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Effect of Stratification on Long Period Trapped 

Waves on the Shelf* 

Kinj i ro  KAJIURA** 

Abstract  : The effect of stratification on very long-period waves trapped on a straight continental 
shelf of constant depth is examined for a two-layer model. There are 4 modes in this system. 
The characteristics of the mode with the largest phase velocity can be approximated by the 
barotropic mode. The mode corresponding to the barotropic shelf-wave mode is modified by 
the baroclinic motions significantly, and in the limit of very narrow shelf width, the mode 
characteristics are transformed from those of the barotropic shelf-wave to the baroclinic Kelvin 
wave if the long-shore wave length is larger than the internal deformation radius. In this case, 
the stratification has an apparent effect of increasing phase velocity of barotropic shelf-waves. 
The remaining two modes are dominated by baroclinie motions with significant contribution 
from barotropic motions: among which the one has a shelf-wave characteristics for small values 
of the shelf width and approaches the mode corresponding to the baroclinic Kelvin wave in 
shallower water for large shelf width and the other is a stationary mode. If the long-shore wave 
length is much shorter than the internal, deformation radius, the motions in the upper and 
lower layers are decoupled: the surface and bottom modes analogous to those discussed by 
RI-mqEs (1970) appears. 

If the interface is deeper than the shelf depth, the stationary mode is absent and the 
characteristics of the third mode approaches those of the baroclinic double Kelvin wave mode 
as the shelf width increases. 

1. I n t r o d u c t i o n  

In  1971 the abnormal  rise of sea level along 
the Pacific coasts of Japan was observed after 
the passage of a typhoon (YosHIDA, SHOJI, and 
Masuzawa,  1972). Events  of this kind were  
not  uncommon  (ISOZAKI, 1972) and the sub- 
surface water  tempera ture  offshore often showed 
a marked  change accompanying  the sea level 
d is turbance  (SHOal, private communica t ion) .  
Since the sea level d is turbances  moved slowly 
to the west  with the phase speed of several  
meters  per second, the generat ion and propaga- 
t ion of a continental  shelf-wave (ROBINSON, 
1964) were considered to have played an im- 
por tant  role. Numer ica l  model  exper iments  
indicated that  the continental  shelf-wave was 
indeed genera ted  by a moving typhoon (ENDOH, 
1973). Even  in a two layer  model ,  the gener-  
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ated shelf-wave was hardly affected by the 
stratification, a l though the d is turbance  of the 
interface remained  for a long t ime behind the 
shelf-wave (StJGINOI-IARA, 1973). 

As  to the modification of shelf-wave charac- 
terist ics by the density stratification, MYSAK 
(1967) showed that  the densi ty stratification in 
deeper  water  increases the phase velocity of 
continental  shelf-waves significantly. On the 
other hand,  before  the concept of " she l f -wave"  
was advanced,  there  had been an a t tempt  to 
explain coastal sea level d is turbances ,  moving 
slowly clockwise a round  the Japanese Is lands  
(SHOJI, 1961) in terms of in ternal  Kelv in  waves 
(YOSHIDA, 1960; KAJIURA, 1962) with the em- 
phasis in the barocl inic  motions  genera ted  by 
the long-shore wind stress close to the coast. 
F r o m  somewhat  different point  of view, RIIINES 
(1970) discussed the mode waves on a sloping 
bot tom in a stably stratified ocean and indicated 
the impor tance  of a non-dimensional  pa ramete r  
B for low frequency waves:  (B=ND/(fL); 
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N, V~iis~il~i frequency; J,  Coriolis parameter; 
D, vertical scale; L, horizontal scale). The 
behavior of waves with small B is barotropic 
and the baroclinic motion becomes important 
for large B. In a two layer model of the 
ocean, the parameter B can be interpreted as 
the ratio of the Rossby's internal deformation 
radius to the horizontal scale of the wave. 
Therefore, the explanation of the slowly moving 
sea level disturbances in terms of the internal 
Kelvin wave may be valid only when the width 
of the varying depth near the coast is narrower 
than the internal deformation radius. 

In the present paper, a simple analysis is 
made on the mode characteristics of trapped 
waves in a two layer ocean with a shelf in 
order to clarify the relative importance of the 
barotropic and baroclinic motions in relation 
to the ratios of various length scales relevant 
in the problem. The depth on both sides of 
the shelf break is assumed constant and the 
interface is assumed either shallower or deeper 
than the shelf depth. Thus, in this model, the 
coupling of the barotropic and baroclinic mo- 
tions is possible only at the shelf break. There 
are 4(3) modes of trapped waves if the interface 
is shallower (deeper) than the shelf depth, and 
the characteristics of slowly moving shelf wave s 
are expected to be modified significantly. 

