied. 

�9 ~ . ~ ; ~ . ~ ~ # _ ~ ,  
~606 ~.. ~ 2 ~  ,~, ~1  t #~ J 11 : ~ t ~ J  

l : _ ~ i g ~  ~ % o f ~ / ' ~  ~ t  70. ~_ �9169 ~1 ~}~ 


