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1. I n t r o d u c t i o n  

Splines have been used for numerical integration ever since they entered the 
numerical analysis scene [13]. However, only recently they have been applied to the 
numerical evaluation of integrals such as 

I ( K f )  = K ( x ) f ( x ) d x ,  (1) 
I 

and of Cauchy principal value integrals such as 

J ( u f ; A ) = -  u(x) dx, - l < A < l ,  (2) 
1 

where K e L I [ - 1 ,  1],f is bounded in [-1, 1] for case (1) and u a n d f  are such that 
J(u f ;  A) exists for case (2). 

Some authors [1-6,16] have proposed and studied product rules for (1) and (2) 
based on interpolating or approximating splines. However, their results are not 
completely satisfactory, since they have some restrictions on the spacing of spline 
knots [2-6], or on the accuracy of the quadrature [16], or on the convergence prop- 
erties [1]. 
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Then, since one would like to extend the above results to splines with arbitrary 
knot spacing as well as to splines with an order of accuracy comparable to the best 
spline approximation, in order to do it, in this paper we propose product rules for 
(1) and (2) based on approximation o f f  by quasi-interpolating (q-i) splines Q,f ,  
[14,17]. 

2. On q-i spline quadra tu re  rules 

Let 

,4 = {-1  = x 0 < x l <  . . .  <Xk<Xk+l =- +1} 

be a partition of the interval :1 -- [ -  1, 1] and let 

z ] =  max(  �9 - x i ) ,  , 4=  m i n ( x i + 1 - x i ) .  O<~i<~k -xl+l - -  O<~i<~k 

Then there exists an associated 4-quasi uniform partition 

, 4 " =  {-1 = x ; < x ~ < . . .  <x ;  <x;+ 1 ---+1} 

with ,4* _ A, such that 

~<~" ~,4" ~< 2,'1 
2 

In fact, letting x~ = - 1, we can define Xl, x2, . . .  , x~ recursively by 

x] = m i n  xi:x)*_q +z<~xi<~X;_l + ~ , 4 a n d x i ~ < l -  . 

(3) 

(4) 

(5) 

(6) 

This process does not stop until 1 - 2z]~<x~. Now we let X~+ 1 = 1. The property 
(5) follows by construction [7]. 

We return now to the operator Qn. Let m be an integer and n = m + l; then corre- 
sponding to the partition A* we define the extended one 

Yl =Y2 = . . . .  Ym = X~, 

Y m + l = X ; , . . . , y n = X ~ ,  

Yn+l = Yn+2 . . . . .  Yn+m = x~+1. (7) 

The set of normalized B-splines BI m), B(2m),..., B (m) of order m, associated with 
this extended partition, forms a basis for Sm (A*), where Sm (,4*) is the class of poly- 
nomial splines of the order m with knots yi [7]. 
For  each i = 1 ,2 , . . . ,  n, let 

( j - l )  
tO = Y i +  (Yi+m -Y i )  (m _ 1)' j =  1 , 2 , . . . , m ,  (8) 

and 
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where 

o ~ / j = ~  F : ~ i  ' j = l ' 2 ' ' ' ' ' m '  

~i,, ) (-1)~-1(~ 1)! 
= - ~ : i ~ l .  1 - I ( t - -Y i+r ) ,  

r=l 

(9) 

(10) 

j - I  

v,o(t) = H ( t -   U,l(t ) = 1 .  (11) 
r= l  

For a n y f  �9 B(7) 1 we consider the following quasi-interpolating operator 

where [7"il,..., 7 0] f is the (] - 1 )th divided difference. 
We remark that Q,~ is a linear operator mapping B(J) into SIn(A*) c_ SIn(A) 

and depending only on values o f f  in a small neighborhood ofx. 
Moreover, Q~ reproduces polynomials of order m (i.e. degree < m). 
If we use the quasi-interpolating (12) to approximate f in (1) and in (2), we 

obtain respectively the following quadratures: 

In(Kf) = I(KQ,o r) ~- I ( K f ) ,  (13) 

J , (u f  ; A) = J(uQaf  ; A) --- J ( u f  ; )~) , (14) 

for which we can provide a satisfactory quadrature theory. 
In fact, this scheme places no restriction on the order of the splines and very 

few restrictions on the spacing of the knots. Moreover, it guarantees a precision 
degree equal to m - 1. 