2. Formulation of the eigen-value problem 
Let us consider a straight shelf with the step 

type bottom topography and take the right- 
handed Cartesian co-ordinates as shown in 
Figure 1: the x-axis toward the open ocean 
with the origin at the shelf break and the z -  
axis positive upwards. The width and depth 
of the shelf is L and D, respectively. Assum- 
ing a two-layer fluid model, the quantities in 
the upper and lower homogeneous layers are 
distinguished by subscripts 1 and 2, respectively. 
Thus, Dt and Do are the layer thicknesses on 
the shelf. In the later discussions, the sub- 
scripts 1 and 2 are also used to denote the 
quantities related to barotropic and baroclinic 
motions, respectively. The quantities in deeper 
water are expressed by putting "dash" on the 
right shoulder. The relative density difference 
/1 in two layers is assumed very small (/.l= 

Fig. 1. Shelf topography and the 
co-ordinate system. 

(p2-pi)/p. ,_~--2• p is the density). 
The motion is assumed hydrostatic and non- 

dissipative. Then, under the usual linearizing 
assumptions, the motions of the barotropic and 
baroclinic modes are independent in the stably 
stratified ocean with constant depth. They are 
governed by the equation of the same type: 

(O2/6t"-+f"-+c~2f'2)R~ = 0 ( 2 . 1 )  

where t is time, U' is the two-dimensional 
(horizontal) Laplacian, R~ is the representative 
vertical displacement of each mode ( i ) ,  c~ is 
the representative velocity. For a two-layer 
fluid model, i=1  or 2 and within the error of 
O@) we have 

0 2 = g D ,  c.,_ 2 = t~gDtD., . /D ( 2 . 2 )  

with g the acceleration due to gravity. 
The x and y components ( U ,  V~) of the 

vertual volume transport vector U~ correspond- 
ing to R~ satisfy the following equations: 

( 02 / 3t2 + y~)  U~ = _ c~2@~- / 3tOx + f O / Oy ) R~ 

(2.3a) 

(32/3t  2 + f2 )V~  = - c~2(32/Ot3y - f 3 / 3 x ) R ~  

(2.3b) 

The actual surface and interface displacements 
~t, ~,2 can be expressed by 

~I=R~+t~(D2/D)2R ._  (2.4a) 

~2 = ( D 2 / D )  (R1 - R.,.) ( 2 . 4 b )  

(22) 



Effect of Stratification on Long Period Trapped Waves on the Shelf 273 

and the volume transport vector Q1 and Q.~ in 
the upper and lower layers are: 

Qt = (D~/D) Ut + (D2/D) [72 (2.5a) 

Q2 = (D2/D) (U~ - Uz) (2.5b) 

Exactly the same relationships from (2.1) to 
(2.5b) hold in deep water, provided that all 
relevant quantities are dashed. 

At the coastal boundary, no volume flux 
across the boundary exists. In terms of mode 
solutions, this condition requires 

U~=0 at x = - L  (2.6) 

The offshore boundary condition for very long 
distances from the shelf is 

R~'---~0 at x - , o o  (2.7) 

since we are concerned with trapped waves 
only. The boundary conditions at the shelf- 
edge are the continuity of vertical displacements 
at the surface and at the interface, together 
with the continuity of the volume fluxes across 
the shelf break in the upper and the lower 
layers, respectively. In terms of mode solutions 
with O(/~)neglected compared with 1, these 
conditions can be transformed to 

RJ  = R~-/~rr'(1 - f i r ' )R2 (2.8) 

R2' = (1 - r / r ' ) R t  + (r /r ' )Rz  (2.9) 

and 

U~'= U1 (2.10) 

U,_' = (1 - r / r ' )U l+  ( r / r ' )U2  (2.11) 

where r = Dz/D, r' = Dz'/D'. 
Assuming the sinusoidal wave motion trav- 

eling along the shelf 

R~ = Z~(x) exp [i(my+oJt)J (2.12) 

with m the positive wave number in the y -  
direction and w the angular frequency, (2.1) 
is transformed into 

d"-Z,/dx 2 - K,"-Z, = 0 (2.13) 

with 

K~2= (f2-co2)/cO--km" (2.14) 

Since we are concerned with the slowly 
moving long-period wave only, the wave period 
(2,-r/~o) is assumed considerably larger than the 
inertial period (2rr/f) and ((o/.f) 2 is neglected 
compared with unity. Thus, K, is independent 
of w. It is mentioned that for (mcdf)z ( (1 ,  K~ 
is the reciprocal of the Rossby's deformation 
radius L m ( = c J f ) .  

