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Physics with Nonperturbative Quantnm Gravity: 
Radiation from a Quantum Black Holet 
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We study quantum gravitational effects on black hole radiation, using 
loop quantum gravity. Bekenstein and Mukhanov have recently consid- 
ered the modifications caused by quantum gravity on Hawking's thermal 
black-hole radiation. Using a simple ansatz for the eigenstates of the area, 
they have obtained the intriguing result tha t  the quantum properties of 
geometry affect the radiation considerably, yielding a discrete spectrum, 
definitely non-thermal. Here, we replace the simple ansatz employed by 
Bekenstein and Mukhanov with the actual eigenstates of the area com- 
puted using loop quantum gravity. We derive the emission spectra, using 
a classic result in number theory by Hardy and Ramanujan. Disappoint- 
ingly, we do not recover the Bekenstein-Mukhanov discrete spectrum, 
but  - -  effectively - -  a continuum spectrum, consistent with Hawking's 
result. The Bekenstein-Mukhanov argument for the discreteness of the 
specrum is therefore likely to be an artifact of the ansatz, rather th~n a 
robust result (at least in its present kinematical version). The result is 
an example of concrete (although somewhat disappointing) application 
of nonperturbative quantum gravity. 
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Quantum gravity research has traditionally suffered from a great scarcity 
of physical applications where theories and ideas could be tested, at least 
in principle [1]. One of the few areas in which ideas on quantum gravity 
may be tested is black hole physics [2]. The loop approach to quantum 
gravity [3] is now sufficiently developed that  we may begin to probe it 
within "physical" applications. It  is thus natural to investigate what loop 
quantum gravity asserts about black hole physics. 

Recently, Bekenstein and Mukhanov [5] have suggested that  the ther- 
mal nature of Hawking's radiation may be affected by quantum properties 
of gravity (For a review of earlier suggestions in this direction, see Ref. 6). 
As is well known, Hawking derived the black hole thermal emission spec- 
t rum from quantum field theory in curved spacetime, therefore within the 
approximation in which the quantum properties of gravity are neglected. 
Attempts have been made to relate Hawking's temperature to gravita- 
tional dynamics, but the problem of how quantum gravity affects black 
hole emission can be convincingly addressed only within a full theory of 
the quantum gravitational field. Bekenstein and Mukhanov observe that  
in most approaches to quantum gravity the area can take only quantized 
values [7]. Since the area of the black hole surface is connected to the black 
hole mass, black hole mass is likely to be quantized as well. The mass of 
the black hole decreases when radiation is emitted. Therefore emission 
happens when the black hole makes a quantum leap from one quantized 
value of the mass (energy) to a lower quantized value, very much as atoms 
do. A consequence of this picture is that  radiation is emitted at quantized 
frequencies, corresponding to the differences between energy levels. Thus, 
quantum gravity implies a discretized emission spectrum for the black hole 
radiation. 

By itself, this result is not physically in contradiction with Hawking's 
prediction of a continuous thermal spectrum. To understand this, consider 
the black body radiation of a gas in a cavity, at high temperature. This ra- 
diation has a thermal Planckian emission spectrum, essentially continuous. 
However, radiation is emitted by elementary quantum emission processes 
yielding a discrete spectrum. The solution of the apparent contradiction is 
that  the spectral lines are so dense in the range of frequencies of interest, 
that  they give rise - -  effectively - -  to a continuous spectrum. Does the 
same happen for a black hole? 

In order to answer this question, we need to know the energy spectrum 
of the black hole, which is to say, the spectrum of the area. Bekenstein and 
Mukhanov pick up a simple ansatz: they assume that  the area is quantized 
in multiple integers of an elementary area A0. Namely, that  the area can 
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take the values 
An = nAo , (1) 

where n is a positive integer, and A0 is an elementary area of the order of 
the Planck area 

A0 = ~hG, (2) 

where c~ is a number of the order of unity (G is Newton's constant and 
c = 1). Ansatz (1) is reasonable; it agrees, for instance, with the partial 
results on eigenvalues of the area in the loop representation given in [8], 
and with the idea of a quantum picture of a geometry made by elementary 
"quanta of area". Since the black hole mass is related to the area by 

A = 16~rG2M 2, (3) 

it follows from this relation and the ansatz (1) that  the energy spectrum 
of the black hole is given by 

I no~h 
i n  = 16vG " (4) 

Consider an emission process in which the emitted energy is much smaller 
than the mass M of the black hole. From (4), the spacing between the 
energy levels is 

ah  
AM---- 327rG-----M " (5) 

From the quantum mechanical relation E -- hw we conclude that  energy is 
emitted in frequencies that  are integer multiple of the fundamental emis- 
sion frequency 

= ( 6 )  
327rGM 

This is the fundamental emission frequency of Bekenstein and Mukhanov 
[5] (they assume a = 41n2). Bekenstein and Mukhanov proceed in [5] 
by showing that  the emission amplitude remains the same as the one in 
Hawking's thermal spectrum, so that  the full emission spectrum is given 
by spectral lines at frequencies multiple of ~, whose envelope is Hawking's 
thermal spectrum. ~ 

As emphasized by Smolin in [6], however, the Bekenstein-Mukhanov 
spectrum is drastically different than the Hawking spectrum. Indeed, 
Hawking temperature is 

h 
TH -- - -  (7) 

8~rkGM 
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(k is the Boltzmann constant); therefore the maximum of the Planckian 
emission spectrum of Hawking's thermal radiation is at 