Regarding convergence, we can prove that the sequence of product rules 
{ I , (K f ) }  converges to I (K f )  for a l l f  ~ C(7). These convergence results are for an 
arbitrary partition A subject only to the condition 

z~ ~ 0 as k or, equivalently, n -+ oo. (15) 

In our discussion we need the following lemma directly deduced from [14]. 

L E M M A  2.1 

Let l<~s<~m and Ilgll =maxx~jIg(x)l. Then for all f ~ C S - l ( 2 )  and for all 
j = 0 , 1 , . . . , s -  1, 

I B(2) = { f  : f is a real va lued  func t ion  on  2 and  If(z)1 < oo for  all x E 2}. 
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IID•)(f - Qnf)[[ <~ C(~)s-J-lw,,-~+l ( f ( s -0 ,  z]) ,  (16) 

where C is a cons tan t  dependen t  only on m, w,,,-s+1 is the modulus  of  cont inui ty  o f  
order  m - s + 1 and D (j) is t he j t h  derivative operator .  

The  fol lowing theorem provides a convergence result and a bound  for the quad-  
ra ture  error. 

THEOREM 2.1 
Let 1 <~s<~rn. Then,  for a l l f  ~ cs-l(3) and for a l lK~LI (3 ) ,  

I(Kf) - In(Kf) = O((~)s-lwl if(s-l), z~)), 
where wl is the t radi t ional  modu lus  of  cont inui ty  o f f .  

(17) 

Proof 
Since 

I I ( K f )  - I , , (Kf)I  ~< IV - Q J I I I ( I K I ) ,  

f rom lemma 2.1, where we p u t j  = 0, the thesis follows. 

(18) 

[] 

N o w  we consider  the quadra tu re  error  J(uf; A) - Jn(uf; A), for which in the fol- 
lowing theorem we derive a bound.  

THEOREM 2.2 
Let 2 ~< s ~< m. Then,  for a l l f  ~ C s-1 (3), 

J(uf; A) - J,(uf; A) = O((f~)~-2wl (f(s-1), z~)). (19) 

Proof 
With  the help of  the Mean  Value Theo rem and l emma 2.1, where we assume 

j = 0, 1, we can easily obta in  

[J(uf; A) - J,(uf; A)[ ~< Cwm-s+l (f(s-1) Z~)- U,  (20) 

where 

U~ ((z~) s-2 f_l 1 [u(x)ldx-~-(/~)s-1 I f l  1 u ( X ) d x I } .  

F r o m  (20) the thesis follows. [] 

3. O n  the  c o m p u t a t i o n a l  p r o c e d u r e  Q S I P Q R  

We remark  that ,  since we can write 
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where 

then 

i=1 j=l 
(21) 

Ot i r 
13ij = r 

r=j i i  _ ) 
s=| 
sW 

(22) 

n rn 

I , ,(Kf) = ~ ~ p./J'('r/j), (23) 
i=1 j=l 

where/z/j = vijI(KB}m)). 
The real values wi = I(KBIm)), i = 1 ,2 , . . . ,  n, are the weights of the product inte- 

gration rule 
n 

R , ( K f )  = Z w f ( z i )  ~- l ( K f )  (24) 
i=1 

with prefixed nodes zi e [yi,Yi+m] based on approximating splines with knots (7) 
Z n [16]. We recall that the precision degree of (24) is ~< 1; it is = 1 only if ( i}i=l are the 

Schoenberg points (see [11]). 
The construction of nodes {r0} and weights {Izij} of the rule (23) is made by the 

algorithm QSIPQR, whose computing task is broken down into a series of mod- 
ules. Given an initial points partition A, in module DELTA of QSIPQR, we gener- 
ate the associated 4-quasi uniform partition A* and then the extended partition 
(7). Successively, by (8) we obtain the nodes {r0}. 