Now taking real and positive Kt and K~', we 
write the solutions to (2.13) as follows: 

Z~ = A4.(sinh K~x-ba~ cosh K~x) (2.15) 

Z/=B~ exp [ - K / x ~  (2.16) 

(2.16) automatically satisfies the condition 
(2.7),  and the condition (2.6) requires formally 
that 

( X , T , -  1)or, = (X, - T,) (2.17) 

where 

X~-- (wK~)/( fm) ,  T~=Tanh (K~L) (2.18) 

From (2.15) and (2.16), it is possible to 
classify the wave form in the x-direction, Z~, 
according to the values of a~. For ~ < 0 ,  IZ~l 
has the maximum at the coastal boundary and 
decreases offshore somewhat like the Kelvin 
wave. For a~=0, Z~ vanishes at the shell break 
so that Z~' is always zero. On the other hand, 
for ~ > 0 ,  [Z~l has local maxima at the coastal 
boundary and at the shelf break. In particular, 
for 0 < a i < l ,  Z~ changes sign on the shelf (shelf 
wave type) and, for a~>l ,  Z~ keeps the same 
sign throughout (double peak type). The case 
when a~=l  corresponds to a so-called "double 
Kelvin wave"  for which the vertical displace- 
ment decreases exponentially on both sides of 
the shelf break. 

Since ~ is determined by (2.17), the wave 
form can be found from the relative magnitude 
of Xi and Ti as follows: 

double peak type (a~>l) for X~>I/T~ 

Kelvin wave type (~i<0)  for 1/T~>X~>T~ 

shelf wave type (0<c~i<l)  for T i > X i  

double Kelvin wave type ( a t = l )  for 

T l = l  and X i # I  

(23) 



274 Kinjiro KAJIVRA 

For the case when T , = X , = I ,  a~ is indeter- 
minate in (2.17). However, this case corre- 
sponds to the ordinary Kelvin waves in shal- 
lower water. 

T h e  boundary conditions from (2.8) to (2.11) 
at the shelf break give after some manipula- 
tions: 

and 

auA1 +aizA2 = 0 (2.19) 

a,.tAl + a2=Ae = 0 

where 

an  = (1 - X / ) m -  ( D / D ' ) ( m + X ~ )  

(2.20) 

(2.21a) 

an=(1-Xe ' )az - ( r / r ' ) (ae-J -X~_)  (2.21b) 

an= - ( 1 - X / ) ~ * ~ ( r ' / r - 1 ) ~ e  (2.21c) 

a=l= - ( r ' / r - 1 ) [ ( a , + X , ) { p r ' ( 1 - r ) } - *  

- ( 1 - X 2 ' ) a , ]  (2.21d) 

In these equations, the following abbreviations 
are used. 

X /  = lc/X1, X2 t = Ic~'XI, and X2 = k,2Xl 

with 

k , ' = K / / K , ,  ke'=K2'/K~, and k2=K2/K,  

From (2.19) and (2.20), the characteristic 
equation is derived by putting 

[ana._,, a22a'z I=0  (2.22) 

Neglecting the term of O(ll 1/2) compared 
with 1, the dominant term in the mode coupl- 
ing can be approximated by 

a,  2a21--~ ( 1  - D / D ' )  (1  - r / r ' )  (1  - X / )  ( a ,  + X,)a2 

(2.23) 

If the coupling effect is completely neglected, 
a n  and a2_~ become the characteristic equations 
for the barotropic and baroclinic modes, respec- 
tively. It is noticed that a.,~ can be converted 
to an  by changing the parameters: 

( r / r ' )  --* ( D / D ' )  and (K2, Ko') --. (K, ,  K, ' )  

Thus, the mode characteristics are similar to 

each other. The main point in the present 
paper is the modification of these mode charac- 
teristics by the presence of coupling. 

By the substitution of (2.17) into (2.21a),  
(2.21b) and (2.23), (2.22) may be written in 
an explicit form: 

{(1 - X , ' ) ( X ~  - 7"1) - T~P~(Xt 2 - 1)} 

x {(1-x2 ' ) (x~-  T2) - T 2 P 2 ( X ? -  1)} 

- ( 1  - P , ) ( 1  - P 2 ) ( 1  - X , ' ) ( X ,  ~ - 1 )  

x ( X 2 -  T2)TI=O (2.24) 

where P I = D / D ' ,  and P2=r/r ' .  
It is immediately found that one root of 

(2.24) is zero. This shows the generation of 
a stationary wave mode by the coupling of 
barotropic and baroclinic motions. On the 
other hand, if (mc,//f)2<<l, we have k,,,o'>(k2') 2 
>>l_>(Ic/) 2 : (k22, (k.o')2~/l -*) and the interac- 
tion term in (2.24) may be neglected within 
the error of O(kz -1) for a solution X1 of O(1).  
Thus, the mode characteristics for XI>~O(1) 
can be approximated by those of the barotropic 
mode. 

