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Least squares data fitting using shape preserving 
piecewise approximations 

G.H. Elliott 

School of MathematicaI Studies, University of Portsmouth, Hampshire Terrace, 
Portsmouth, P012EG, UK 

In recent years there has been a great deal of interest in the preservation of data properties 
in an interpolating function, and many good algorithms are available for this problem. 

In this paper a basis is constructed for a tensioned spline that gives a numerically stable algo- 
rithm for the/-2 fitting of data that can preserve monotonicity and/or convexity. The motiva- 
tion for this work is the fitting of data from a sewerage farm. 

1. I n t r o d u c t i o n  

Polynomials  are widely used in data  approximation,  but  among their few unde- 
sirable propert ies is that  even in the simple case of  quadrat ic  interpolat ion to three 
given funct ion values {xk,Yk} (k = 0, 1,2), with x0 < x l  <x2,  the quadrat ic  m a y  
fail to be m o n o t o n e  on Ix0, x2] even if the y values are monotone .  Similarly the cubic 
which interpolates a convex function m a y  not  itself be convex. 

Unfo r tuna te ly  the same situation occurs in cubic spline interpolation.  This has 
been recognised for m a n y  years, and several a t tempts  have been made  to modi fy  
the spline in order  to preserve data  properties. Among  the best known are: 

�9 using splines in which the cubic segments have their gradients restricted so as 
to preserve monotonici ty ;  see for example [5]; 

�9 tensioning the spline using exponential  functions as in [7] or [8]; 
�9 tensioning the spline using a denomina tor  in each segment which contains a sin- 

gle pa ramete r  that  can be increased until the resulting approximat ion  has the 
required property;  see for example [3,4,6]. 

All of  these methods  can deal correctly with some classic "diff icul t"  data  sets 
such as the Ak ima  data  [1]. They  are difficult in the sense that  there is a sudden 
change f rom a small to a large gradient  over a short  interval. 

The work  described in this paper  was mot iva ted  by the need to fit a curve to 
some data  collected f rom a new type o f  sewerage bed (Gravel  Bed Hydroponics) .  A 
sample set o f  data  collected on one day is given in fig. 1. 

�9 J.C. Baltzer AG, Science Publishers 
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Fig. 1. Bed BD2, original data. 

Although the measurements are made as accurately as possible, the data is not 
sufficiently accurate to warrant interpolation and a least squares fit is appropriate. 
A simple least squares cubic spline approximation suffers the same fate as would 
an interpolant, in that it fails to be monotone where the data is monotone (fig. 2). 
The knots are denoted by the symbol x. 

The loss of  monotonicity in the spline approximation is remedied using a 
method based on the tensioning idea of  Delbourgo and Gregory [4] which is out- 
lined in section 2. 
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Fig. 2. Bed BD2, cubic spline. SS=2181. 
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2. Shape  preserving piecewise rational interpolation 

Let (Xk, Yk) (k = 0 , . . . ,  n) be a given set of data points with x0 <xl  < . . .  < xn. 
Define hk = Xk+l -- Xk and Ak = (Yk+l -- yk) /hk .  A piecewise rational cubic func- 
tion is then defined on [Xk , Xk + l ] as s( x ) = P k ( t ) / Qk ( t ) , t = ( x -- Xk ) / hk , where 

P k ( t )  = y k + l t  3 + (rkYk+l -- hkdk+ l ) t 2 (1  -- t) + (rkYk + h k d k ) t ( 1  -- t) 2 + yk(1  -- t) 3 

and 

Qk(t) = 1 + (rk -- 3)t(1 -- t). (2.1) 

It has the interpolation properties S ( X k ) = Y k ,  S (Xk+l)=Yk+l ,  d ( X k ) = d k ,  
s ' (xk+l)  = dk+l. 

