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We show that the pseudotensors of Einstein, Tolman, Landau and Lif- 
shitz, Papapetrou, and Weinberg essentially coincide for any Kerr-Schild 
metric if calculations are carried out in Kerr-Schild Cartesian coordi- 
nates. This generalizes a previous result by Giirses and Giirsey that 
dealt only with the pseudotensors of Einstein and Landau-Lifshitz. We 
compute exactly the energy and angular momentum distributions for the 
Kerr-Newman metric in Kerr-Schild Cartesian coordinates and compare 
the results with those obtained by using different definitions of quasi- 
local mass, which unlike pseudotensors do not agree for all Kerr-Schild 
metrics. 

KEY WORDS : Energy pseudotensors ; Kerr-Schild black holes 

1. I N T R O D U C T I O N  

Following the  ene rgy -momen tum pseudotensor of Einstein,  a plethora of 
definitions for energy, momen tum,  and angular  m o m e n t u m  of a general 
relativistic sys tem has been proposed by many  authors  (see Ref. 1). To 
use the  pseudotensors  of Einstein,  Tolman,  and Landau  and Lifshitz one is 
restricted to quasi-Minkowskian coordinates (Ref. 2, Ref. 3, p.227, Ref. 4, 
p.280). Mr [2], arguing tha t  to single out  a part icular  coordinate system 
is not  sat isfactory from the general relativistic point  of view, constructed 
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a new energy-momentum pseudotensor and claimed that  with it one was 
not constrained to use asymptotically Minkowskian coordinates. However, 
three years later, M~ller observed a serious drawback of his prescription 
[5], i.e., the total  energy-momentum vector of a closed physical system is 
not a Lorentz four-vector. Thus, Meller's a t tempt to give a coordinate- 
independent definition for energy calculations failed and therefore we will 
not discuss Meller's pseudotensor any more in this paper. M~ller's further 
effort was also not successful (see l~f.  6). Komar [7] and many others (see 
Ref. 1) proposed coordinate independent definitions of energy. Bergqvist 
[8] considered several different definitions of quasi-local mass and found 
that  not any two of them give the same result for the Reissner-NordstrSm 
(RN) and Kerr spacetimes. Despite these problems there has been consid- 
erable interest in this subject in recent years (see Refs. 9,10, and references 
therein). 

One of the present authors (Virbhadra, referred to as KSV hereafter) 
[11] showed that,  up to the third order of the rotation parameter, the 
pseudotensors of Einstein, Tolman, and Landau-Lifshitz (ETLL) give the 
same and reasonable energy distribution in the Kerr-Newman (KN) field 
when calculations are carried out in Kerr-Schild (Ks) Cartesian coordi- 
nates. Cooperstock and Richardson [12] extended the energy calculations 
up to the seventh order of the rotation parameter and found that  the 
pseudotensors of ETLL give the same energy distribution for the KN met- 
ric. Moreover, their result supported the conjecture of KSV that  there is 
no energy associated with the exterior of the Kerr black hole. Later on 
KSV [13] showed that  the pseudotensors of ETLL yield the same energy 
and energy current density components for the Vaidya metric. Recently 
two of the present authors (Chamorro and KSV) [14] obtained the energy 
distribution in the Bonnor-Vaidya (BY) spacetime in the prescriptions of 
Einstein and LL. Both definitions give the same and reasonable result. Tod 
[15] calculated the Penrose quasi-local mass [16] for the Bv metric and got 
the same result. 

Only recently has been brought to our attention that in an interesting 
paper G/irses and G/irsey [17] showed that  the pseudotensors of Einstein 
and LL coincide for all Kerr-Schild metrics. In this paper we extend that  
result by showing that  the pseudotensors of Einstein and LL as well as those 
of Tolman (Ref. 3, p.227), Papapetrou [18] and Weinberg (Ref. 19, p.165) 
(Pw) coincide for any Kerr-Schild metric in the precise sense described 
below and, in consequence, give the same energy and energy current den- 
sity components for the KN as well as sv spacetimes. We also extend the 
results of KSV, Cooperstock and Richardson for the Kerr-Newman metric 
by performing a non-perturbative calculation. Since the pseudotensors of 



Energy and Angular Momentum of Charged Rotating Black Holes 1395 

Einstein and Tolman have mixed indices, when we say that  they coincide 
with those of Landau-Lifshitz, Papapetrou and Weinberg (which have only 
upper indices) we mean that  they are equal except for a trivial factor: a 
Minkowski metric used to raise the lower index. 