From (2.4a),  the ratio ~ of the surface dis- 
placement at the shelf break due to the bar- 
oclinic motion to that of the barotropic motion 
is 

r=/tr~ at x = 0  

This can be transformed to 

1"= {P.,_/(1- Po)} { ( X / - 1 ) ( X t -  T~) 

+ T ,P , (X f -  - 1)} { ( X , -  T , ) ( X ~ ' -  1)} - '  

for X , # T , ,  X/-~-I  (2.25) 

It is noticed that }" is O(k2 -t) at most for the 
mode with X~>O(1), so that the baroclinic 
motion may be neglected. However,  the inter- 
face displacement near the shelf break may be 
governed by the baroclinic motion because Rz/  
RtNO@-W~ For small values of X~, r is of 
O(1) in general so that barotropic and baroclinic 
motions are equally important and ~'<0 for 
X I > T I  and r > 0  for X I < T , .  

3. M o d e  c h a r a c t e r i s t i c s  f o r  a h o m o g e n e o u s  f lu id  

Before going into discussions of mode charac- 
teristics for a two-layer fluid system, let us 

(24) 
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review the modes for a homogeneous fluid 
(see, for example, LARSEN, 1969). The charac- 
teristic equation is given by au=O or from 
(2.24) 

aXt2+bXt+c=O (3. la) 

where 

a=kt'+TtPt (3.1b) 

b= - ( l+Ttk t ' )  (3.1c) 

c=TI(1-P~) (3.1d) 

KtL >> I and a. Very large shelf width; 

T ~ - I  

Two roots of (3.1a) are 

Xt = I 1 
(3. 2a) 

[ (1-PI) / (k /+P~) (3.2b) 

Now, for the very large long-shore wave 
length, (c/m/f)2<(1, we have (kt')z=Pi and X1 
becomes the phase velocity cp of the mode 
relative to q.  Thus, we have 

1 (3.3a) 

c,,/q = Pi-X/~-( 1 -  py2) (3.3b) 

The former corresponds to the Kelvin wave on 
the shelf and the latter corresponds to the 
double Kelvin wave near the edge of the shelf 
(LONGUET-HIGGINS, 1968). The phase speed of 
the double Kelvin wave is faster or slower 
than the shallow-water Kelvin wave depending 
on the depth ratio Pt smaller or larger than 
1/4. 

For the very small long-shore wave lerYgth, 
(ctm/f)"->>l, we have kJ~-l, so that 

{ i (3.4a) 

~o/f= (I-P~)/(I+P~) (3.4b) 

The former is an apparent root which does not 
correspond to the reality unless the condition 
of Kelvin wave is satisfied. The latter corre- 
sponds to the non-divergent short wave length 
limit of the double Kelvin wave near the edge 
of the shelf (RHINES, 1969). 

b. Small shelf width; T~NK~L(<I 

In this approximation, (3.1a) may be reduced 
to 

X1 'z-  XI' + K/L(1  - P~) = 0 (3.5) 

and the two roots are approximated by 

l 1 - (1 - PI)KI'L (3.6a) 

Xt '  = [(1 - PI)Kt'L (3.6b) 

If (mcl'/f)2<<l, the first root corresponds to 
the deep-water Kelvin wave mode, and the 
second root is the shelf-wave derived by LARSEN 
(1969). Phase velocities of these waves are 
approximately 

I ct' (3.7a) 

cv = [fL(1 - P1) (3.7b) 

If (rnci/f)Z>>l, the former root reduces to oJ--f 
but the latter is unchanged. 

c. Very large wave length; (mctP/f)'~<<l 

In this case kln=P1 and the variation of 
phase velocity of each mode with respect to 
K1L can be studied by tracing the two roots of 
(3.1a) as shown in Figure 2. If P t < l / 4 ,  the 

10' 

I DID' = O . 0 5 ~ - - - - - - - - -  
-dK~ DKW 

-_~ . . . . .  o ~ _  
I 0 ~ - ~ -  . _ ~ _  sKW 

d- .- - - " ~ -  DKW 
~. / / /  

I0-'  

: /  

IC) z t i l l  I I I t [ 1 1  T 1 I I I I t l  

d'  IO ~ o' 
f L / c  l 

F ig .  2. Phase ve loc i ty  cp/cl as a func t ion  of  the 
shelf  w i d t h  f L / c l  fo r  the case of a homogeneous  
fluid with (mct'/f)2<<l. sKW: shallow-water 
Kelvin wave, dKW: deep-water Kelvin wave, 
DKW: double Kelvin wave, SW: shelf wave. 