If the dk are given, we have immediately s e C 1 Ix0, xn]. Alternatively, the dk can 
be chosen to make s ~ C2[x0, x~] by solving the tridiagonal diagonally dominant sys- 
tem 

hkdk-1 + dk{hk(rk-t  -- 1) + hk-l(rk -- 1)} + hk-ldk+l = hk - l rkAk  + hkrk - lAk-1 ,  

k =  1 , . . . , n -  1. 

I f rk  = 3, the function s reduces to a cubic spline. If 

rk > ( 4  + dk+l) /nk,  (2.2) 

then s is monotone on [Xk, Xk+ll provided Ak, dk and dk+l are positive. Another 
inequality on rk can be given to ensure that the data is convex if the data is consis- 
tent with convexity. The function s can therefore in general be regarded as a ten- 
sioned spline. Derivations and further details can be found in the papers of 
Delbourgo and Gregory. 

3. A tens ioned  B-spUne 

A least squares approximation requires a set of basis functions, ideally with com- 
pact support, on the knot set { x o , . . . ,  xn }. A typical choice is the set {Bk(x) }, where 
Bk(X) is a natural cubic spline which is identically zero for x<,xk-2  and x>~xk+2 
(the knot set needs to be extended slightly at the ends), and normalised so that 
 k(xk) = 1. 

We propose a piecewise approximation using a set of tensioned splines {Bk(x)} 
as basis. The function fBg(x) is similar to Bk(x)  but is divided in each segment 
[Xk, Xk+l] by a denominator t e r m  

1 + (ra - 3)t(1 - t) 

in which the parameter rk depends only on the segment  and not on the particular 
basis function under consideration. For a given set of tension parameters, the 



368 G.H. Elliott / Least squares data fitting 

resulting functions Bk(x) therefore still span a linear space and can be used as a 
basis for a least squares approximation in which tensioning can be applied. Figure 3 
shows a typical tensioned basis spline on an equally spaced knot set in which the 
tension parameters for the non-zero segments are r = 3, 10, 3 and 6. 
There seem to be no simple recurrences relating tensioned splines Bk (x) of different 
orders corresponding to the very efficient relations for polynomial splines given 
by Cox [2]. Nevertheless, we shall see that the Bk(x) can still be computed by a quick 
and stable algorithm. Adopting the normalisation Bk(Xk) = 1, the tensioned B- 
spline is completely described if we can calculate its three gradients dlk, d2k, d3k, at 
x k - l , x k  and Xk+l respectively. Defining ak = B k ( X k - 1 ) , C k  = n k ( X k + l )  and 
Rk = rk/hk, the conditions Bk" (Xk-2) = Bk" (Xk+2) = 0 imply 

ak = d lk /Rk -2  and Ck = --d3k/Rk+1, 

SO that the second derivative continuity equations from section 2 simplify to 

{hk-l(rk-2 - 2) + hk-2(rk-1 -- 1) + hk-2Rk- i /Rk-2}d lk  + hk-2d2k = hk-2Rk-1,  

h~c(1 + Rg-1/Rk-2)dl~ + {hk(rk-1 -- 1) + hk-l(rk -- 1)}d2k 

+ hk-l(1 + Rk/Rk+l)d3k = hkRk-1 + hk- lRk ,  

hk+ld2k + {hk+l (rk -- 1) + hk(rk+l -- 2) + hk+lRk/Rk+x}d3k = -h~+lRk.  

For a given knot set and estimates for suitable tensions, these equations are solved 
for k = 0 , . . . ,  n. Each tensioned B-spline Bk(x) is thus computed from three tridia- 
gonal equations, the solution of which gives its gradients dlk,  d2k and d3k at 
Xk-1, Xk and Xk+l, and stored in terms of the five quantities dlk, d2k, d3k, ak and ck. 
The basis function Bk(x) is therefore by construction zero for x>>.xk+2 and 
x <<. Xk-2, and has a continuous second derivative. 
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Fig. 3. Tensioned B-spline. Tensions 3, 10, 3, 6. 
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4. The  compu ta t i on  of the piecewise approx imat ion  

A least squares 
sought in the form 

approximation to the data set {(ui , f i ) , i  = 1 , . . . ,m}  is now 

= 

k=O 

by solving the overdetermined system 

s(ui) = fj ,  i =  l , . . . , m .  (4.1) 

Since there wiII typically be several data points in each segment, we need the formu- 
lae for those Bk(X) which are not zero in [Xk, Xk+l], viz. 