The computation of the weights {#ij} is obtained by the modules VIJ and 
INTKB. For any fixed i, by (22), the module VIJ computes the values 
vij, j  = 1 , 2 , . . . ,  m, with air defined by (9) [17]. 

Recalling the definition of the classical symmetric functions 
symmj(q, t2, �9  tp), an elementary calculation shows that 

symmj(tl, t2 , . . . ,  tp) = Z t f i  t i 2  . . . tij �9 

1~<il <i2<... <ij<.p 

Therefore we can use the symmetric functions to compute air. In fact, we can 
write 

r--1 

a i r =  Z ( -1)J  ~}r-J)symmj(rn, . . . , ri,r-1) 
j=0 

and, from (10), 
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~}~) = (u - 1)!(m - u)! 
( m -  1)! symm~_l(Yi+l,... ,Yi+m-1). 

Then the final computational formula for OLir is: 
r 

air = Z ( - 1 )  r - ~ ( u -  1) ! (m-  u)[ 
u = l  (m - 1)! 

where 

Ci,u-l  Di,r-u , 

G,u-1 = symm~-i (Yi+I,..., Yi+m-1) 

(25) 

(26) 

I p ( K B }  m) ) = Ip+I ( K B }  m - l ) )  - y i I p ( K B }  m - l ) )  

Yi+m-1 -- Yi 

a t Y i + m l p ( K B } 7 ? l ) ) -  Ip+I (KB}+?I)) (30) 
Yi+m -- Yi+ 1 

This formula, starting with the sequence of integrals 

{ fy~+t K(x)xPdx ' when i = m, ,n, I.( ! ) o y  t �9 . . 

-t"KB'I)" = O, otherwise, 
p = 0, 1 , 2 , . . . , r n -  1, (31) 

is used to evaluate the terms I(KBI r~)) = Io(KB}")). Each of the integrals in (31)is 
evaluated by the module CALINT, here proposed for the ease of kernel 

and 

Di,r-u ---- s y m m r _ u ( T i l  , . . . , Ti,r-1) . 

For any fixed i, the module INTKB evaluates I(KB}m)). Following [11], on the 
set of knots {yi}i~=l we can define 

Bll)(x ) = { 1, yi<~x<yi+a, (27) 
0, otherwise, 

and the B-splines of order m are generated by the stable recursive method 

B}m)(x)_ x - y ,  B } m _ l ) ( x  ) 
Yi+m-I -- Yi 

+ Yi+m-X B~-I)(x),  i =  1 , 2 , . . . , n .  (28) 
Yi+m -- Yi+l 

Through (28) the module INTKB implements a recurrence formula to obtain the 
values { wi}in=l. Letting the integrals be 

I p ( K B }  q)) • x P K ( x ) B } q ) ( x ) d x ,  p=O,  1 , . . . , m - q ; q =  1 , 2 , . . . , m ,  (29) 
1 

we insert (28) into (29) to find the recurrence formula: 
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K(x)=lnlx-,X[, Ae(-1,1). 
For another choice of kernel K the module CALINT has to be replaced by 

another appropriate one, specific for the function K considered. 
Now we can report the closed form expressions of (31) for the kernel here consid- 

ered. Let: 

yp/+l _ )kp+l 
A, = In I~ - Yil (32) 

p + l  

p , T - k +  1 __ ~ t  - k + l  

St=p+----~ - k + l  ' 

then, for i = m , . . . ,  n, 

{ A~+I - As - S i ,  if A ~ ~t, Yt+I] 

ip(ln i A _ xlB}l)) = o r  A~(yt, yi+l), (34) 
At+I - St, if )~ = Yt, 

- A t  - St, if/~ -- Yt+I �9 

A FORTRAN 77 code, whose listing and diskette are given in [9], implements 
the above method to generate the nodes {~-0} and the weights {l~tj} of (23). 