(25) 
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deep-water Kelvin wave mode and the shelf- 
wave mode for small K,L are transformed into 
double Kelvin wave mode and shallow-water 
Kelvin wave mode, respectively, as K~L in- 
creases. If P ,>1 /4 ,  the opposite is true, because 
the phase velocity of the double Kelvin wave 
mode is smaller than that of the shallow-water 
Kelvin wave mode in this case. 

Completely analogous results are expected 
for the internal wave modes if the coupling of 
the barotropic and baroclinic motions is neg- 
lected. 

4. Mode characteristics in a two-layer fluid with 
the thickness of  the upper layer shallower 
than the shelf depth 

Taking the mode characteristics for a baro- 
tropic fluid into consideration, let us examine 
the modes for a two-layer fluid given by (2.24). 
At first, let us consider the case of the very 
large shelf width. H T~.~-I, X~_=I is a root 
and, furthermore, if Ti-~l, X1=1 is also a 
root. These roots correspond to the baroclinic 
and barotropic Kelvin wave modes in shallower 
water if (mcJf)2<(l and (mAll)~ respec- 
tively. In this case ( T I - *  1), the last root is 
given by 

X~ = ( 1 - P1) (P~I~ + k._O + (1 - P~) (1 + P~ k J )  
(P,  + k J)  ( t'~k~ + k2') + (1 - P~) ( i  - P.~) k l  

(4.1) 

which is reduced to (3.2b) when (mc.,'/f)2<<t. 
Since in general (2.24) is complicated, simpli- 

fied equations are derived for two cases of the 
long-shore wave length; (a) (mc.~/f)2>>l and 
(b) (mc:/ff<<l. The case (a) corresponds to 
the assumption of non-divergence of the baro- 
clinic motion as well as the barotropic motion. 
The case (b) gives the strong divergence of 
the baroclinic motion, so that the coupling of 
the motions in the upper and lower layers is 
large. 

(a) (mcSf)"->>l 
In this case, kl'=k2'=k.,.=l and Xi'=X2'= 

X~=Xi=o)/f. Therefore, (2.24) can be sim- 
plified to yield 

X K i - X ~ y - ( X ~ -  W) =0 (4.2) 

with 

W = To( l+  T D .  -P2(Te-  T~) - T, PtPKI+T2) 
(I + TO + B2( T2 - T~) + T,P~P~( I + T~) 

The roots of (4.2) are Xl=0 ,  1, and ~.V among 
which XI = 0 corresponds to the stationary mode 
and X~=I  is the inertial oscillation and only 
valid when the condition of Kelvin wave in 
shallower water is satisfied. The most interst- 
ing root is Xt =W.  

If T,, r e - ,  1, this root becomes 

X~= (1-P~P.2)/(I+P, P2) (4.3) 

and the wave forms of both the barotropic and 
baroclinic motions are of the double Kelvin 
wave type (a'~=l). Compared with (3.4b) for 
the purely barotropic case, it is seen that the 
frequency is increased by the presence of the 
stratification. Furthermore, the volume trans- 
port vector Ql in the upper layer given by 
(2.5a) reduces to zero since ( 1 - r ) U , = - r U e  
and the volume transport vector in the lower 
layer given by (2.5b) becomes Q~= Ul. Thus, 
the wave is analogous to the bottom wave 
discussed by RHINES (1970). This is in con- 
trast to the stationary mode (Xl=0) ,  in which 
the motion is confined in the upper layer only 
in the present approximation. 

If T~<<I and T2-~l, we have approximately 

X~= (1 -P2)/(I+P=,) (4.4) 

The wave forms of the barotropic and baroclinic 
motions are the Kelvin wave type and the 
double Kelvin wave type, respectively. Com- 
pared with (3.4b), it is found that Pi is replaced 
by P2, showing that the baroclinic motion is 
dominant. 

(b) (mc._,/f)2<<l 
In this case, we may safely assume the in- 

equality: 

k2 2, k2 '2 >> 1 ~ ki '~-, Ti, Te 

Therefore, the three roots besides zero can be 
determined approximately by the following 
characteristic equation within the error of 
O(kKi) :  

aXfl+bXl+cXl+d=O (4.5) 

where a and b are the same as (3.1b), (3.1c) 

(26) 
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and 

with 

[=c+P2-v2k2 -1 (4 .6a )  

d=-ke -2{k2T l (1 -P l )G  

+ T 2 ( 1 - P 2 ) ( I + T t k / P , ) H  -~} (4 .6b)  

G =  ( T 2 +  P.,_'/2)(I + T2P.,,'"~") - '  (4.6c) 

H =  P2~/2(1 + T.,P._, '/~ (4.6d) 

For  the large shelf width (K~L>>I),  we may 
put T~, T o N I  and the relative orders  of the 
coefficients in (4 .5 )  are 

a, b, c N O ( 1 )  and dNO(k.,-*) 

Therefore ,  the smallest  root  is approximated  by 

XL=k.,_ -l 

This corresponds to the baroclinic Kelvin wave 
mode in shal lower water.  The  remaining  two 
roots  are approximate ly  the same as for the 
homogeneous  fluid (3 .2a,  b) .  