In Section 2 we show that  the five pseudotensors coincide if KS Carte- 
sian coordinates can be used. Section 3 gives the results for the energy, 
momentum, and angular momentum distributions for the g~ metric. In 
Section 4 it is pointed out that  in the case of the RN spacetime the masses 
computed by means of the pseudotensors agree with the quasi-local masses 
of Hawking, Penrose, Ludvigsen-Vickers, Bergqvist-Ludvigsen, Dougan- 
Mason and Hayward, but not with that  of Komar (see Refs. 8,20). In 
the case of the energy contents of the Kerr horizon, we find that  the five 
pseudotensors give the same result as the quasi-local masses of Komar and 
Bergqvist-Ludvigsen [8]. 

C o n v e n t i o n s :  We use geometrized units in which the speed of light 
in vacuum c and the Newtonian gravitational constant G are taken to be 
equal to 1, the metric has signature + - - - ,  and Latin (Greek) indices 
take values 0 . . .  3 (1 . . .  3). 

2. KERR-SCHILD METRICS A N D  ENERGY-MOMENTUM PSEUDO- 
TENSORS 

In the following we shall consider the algebraically special metrics of 
Kerr-Schild which are given by 

g~k = ~}~k - 2 V l i l k  (1) 

(~?ik = diag (1, - 1 ,  - 1 ,  -1 ) )  in terms of the scalar function V and the null 
vector li which satisfies the following properties: 

il . g~kl i l  k = ~?iklil k = O, 1 k;i = l i l k , i  = 0 (2) 

Giirses and Giirsey [17] pointed out that  for these metrics the pseudoten- 
sors of Einstein and LL coincide and are proportional to the Einstein tensor. 

We shall consider not only the pseudotensors of Einstein (see Ref. 2), 

e~k -" 167r - -  [ _ g ( g k , ~ g l m  _ g m g k m )  ],• , (3) 
) , l  

and Landau and Lifshitz (Ref. 4, p.280), 

Li k = 1 161r [ _ g ( g i k g l m  ~l k in ,  1 - -g  g )Jj,n, (4) 
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but also those of Tolman (Ref. 3, p.227), 

1{ [ ]} 
,l 

V i i l i m  1 i m ~k - - r j k  + ~ g jrmk + ~ g k r . ~ ,  (6) 

Papapetrou [18], 

16= [ x / ~  (gik~itm _ ga~?km + gtm~}ik _ gtkTlim ) ],tin, (7) 

and Weinberg (Ref. 19, p.165), 

w.k oho' o . '  Oh'  
- - ff~+-- r/~+ -- (8) 

(In the last definition h~k = gi~ - ~ k  and indices on h~a or O/Ox~ are raised 
or lowered with the help of ~}'s.) 

By using the properties of Kerr-Schild metrics it is not difficult to 
prove that fol KS metrics the five pseudotensors of ETLLPW essentially co- 
incide, as one always has in KS Cartesian coordinates 

O~ k = T~ k = ~ j L  ~k, (9) 

L i  k = Eik  = W i  k = 1 Aikl  m (10) 
167r ,lm , 

A ikvq -- 2V(r l ik lPl  ~ + ~TPql~l k - zliZ'lkl q - ~lkql~lP). (11) 

The demonstration of eqs. (9) and (10) is rather long but straightfor- 
ward. One only has to substitute eq. (1) into the definitions (3)-(8) and 
use the fact that  for any KS metric eq. (2) and the following properties 
hold: 

g = - 1 ,  gik = ~?~k + 2 V l i l  k, 

l ~ = gik l  k = ~7iklk, l~gki,,,~ = O, 
gik g lm _ gil gkm  =_  ~ikz}lm _ 7~ilT~krn ~_ Aik lm 

lil k- = 0, IJ!k = O, 

h ik  = _ 2 V l i l  k = ~?~k _ gik,  h~ = O, 
m 

F m k  ---- 0, 
Y~k ~ = - r ~ k  g~'mV,,mi = g~m 

(12) 
(13) 
(14) 
(15) 
(16) 

(17) 
(18) 
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In consequence, the energy and momentum are 

p~ 1 f f A i~ n d S  
- 1 6 ~ r  JJ ,m a , (19)  

and the spatial components of j ik are 

= 161rl//(x~A~Oam,m - xl~AC~~ + A ~~ n~ dS, (20) j ~  

where na is the outward unit normal vector and dS is the infinitesimal 
surface element. 