4. On  the computa t iona l  procedure  QSICPV 

We can write 

where 

n m 

J.(uf; (35) 
i=l j=1 

uO()~ ) = voJ(uBlm); A) . (36) 

We remark that the real values {~i(A)= J (uB lm) ;A) , i  = 1,2, . . .  ,n} are the 
weights of the integration rule for the CPV integrals (2), 

n 

i~ , (u f ;  A) = ~ fv i (A)f (z i )  "~ J ( u f ;  A), (37) 
i=1 

with prefixed nodes zt ~ [Yt, Yt+m] based on approximating splines with knots (7) 
[16]. The precision degree of(37) is ~< 1; it is = 1 only i f z t  are the Schoenberg points 
(see [11]). 

Given an initial points partition A, in order to generate the knots {Yt} of the 
extended partition, we use the module DELTA as in QSIPQR. If one of the knots 
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coincides with A, then the procedure stops with a message, otherwise it evaluates 
nodes {tO. } and the real value {vii} by the module VIJ. 

If A r  Vi = 1,2, . . .  ,n, then for every i, the module INTKB evaluates the 
weights l~i(A). 

Defining the integrals 

f 
l 

Jp(un}q);,~)= ,m q;q m 1 u(x)xa x - A  dx, p = 0 , 1 , . . .  - = 1 , 2 , . . . ,  , 

(38) 

by means of(28), we obtain 

Jp(uO}m)  ; /~ ) = Jp+l (uo}ra-1)  ; ,'~ ) - YiJ,(uB}m-1) ; A) 

Yi+m- 1 - Yi 
+ Yi+mJp(uB}m-1)./~) _ r , --(m-l) A) 

, ap+l tUZ~i+l ; (39) 
Yi+m -- Yi+l 

The above recurrence formula, starting with the sequence of integrals 

f l x, } l(xl 
Jp(uB}I); A) =  u(x) m I x - -A  dx, p = 0 , 1 , . . . ,  - 1 ,  (40) 

is used to evaluate the terms: 

J ( u B } m )  ; ,~ ) ~- Jo(l, lo}m) ; /~ ) . (41) 

In order to calculate the elements in (40), of the recurrence basis, we can write 

4 ( u e } l / ; a )  = 

fy,+, u(X) x~_~dx = v,p-1 xk['Y,+, u ( x ) x P - k - l d x  + dyi / ~k=O "" JYi 

= +APJ0(uB}I);A), i = m , . . . , n ,  (42) 

0, otherwise. 

Each of the integrals in (42) is evaluated by the module CPVINT, using a closed 
expression, if it exists. 

When a closed expression for (42) does not exist then, similarly to [12], a numer- 
ical method must be used. 

A FORTRAN 77 code, whose listing and diskette are given in [9], implements 
the above method to generate the nodes {TO. } and the weights {uij} of(35). 

5. Appl ica t ion  and  final remarks 

Several numerical applications that test the performance of the rules (13) and 
(14) have been made, and the results obtained are available [9]. 
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In order  to construct  the B-splines we must  choose the initial part i t ion A. Fo r  
our  numerical  examples we have chosen the following two A-parti t ions,  bo th  satis- 
fying(15):  

U : u n i f o r m A =  x i = - l + - ~ - ~ , i = O ,  1 , . . . , k + l  , 

P : p e r f e c t  A =  xi-----cos k + l  7r , i = 0 , 1 , . . . , k + l  . 

W e  remark  that  if A _--_ U then A* = ,4, whereas if ,4 = p we have used the con- 
structive theorem 2.1 to generate `4* from `4. 

An interesting open question, concerning the above formulas and here not  con- 
sidered, is their convergence for larger classes of  functions f .  Recently,  we have 
investigated this problem and the results obta ined are repor ted in [7,8]. 
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