On the other  hand,  for the small  shelf width 
(KIL<<I ) ,  we have 

k~TI=K,L<_I 

so that 

a, b ~ O ( 1 ) ,  c~O(ke-1), and d~O(k,2 -'~) 

In this case, the largest  root  is approximate ly  
the same as for the homogeneous  fluid (3 .6a ) :  
namely  the deep-water  Kelvin wave mode if 
(mct'/f)2<<l. The  remain ing  two roots  can be 
de te rmined  approximate ly  by 

X~3 - dX. + d '  = 0 (4 .7 )  

where  

c ' =  (K=.L)  (1  - P , )  + P._,- ' ~-" (4 .8a )  

d' = (K,L) (1 - P~)G + T.,(1 - P 0 H  -~ 

(4 .8b )  

In par t icular ,  if K2L<<I, two roots are  approx- 
imated by 

Pe- t/-~ (4 .9a )  

X2= {(Ko.L)(1-P,P,,) (4 .9b )  

The  former  corresponds to the baroclinic Kelv in  
wave mode in deep-water  (a . ,<0)  if (mc./ / f)  2 
<<1 and the lat ter  to the shelf-wave ( 0 < ~ r 2 < l )  
which is different from the barotropic shelf- 
wave mode (3 .6b) .  

The  variat ion of phase velocity of each mode 
with K2L is shown in F igure  3 by solving 
(4 .5)  numerica l ly  with (mct'/f)2<<l. Let us 
denote the modes given by three roots of (4 .5)  
as the first, second and third modes in the 
decreasing order  of the roots. The  first mode 
is then found to be almost  the same as the 
barotropic  mode provided that the barocl inie  
motion is also significant near  the shelf break.  
For  P 1 > 1 / 4 ,  the wave form of the barotropic  
motion varies from the Kelvin wave type to 
the double peak type and finally to the double 
Kelvin wave type as K1L increases from zero 
to infinity. The  accompanying wave form of 

-dKW I I DKW I 

0.1 I 

I s -KW I 

f f  = 0 .002 . ~  
D/D'= 0.05 / 

i O A  

_ 0 . 9  O . I  i 
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Fig. 3. Phase velocity cp/cz as a function of the 
shelf width fL/c2 for the case of a two-layer 
fluid with (mc,'/ffi<<l. Thickness of the upper 
layer is smaller than the shelf depth. Illustra- 
tions in the figure are the same as in Fig. 2, 
provided that 1 and 2 denote predominantly 
barotropic and barodinic characters, respectively. 
The difference of phase velocity of the second 
mode for large fL/c2 is an error introduced by 
the approximation in (4.5). True value should 
approach cp/c~=74.53 for the cases of D2/D= 
0.1 and 0.9. 
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~he baroclinic motion is of the double Kelvin 
wave type for K2L>>I. Near the shelf break, 
the interface disturbance is larger than the 
surface disturbance by O(k2). 

The second mode with the intermediate phase 
velocity is the most interesting. The barotropic 
wave-form changes from the Kelvin wave type 
to the shelf-wave type at X~=Tt  as KIL in- 
.creases from zero and approaches to the Kelvin 
wave in shallower water as KIL>>I. On the 
other hand, the wave-form of the baroclinic 
motion changes from the Kelvin wave type to 
the double peak type at k2X1T2=l as K2L in- 
creases and finally approaches the double Kelvin 
wave type for K2L>)I. For a moderate value 
of K iL  when the phase velocity of the second 
mode is close to that of the barotropic shelf- 
wave mode, the baroclinic motions are still 
important near the edge of the shelf. It may 
he noticed that the characteristics of the second 
mode shows an apparent effect of increasing 
phase velocity of the barotropic shelf-wave due 
to the presence of stratification. 

The third mode with the smallest phase 
velocity (X2<1) is predominantly of the baro- 
clinic nature with significant contribution from 
barotropic motions. The wave-forms of both 
the barotropic and baroclinic motions are of 
the shelf-wave type. With K 2 L - ,  oo, however, 
the baroclinic motion is confined near the coastal 
boundary as a Kelvin wave and the barotropic 
motion disappears. 