3. T H E  K E R R - N E W M A N  M E T R I C  

The KN spacetime is given in KS Cartesian coordinates by the line 
element in eq. (1) with the following choices for V and li [21]: 

V = 2Mp3 - Q2p2 
2(p 4 + a2z 2) , 

P (xdx  + ydy)  li dx ~ = dt + Zp dz + p2 + a 2 

a 

p2 + a  2 ( x d y -  ydx) ,  

where p is defined by the positive root of 

(21) 

(22) 

x 2 + y2 z 2 
p2 + a 2 + ~-~ = 1. (23) 

By using the results of the previous section we calculate the energy, 
momentum, and angular momentum for the KN metric in Ks Cartesian 
coordinates. The intermediate mathematical expressions are very len~hy 
and therefore we give only the final results, which have been obtained and 
checked by means of two different computer algebra systems. The energy 
and momentum inside a surface with constant p in all the prescriptions of 
ETLLPW are 

Q2 [ (a2+p2) a r c t a n ( p ) ] ,  E(p) = M - - ~ p  1-~ ap 

PI (P )  = P2(p)  = P3(P) = O. (24) 
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The spatial components of the angular momentum are 

- P 2 + ( a 2 + - p 2 ) 2  a r c t a n ( p ) ] ) ,  J 1 2 ( p ) = a { M - ~ p  [1 -~ ~ p  

j 2 3 ( p ) = j 3 1 ( p ) = O .  (25) 

The total energy, momentum, and angular momentum (p --~ oo in the 
above expressions) are E = M, 1'1 = P2 = P3 = O, j12 = Ma and 
j23 _ j31 _ 0. The energy and energy current density components for 
the KN metric are 

(L ~176 L 1~ L 20 ' L 30 ) 
Q2p4 

= 87r(p 4 -b a2z2) 3 (p4 -b 2a2p 2 - a2z 2, -2ayp 2, 2axp 2, 0). (26) 

Notice that  the mass parameter M does not appear in the densities in 
(26), but it does appear in (24) and (25). The reason is that  the results 
in (24) and (25) are not computed by integrating the density components 
(which are given in (26) for the exterior of the black hole), but are obtained 
by using Gauss's theorem and integrating over a surface (p = constant), 
according to (19) and (20). This takes into account the contribution from 
the interior of the black hole, which is not described by the Kerr-Newman 
metric. 

4. DISCUSSION 

We have shown that  for any KS metric the five pseudotensors of ETLLPW 
coincide [in the sense of eqs. (9) and (10)] if calculations are carried out 
in KS Cartesian coordinates. We have obtained energy and angular mo- 
mentum distributions for the KN metric for arbitrary values of the mass, 
charge, and rotation parameters. For the Kerr black hole the energy is 
confined to its interior, because by taking Q = 0 in eqs. (24) and (26) 
one sees that  the energy and energy current density components vanish 
outside the black hole and that  the energy distribution [given by eq. (24)] 
is independent of p. This proves a previous conjecture of KSV [11] and is 
compatible with Cooperstock's conjecture [10]. It  is clear from eqs. (24) 
and (25) that  the energy distribution for the KN metric is independent of 
the sign on the charge as well as rotation parameters whereas the direction 
of the angular momentum depends on the sign of the rotation parameter 
and is independent of the sign on the charge parameter. This is obviously 
a reasonable l esult. 
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For the RN metric (a = 0), one gets from eq. (24) E = M - Q 2 / 2 r .  The 
quasi-local masses of Hawking, Penrose, Ludvigsen-Vickers, Bergqvist- 
Ludvigsen, Dougan-Mason, and Hayward give the same result, while that  
of Komar leads to to E = M - Q 2 / r  (see Refs. 8,20). From eq. (24) one 
gets E -- M for the Kerr metric (Q = 0), in accordance with the energy 
content of the event horizon as computed by using the quasi-local masses 
of Komar ana Bergqvist-Ludvigsen. However, the quasi-local masses of 
Hawking, Penrose, and Dougan-Mason give results that  differ from each 
other [8] as well as from the definitions of ETLLPW discussed above. 

For the BV metric two of the present authors (Chamorro and KSV) [14] 
found that  the pseudotensors of Einstein and LL give the same result for 
the energy as well as for the energy current densities. In the light of Giirses 
and Giirsey's result [17] one sees the reason for the coincidences, which will 
in fact happen for the five prescriptions of ETLLPW. The energy distribution 
is E = M ( u )  - Q ( u ) 2 / 2 r ,  where u is the retarded time coordinate. Tod 
[15] found the same result for the BV metric in Penrose prescription. 
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