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In this paper product quadratures based on quasi-interpolating splines are proposed for
the numerical evaluation of integrals with an L;-kernel and of Cauchy Principal Value inte-
grals.
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1. Introduction
Splines have been used for numerical integration ever since they entered the

numerical analysis scene [13]. However, only recently they have been applied to the
numerical evaluation of integrals such as

1
I(Kf) = / K (9, (1)

and of Cauchy principal value integrals such as

1

J(uf;A)=—/ u) TP dx, —1<r<l, )
-1 x—A

where K € Li[—1,1],f is bounded in [—1, 1] for case (1) and « and f are such that

J(uf; \) exists for case (2).

Some authors [1-6,16] have proposed and studied product rules for (1) and (2)
based on interpolating or approximating splines. However, their results are not
completely satisfactory, since they have some restrictions on the spacing of spline
knots [2-6], or on the accuracy of the quadrature [16], or on the convergence prop-
erties[1].
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Then, since one would like to extend the above results to splines with arbitrary
knot spacing as well as to splines with an order of accuracy comparable to the best
spline approximation, in order to do it, in this paper we propose product rules for
(1) and (2) based on approximation of f by quasi-interpolating (q-i) splines Q,f,
[14,17].

2.0n g-ispline quadrature rules

Let
A={-l=x<x<...<x(<Xp41 = +1} (3)

be a partition of the interval J = [—1, 1] and let

A= max (x4 — %), A= min (xi1 —x).
0$i<k( i+1 l)) 2 Osisk( i+1 x)
Then there exists an associated 4-quasi uniform partition
* - * * —
A ={-1=xy<xi<...<xj<xj,, =+1} (4)

with A* € A, such that

?sé‘sﬁ*szﬁ. (5)
Infact, letting xj = —1, wecandefine xj, x3, . . ., x] recursively by
. A 3 A
x; =m1n{x,-:xj’.‘_l +E<x,~<xjf_l +-2-A and x,~<1 —7} (6)

This process does not stop until 1 — 2A<x;. Now we let x; .1 = 1. The property
(5) follows by construction [7].

We return now to the operator Q,,. Let m be an integer and n = m + [; then corre-
sponding to the partition A* we define the extended one

N=Yr=...=ym=Xxp,
Ymy1 = x?a ey Yn= x7a
Ynel = Ynp2 = . = Ynm = x;+1 . (7)
The set of normalized B-splines Bi"'),Bg"'), ..., B of order m, associated with

this extended partition, forms a basis for S,,(A*), where S,,,(A*) is the class of poly-
nomial splines of the order m with knots y; [7].
Foreachi=1,2,...,n,let

1 .
Tij=Yi+(J’i+m_}’i)'(%_—l))‘a Jj=12,....m, (8)

and
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L ¢yl (0)
— ¥ P
au—;w, ]—1,2,,m, (9)
where
v—1 m—1
w_ =D @=-1 .
Ei - (m_ 1)| LI](t yt+r)7 (10)
j=1
yy(t) = H(t = Tw), ¥a()=1. (11)
r=1
Forany f € B(J) ' we consider the following quasi-interpolating operator
n m
Q’lf(x) = Z (Z aij[TilvTiZ) e 7TIJ]f> Bl(’n)(x) ) (12)
=1 \ j=1

where [7i1, . .., 7] f is the (j — 1)th divided difference.

We remark that Q,f is a linear operator mapping B(J) into S,,(A%) < Sm(A)
and depending only on values of f in a small neighborhood of x.

Moreover, O, reproduces polynomials of order m (i.e. degree <m).

If we use the quasi-interpolating (12) to approximate f in (1) and in (2), we
obtain respectively the following quadratures:

I(Kf) = I(KQnf) ~ I(Kf), (13)
Tn(uf; X) = J(uQnf; X) = J(uf; A) , (14)

for which we can provide a satisfactory quadrature theory.

In fact, this scheme places no restriction on the order of the splines and very
few restrictions on the spacing of the knots. Moreover, it guarantees a precision
degreeequaltom — 1.