(c) Stationary wave mode: (XI=0)  

If we take the solution of the form (2.12) 
together with (2.15) and (2.16), it is straight- 
forward to derive the stream functions ~'~ and 
~F.. in the upper and lower layers satisfying 
(2.6) and (2.7) in the form: 

~F~ = (1 - r ) r  ri'2 (4 .10a)  

r = ~ ( r  08) (4.10b) 

with 

OJC= {(s inh K~x)/T~+cosh K~x} 
x exp [imy] (4.11a) 

where C is a constant. In deep water, all 
quantities in (4.10a) and (4.10b) are dashed 
and 

r = exp [ - K ( x + i m y ]  (4. l lb )  

It is easily seen that, if (mcJf)2>>l, namely 
when the divergence of the baroclinic motion 
is negligible, we have Kl= K2 = m .  Therefore, 
under the condition of mL>>l, we have T i = l ,  
01=~b2, and from (4.10b), the motion in the 
lower layer vanishes. Thus, we may call this 
mode a surface mode in contrast to a bottom 
made discussed in (a) of this section. 

It is mentioned that, since w=0, the flow is 
purely geostrophie and the solution is not 
ristricted to the form (4.11a, b). More general 
form of a stationary vortex can satisfy the 
boundary conditions (2.6) to (2.11). 

5. Mode characteristics in a fluid with two 
layers in deep water only 

Parallel arguments to Section 2 lead to the 
characteristic equation for a model with the 
two-layer in deeper water only: 

(X~ - T~) (1 - Xt k~') (1 - X, k2') 

- TI(X~ 2 - 1 ) (D/D' )  

x {(D~'/DI')(1 -XJc~')  + (1 -X~kJ ) }  = 0 

(5 .1)  

(a) (mc., '/f) 2 >> 1 

In this case, we have kJ, k2 '= l  and (5.1) 
reduces to 

( 1  - x , )  ~ { X ~ ( l +  T , P ~ )  - T ~ ( 1  - i%)} = 0 

(5 .2)  

where 

Pa = D / D I ' ~  1 

The root X1=1 is trivial and the i,nportant 
root is 

X I = T t ( 1 - P 3 ) / ( I + T ,  Pa) (5.3) 

Since XI<T~,  the motion on the shelf is of 
the shelf-wave type. For T t - ,  1, we arrive at 
the double Kelvin wave. The difference of 
this wave from the barotropic case (3.4b) is 
the replacement of P~ by P3: namely the actual 
depth of deeper water is replaced by the thick- 
ness of the upper layer. 

(b) (mc2'/f)2<<l 

In this case, we have k2''>>l>~kt '2, T~, and 
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(5 .1)  may be t ransformed to 

aX,a+bXl2+c*Xl+d*=O (5 .4 )  

within the error  of O(k2P-1). Here,  a and b 
are the same as (3.1b) and (3.1c), and 

c* = c + (k2')- 1 (5 .5a )  

d* = - T , (1  - P3)/k2' (5 .5b)  

For  a very large shelf when K1L>>I, we have 
T ~ = I  and the larger  two roots can be approxi- 
mated by the roots for the homogeneous  
fluid, (3 .3a ,  b).  The  smallest  root  is approxi- 
mated  by 

X~_'= (1 - .Pa)/(1 - P j )  ( 5 . 6 )  

This  root  corresponds to the double Kelv in  
wave mode ( a ' ~= l )  with the internal  Kelv in  
wave type in deeper  water .  

Fo r  a small  shelf width when Ir we 
have T~<<I and the largest  root  can be approxi-  
mated  by the corresponding root for the homo- 
geneous fluid (3 .6a ) .  The  smal ler  two roots 
are given by 

X o '-~ - { I + K e ' L ( 1  - P,)} X.,.,+Ko_'L(1 - Pa) = 0 

(5 .7 )  

If K._'Lr we have 

l, ;a8a  
X. '  = / ( 1  - Ps)K2'L (5 .8b)  

(5 .8a ,  b)  is s imilar  to (3 .6a ,  b)  and the larger  
root  corresponds to the deep-water  barocl inic  
Kelv in  wave mode and the smal ler  root  is the 
shelf-wave mode with the barocl inic  character  
dominat ing  in deep water .  

If  we put formal ly  Ka'L>>I, the larger  root 
of (5 .7 )  becomes 

X2~= (1 - P~)K,'L (5 .9 )  

Namely ,  the mode corresponding to the larger  
root  resembles  the barotropic  shelf-wave mode 
(3 .6b) .  The  increase of the phase velocity of 
a shelf-wave due to the effect of stratification 
discussed by MYSAK ( 1 9 6 7 ) i s  thus explained 
by the t ransi t ion of the predominant  mot ion of 
this mode f rom the barot ropic  shelf-wave mode 

to the baroclinic Kelvin  wave mode in deeper  
water  as the shelf width decreases ( K 2 ' L N I ) .  
He apparent ly missed the baroclinic shel f -wave 
mode of much slower phase velocity (5 .8b) .  