D k B k - l ( X )  = Ck-1  (1  - -  t )  3 , 

Dkitk(X) = t2({tck + (riCk -- hkd3k)(1 -- t)} + (1 -- t)2{(rk + hkd2k)t + (1 -- / )} ,  

Dk Bk+l (x) = t2 { t + (rl: --hkd2k+l)(1 -- t)} + (1 -- t)2 { (rkak+l 

+ h td lk+l ) t  + ak+l(1 -- t)}, 

DkBk+2(X)  = ak+2t 3 , 

where as before 

t = ( x -  Xk)/hk and Dk = 1 + (rk -- 3)t(1 -- t). 

For a given segment there are just an initial 6 multiplications needed, plus 18 
multiplications and 4 divisions to compute all four non-zero basis functions for 
each data point ui which compares favourably with the computation of the corre- 
sponding cubic B-spline basis by recurrence. 

Equations (4.1) are then solved by Householder reduction to obtain the coeffi- 
cients. Again lacking recurrence for the Bk(x), it is easier to compute the values of 
the resulting approximation s(x) by first evaluating s(x) and its derivatives at the 
knots, where only three basis functions are non-zero. We have 

and 

$(Xk) = Otk-lCk-1 q- Otk -}- OLk+lak+l 

d(xk)  = ak-ld3k-1 + akd2k + ak+ldlk+l �9 

The values ofs(x) can then be found directly from (2.1). 
It is easy to verify directly from the defining equations that if rk~3,  then 

d lk > 0 and d3k >0,  and further that B~(x)> 0 for xk-2 < x <Xk+2. This suggests 
that the tensioned basis functions share the same numerical stability as the cubic B- 

spline basis. 
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Fig. 4. Bed BD2, tensioned spline. SS= 198. 

5. Practical considerations and examples. 

To obtain a least squares fit to a given data set using the tensioned basis there 
remain two choices, namely the choice of knots and tensions. The choice of knots 
has been considered by many authors. Numerical experience shows that the good- 
ness of fit can vary dramatically with the choice of knots. All that has been done 
in these examples is a small movement of each knot about an initial trial set, and the 
insertion of an extra knot in any segment where the current approximation is unsat- 
isfactory. 

The choice of tensions is made partly interactively, with the proviso that condi- 
tion (2.2) guarantees a monotone approximation where needed. The tensioning can 
also simply be used to improve the fit by monitoring the sum of squared errors. Fig- 
ure 4 illustrates how the tensioning can correct the lack of monotonicity of the 
cubic spline approximation in fig. 2, the tensioned approximation values being 
given in table 1. 

Table 1 
Tensioned approximation values of fig. 4. 

xk s(xk) e(xk) rk 

10.57 12.22 10.73 10.0 
11.16 33.56 353.90 4.0 
11.42 217.25 515.36 3.0 
11.80 139.91 -287.88 5.0 
12.00 98.97 - 161.63 5.0 
12.65 43.95 -66.47 
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6. Conc luding  remarks 

The algorithm has been shown to have shape preserving possibilities but there 
remain two areas of weakness. The choice of  tension parameters rk could be made 
automatic but they depend on the gradients s(xk) which in turn depend on the para- 
meters rk. Secondly, experience in allowing knots to move shows that in some cases 
knots appear to want to coincide. This suggests that we should allow for a reduc- 
tion in smoothness ofs(x)  by allowing for coincident knots as is normal in polyno- 
mial spline approximation. It may be possible to modify the computation of  the 
basis functions to allow for coincident knots. 
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