Regarding convergence, we can prove that the sequence of product rules
{L,(Kf)} converges to I(Kf) for all f € C(J). These convergence results are for an
arbitrary partition A subject only to the condition

A—0 as k or, equivalently,n—>o00. (15)
In our discussion we need the following lemma directly deduced from [14].
LEMMA2.1
Let 1<s<m and ||g| = max,cs|g(x)|. Then for all feC*'(J) and for all
j=0,1,...,5s—-1,

' B(J) = {f : fisareal valued function onJ and | f(z)| <coforall zeJ}.
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IDD(f = @< CAY 7 wmesr (F470, 4),, (16)

where C is a constant dependent only on 1, w,,—s.; is the modulus of continuity of
order m — s + 1 and DU) is the jth derivative operator.

The following theorem provides a convergence result and a bound for the quad-
ratureerror.

THEOREM 2.1
Let 1 <s<m. Then, forallf € C*~!(J) and forall K e L, (),
I(Kf) = L(Kf) = O((A) " wn (471, 4)), (17)
where wy is the traditional modulus of continuity of /.
Proof
Since
[(Kf) = LKA <If — G/ (1K), (18)
from lemma 2.1, where we putj = 0, the thesis follows. ]

Now we consider the quadrature error J(uf; A) — J,(uf; \), for which in the fol-
lowing theorem we derive a bound.

THEOREM 2.2
Let 2 <s<m. Then, forallf e C*~1(J),
T(uf; X) = Ju(uf; N) = O((A) 2wy (67, 4)) . (19)
Proof

With the help of the Mean Value Theorem and lemma 2.1, where we assume
Jj = 0,1, wecan easily obtain

I (uf; A) = Ju(uf; N)| < Comsin (FED, A) - U, (20)

U= {(A‘)s—2 /_ 11 ()| dx + () ][_ 1%&‘}

From (20) the thesis follows. O

where

3. On the computational procedure QSTPQR

We remark that, since we can write
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Onf (x sz,,s“" (xX)f (3), (21)
=1 j=
where
v = zm:_r_ﬂ__ , (22)
r=/ H Ty — Tz.s'
%
then
L(Kf) =Y wf (1), (23)
i=1 j=I

where p;; = vyl (KB; (m)y,
Thereal valuesw; = I (KB,('") ),i=1,2,...,n,are the weights of the product inte-
gration rule
n
Ru(Kf) = wif (z:) = I(Kf) (24)
i=1
with prefixed nodes z; € [y;, yi+m| based on approximating splines with knots (7)
[16]. We recall that the precision degree of (24) is <1;itis = 1 onlyif {z;}}_, are the
Schoenberg points (see[11]).

The construction of nodes {7;;} and weights {y;;} of the rule (23) is made by the
algorithm QSIPQR, whose computing task is broken down into a series of mod-
ules. Given an initial points partition A, in module DELTA of QSIPQR, we gener-
ate the associated 4-quasi uniform partition A* and then the extended partition
(7). Successively, by (8) we obtain the nodes {7;}.

The computation of the weights {u;} is obtained by the modules VIJ and
INTKB. For any fixed i, by (22), the module VIJ computes the values
vyj,j = 1,2,...,m, with o, defined by (9) [17).

Recalling the definition of the classical symmetric functions
symmj(tl ,ta, ..., 1), anelementary calculation shows that

symmy(ty,ty, . .., tp) = Z AT

I<ii<h<..<ijgp

Therefore we can use the symmetric functions to compute «;,. In fact, we can
write

r—1
o = S 1Y sy )

j=0
and, from (10),
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(v _(,bf D)1 V) Symm, (et - Vieme) (25)

E(V)

Then the final computational formula for o, is:

r
. 2_; iy (m) _(n; )! L CeiDires, (26)
where
Cip—1 = symm,_; (Vig1, - - -, Vitm—1)
and
D;,_, =symm,_,(Ti,...,Tis—1)-

For any fixed i, the module INTKB evaluates / (KB,('")). Following [11], on the
set of knots {y;};_; we can define

1, yi<x<yiyl,
B(x) = { YT 27)
0, otherwise,
and the B-splines of order m are generated by the stable recursive method
(m) X —Yi (m~1)
B;"(x)=————B; x
) Yitm—1 = Yi )
Yitm — X 1 (m-1) .
+———8R8 i=12,...,n. 28
Yitm — Vit '+1 (), (28)

Through (28) the module INTKB implements a recurrence formula to obtain the
values {w;};_;. Letting the integrals be

I,(KBY >—/xp1<(x BOWdx, p=0,1,...,m—gg=12..,m, (29)

we insert (28) into (29) to find the recurrence formula:

L1 (KB" D) — yil,(KBI™")

L(KB™) =
P(KB) Yiem—1 ~ Vi
-1) 1
+)’i+m1p(KBx(rl ) = Ipya( z-Tl )) (30)
Yitm = Vit1
This formula, starting with the sequence of integrals
I (KB(I) {fy‘*' (x)x’dx, wheni=m,... n,
otherwise,
p=0,1,2... m—1, (31)

is used to evaluate the terms / (KB,('")) = Io(KB,('")). Each of the integrals in (31) is
evaluated by the module CALINT, here proposed for the case of kernel
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K(x)=In|x— A, Xe(-1,1).