It should be noticed that, as / 8 - "  1, the 
smallest  root  approaches zero; in other words  
the stat ionary mode is a l imit ing case of the 
mode corresponding to the smallest  root  in the 
present  model  as D / D / - ,  1. 

The  variat ion of phase velocity of each mode 
with K,JL is shown in F igure  4, by solving 
(5 .4)  numerical ly .  I t  is seen that the mode 
with the smallest  phase velocity resembles  the 
shelf-wave mode for  small  K2'L and the baro- 
clinic double Kelv in  wave mode as K,#L in- 
creases. On the other hand,  the mode corre- 
sponding to the deep-water  baroclinic Kelvin  
wave mode for  small  K2'L is t rans formed to 
the mode corresponding to the barotropic  shelf-  
wave mode and finally to the shal low-water  
Kelvin  wave mode (or  barotropic double Kelv in  
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Fig. 4. Phase velocity cp/c2' as a function o~ the 
shelf width fL/c2' for the case of a two-layer 
fluid with (mc//ffi(<l. Thickness of the upper 
layer is larger than the shelf depth. Illustra- 
tions in the figure are the same as in Figs. 2 
and 3. The difference of phase velocity of the 
second mode for large fL/c2' is an error intro- 
duced by the approximation in (5.4). True 
value should approach cp/c~'= 16.67 for the cases 
of D2'/D'=O. 1 and 0.9. 
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mode if  D/D'<I/4) as KdL increases.  

6. Conclusions 
The characteris t ics  of  the t rapped modes in 

a two-layer  shelf  model  are examined.  The  
re la t ive  order  of var ious  scales:  the long-shore 
wave length, the Rossby 's  deformat ion  radius  
and the shelf  width,  are crucial to de termine  
the characterist ics  of various modes.  The  varia- 
t ion of the phase velocity of each mode with 
the increase of  the shelf  width is shown in 
F igures  3 and 4, for  a very large long-shore 
wave-length.  The  shelf -wave mode splits into 
two parts near  fL /c2~l  or 2 by the presence 
of  stratification. Wi th  the decrease of  the shelf  
width the barotropic  shelf-wave mode is trans- 
fo rmed  into the deep-water  barocl inic Kelvin 
wave mode and the shelf -wave mode fo rmed  
by the combinat ion of  the barotropic  and 
baroclinic motions with much smal ler  phase 
velocity appears.  

I f  the interface of the two fluid layers  is 
shal lower  than the shelf  depth,  a s ta t ionary 
mode is possible, and for  large shelf  width the 
double  Kelv in  wave mode of  barocl inic  nature  
does not exist. I f  (mc.,/f)2>>l and (mL)2>>l,  
the s ta t ionary wave mode and the shel f -wave 
mode become the sur face  mode and the bot tom 
mode,  respectively,  where  the motion is con- 
fined ei ther  in the surface  or bot tom layer  
only. 

I f  the interface is deeper  than the shelf  depth,  
the shelf -wave of the baroclinic character  in 
deeper  water  exists for  small  shelf  width.  In  
contrast ,  the barotropic  shel f -wave mode is 
t r ans fo rmed  with the decrease  of  the shelf  
width into deep water  barocl inic  Kelv in  wave 
mode near  f L / c d ~ l  or 2, so that the phase 
velocity of this mode apparent ly  increases  by 
the presence of  stratification. Fo r  large shelf  
width,  two double  Kelv in  wave modes  appear  
with barot ropic  or barocl inic  characters  in 
deeper  water ,  respect ively.  

The  present  model  is admi t ted ly  too s imple 
to unders tand  ful ly  the mode character is t ics  of 
t rapped waves in a real  ocean. The  inclusion 
of  the depth var ia t ion  on the shelf  would com- 
plicate the coupl ing of  the barot ropic  and 
barocl in ic  motions,  because of  the presence of  

shelf-waves of  higher  modes.  However ,  if the 
slope on the shelf  is small ,  the coupling of two 
kinds of  motions on the shelf  may be safely 
neglected if the Rossby ' s  internal  deformat ion  
radius  is much smal ler  than the horizontal  scale 
of  the wave. The  existence of  the rapid varia- 
tion of the depth at the shelf  break is consid- 
ered to be the essential  factor  causing the 
coupling, so that the present  model  may be 
justfied with respect  to the quali tat ive nature  
of  mode characterist ics.  
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