2.82kTH 2.82 2.82 �9 4 
- -  ,~ ~ ~ .  ( 8 )  

W H  "~ h = 8 1 r G M  - -  

That  is, the fundamental emission frequency ~ is of the same order as the 
maximum of the Planck distribution of the emitted radiation. It follows 
that  there are only a few spectral lines in the regions where emission is 
appreciable. Therefore the Bekenstein-Mukhanov spectrum is drastically 
different from the Hawking spectrum: the two have the same envelope, but 
while Hawking spectrum is continuous, the Bekenstein-Mukhanov spec- 
t rum is formed by just a few lines in the interval of frequencies where 
emission is appreciable. Notice that  such a discretization of the emission 
spectrum is derived by Bekenstein and Mukhanov on purely kinematical 
grounds, that  is using only the (assumed) spectral properties of the area. 
To emphasize this fact, we will denote it as the kinematical Bekenstein- 
Mukhanov effect. 

This result is of great interest because, in spite of its weakness, black 
hole radiation is still much closer to the possibility of (indirect) investiga- 
tion than any quantum gravitational effect of which we can think. Thus, a 
clear quantum gravitational signature on the Hawking spectrum is a very 

. , J 
interesting effect. Is this Bekensteln-Mukhanov effect credible? 

One of the most definite results of loop quantum gravity is a calcu- 
lation of the spectrum of the area from first principles [9]. Thus, follow- 
ing a suggestion in [6], we may use loop quantum gravity to check the 
Bekenstein-Mukhanov result, by replacing the naive ansatz (1) with the 
precise spectrum computed in this approach to quantum gravity. 

Consider a surface E - -  in the present case, the event horizon of the 
black hole. According to loop quantum gravity, the area of E can take 
only a set of quantized values. These quantized values are labeled by 
unordered n-tuplets of positive integers 16 = (Pl,-..,Pn) of arbitrary length 
n. The spectrum is then given by 

m~- -16~hG E + 1  , (9) 
i=l ,n  

For a full derivation of this spectrum, see Refl 9. The spectrum (9) is not 
complete. There is an additional sector corresponding to a class of "de- 
generate" states [10]. These degenerate states play no role in the present 
discussion, however. 
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If we disregard for a moment the term +1 under the square root in (9), 
we obtain immediately the ansatz (1), and thus the Bekenstein-Mukhanov 
result. However, the +1 is there. Let us study the consequences of its 
presence. First, let us estimate the number of area eigenvalues between 
the value A >>> 10 and the value A + dA of the area, where we take dA 
much smaller than A but still much larger than 10. Since the +1 in (9) 
affects in a considerable way only the terms with low Pi, we can neglect 
it for a rough estimate. Thus, we must estimate the number of unordered 
strings of integers iff= (Pl, ...,P,~) such that  

A 
P' = s hG >> 1. (10) 

i=l,n 

This is a well known problem in number theory, called the partition prob- 
lem. It is the problem of computing the number N of ways in which an 
integer I can be written as a sum of other integers. The solution for large I 
is a classic result by Hardy and Ramanujan [14]. According to the Hardy-  
Ramanujan formula, N grows as the exponent of the square root of I. 
More precisely, we have for large I that  

Y( I ) ,~  1_._ e ~ .  (11) 
4",/31 

Applying this result in our case we have that the number of eigenvalues 
between A and A + dA is 

p(A) ~ e ~x/-;X/12av. (12) 

Now, because of the presence of the +1 term, eigenvalues will overlap 
only accidentally: generically all eigenvalues will be distinct. Therefore, 
the average spacing between eigenvalues decreases exponentially with the 
inverse of the square of the area. This result is to be contrasted with the 
fact that  this spacing is constant and of the order of the Planck area in 
the case of the naive ansatz (1). This conclusion is devastating for the 
Bekenstein-Mukhanov argument. Indeed, the density of the energy levels 
becomes 

p(M) ~ e 4X/T~-/3hM, (13) 

and therefore the spacing of the energy levels decreases exponentially with 
M. It follows that  for a macroscopical black hole the spacing between en- 
ergy levels is infinitesimal, and thus the spectral lines are virtually dense in 
frequency. We effectively recover in this way Hawking's thermal spectrum 
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(except, of course, in the case of a Planck scale black hole). The con- 
clusion is tha t  the Bekenstein-Mukhanov effect disappears if we replace 
the naive ansatz (1) with the spectrum (9) computed from loop quantum 
gravity. More generally, we have shown that  the kinematical Bekenstein- 
Mukhanov effect is strongly dependent on the peculiar form of the naive 
ansatz (1), and it is not robust. In a sense, this is a pity, because we loose 
a possible window on quantum geometry. 

Mukhanov and, independently, Smolin have noticed that  the possibil- 
ity is still open for the existence of a "dynamical" Bekenstein-Mukhanov 
effect [12]. For instance, transitions in which a single Planck unit of area 
is lost could be strongly favored by the dynamics. To explore if this is 
the case, one should make use of the full machinery of quantum gravity, 
for instance by computing transition probabilities between horizon's area 
eigenstates induced in a first order perturbation expansion by the coupling 
between the area of the horizon and a surrounding radiation field. This 
could perhaps be done following the lines of Ref. 13. 

We have argued that  the "kinematical" discretization of the black hole 
emission spectrum suggested by Bekenstein and Mukhanov disappears if 
we use quantitative result from loop quantum gravity. Our result indi- 
cates that  loop quantum gravity is sufficiently mature to begin addressing 
concrete physical problems. 
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