For another choice of kernel K the module CALINT has to be replaced by
another appropriate one, specific for the function K considered.

Now we can report the closed form expressions of (31) for the kernel here consid-
ered. Let:

=0 T iy, 32
P 1A =il (32)
okt _ okl
k i
5 T+l Z p k+1 (33)
then, fori=m,...,n,
Aiyr — 4 = S, if Mélys, yin]
I,(In A — x|BY) = o A€ (v yert), (34)
Ay — Si, if A=y,
—4; - S, if A=y

A FORTRAN 77 code, whose listing and diskette are given in [9], implements
the above method to generate the nodes {;} and the weights {1} of (23).

4. On the computational procedure QSICPV

We can write
n m
Tauf; N =S v(Nf (), (35)
i=1 j=1
where
vy(\) = vl (uB™; X) . (36)

We remark that the real values {w;(\) =J (uB,("');)\),i= 1,2,...,n} are the
weights of the integration rule for the CPV integrals (2),

RalwfiN) = 3w (21) = Taf V), (37)
i=1

with prefixed nodes z; € [y;, yiym) based on approximating splines with knots (7)
[16]. The precision degree of (37) is < 1;itis = 1 only if z; are the Schoenberg points
(see[11)]).

Given an initial points partition 4, in order to generate the knots {y;} of the
extended partition, we use the module DELTA as in QSIPQR. If one of the knots
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coincides with A, then the procedure stops with a message, otherwise it evaluates
nodes {7;} and the real value {v;;} by the module V1J.

If \#y;,Vi=1,2,...,n, then for every i, the module INTKB evaluates the
weights w;(\).

Defining the integrals
1 {9)
B:
Jp(uB,(q);/\) = ][ u(x)x‘”x—’(—)/c\zdx, p=01,....m—qqg=12,...,m,
—1 -
(38)
by means of (28), we obtain
(m-1) (m—1)
m J, B; s A) — yidy (uB; ;
Yigm—1 — Vi
Piemdp BT N) ~ ot uBETY; )
+ . (39)
Yiem = Vit1
The above recurrence formula, starting with the sequence of integrals
1 p (1)
Jp(uB§‘>;A):][ u(x)f%—)(\x—)dx, p=01,....m—1, (40)
~1 -

is used to evaluate the terms:
T(B™;A) = Jo(uB™; N . (41)

In order to calculate the elements in (40), of the recurrence basis, we can write

J,(uBM; \) =
i y(x) Zrde = Y0 A 2 u(x)x~*dxt
= +)\"Jo(uB§1); A), i=m,...,n, (42)
0, otherwise .

Each of the integrals in (42) is evaluated by the module CPVINT, using a closed
expression, if it exists.

When a closed expression for (42) does not exist then, similarly to [12], a numer-
ical method must be used.

A FORTRAN 77 code, whose listing and diskette are given in [9], implements
the above method to generate the nodes {7;;} and the weights {;;} of (35).

5. Application and final remarks

Several numerical applications that test the performance of the rules (13) and
(14) have been made, and the results obtained are available [9].
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In order to construct the B-splines we must choose the initial partition A. For
our numerical examples we have chosen the following two A-partitions, both satis-

fying (15):
2i

: unif A=¢xi=—-14+—,i=0,1,...,
U: uniform {x +k+1’l 0,1 k+1},

P: perfect A= {x,- =COS(—;—_:_-*1_-—I—7I‘),I'=0,1,...,IC+ 1}.

We remark that if A = U then A* = A, whereas if A = P we have used the con-
structive theorem 2.1 to generate A* from A.

An interesting open question, concerning the above formulas and here not con-
sidered, is their convergence for larger classes of functions f. Recently, we have
investigated this problem and the results obtained are reported in [7,8].
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