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Abstract: A number of interesting features of the ground states of quantum spin 
chains are analyzed with the help of a functional integral representation of the 
system's equilibrium states. Methods of general applicability are introduced in the 
context of the SU(2S+ 1)-invariant quantum spin-S chains with the interaction 
_p(o), where p(o) is the projection onto the singlet state of a pair of nearest 
neighbor spins. The phenomena discussed here include: the absence of Nbel order, 
the possibility of dimerization, conditions for the existence of a spectral gap, and 
a dichotomy analogous to one found by Affleck and Lieb, stating that the systems 
exhibit either slow decay of correlations or translation symmetry breaking. Our 
representation elucidates the relation, evidence for which was found earlier, of the 
_p(o) spin-S systems with the Potts and the Fortuin-Kasteleyn random-cluster 
models in one more dimension. The method reveals the geometric aspects of the 
listed phenomena, and gives a precise sense to a picture of the ground state in which 
the spins are grouped into random clusters of zero total spin. E.g., within such 
structure the dichotomy is implied by a topological argument, and the alternatives 
correspond to whether, or not, the clusters are of finite mean length. 

Table of Contents 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .  18 
2. Quasi-State Decomposition for Equilibrium States of Quantum Spin Systems 21 

Work supported in part by NSF Grant PHY-9214654. 
* Also in the Mathematics Department. 
E-mail: aizenman@math.princeton.edu 

bxn@math.princeton.edu 

�9 1993 Copyrights rest with the authors. Faithful reproduction of the article for non-commercial 
purpose is permitted. 



18 M. Aizenman, B. Nachtergaele 

2.1. The Functional Integral Representation for the Spin-S Model with 
Interaction _p(0) . . . . . . . . . . . . . . . . . . . . . .  21 

2.2. Poisson Process Representation e - 3 ~  . . . . . . . . . . . . . .  24 
2.3. The Q-S-Decomposition . . . . . . . . . . . . . . . . . . .  25 
2.4. The Spin-l/2 Heisenberg Ferro- and Antiferromagnet . . . . . . .  25 

2.4.a. The Ferromagnet (H F) . . . . . . . . . . . . . . . . .  26 
2.4.b. The Antiferromagnet (H AP) . . . . . . . . . . . . . . .  27 

2.5. Structure of the Quasi-States . . . . . . . . . . . . . . . . .  29 
2.6. The SU(2S + 1)-Invariant Spin-S Models with the Interaction _p(0) 30 

3. Equivalence with the 2-Dimensional (2S + 1)2-State Potts-Models . . . .  31 
4. Finite Systems and the Thermodynamic Limit . . . . . . . . . . . .  37 
5. Absence of N6el Order . . . . . . . . . . . . . . . . . . . . . .  40 
6. Dimerization versus Power Law Decay: A Dichotomy . . . . . . . . .  41 

6.1. The Dichotomy . . . . . . . . . . . . . . . . . . . . . . .  42 
6.2. The Dimerization Order Parameter . . . . . . . . . . . . . . .  44 

7. Decay of Correlations in the Spin S Model with Interaction _p(0) . . . .  46 
Appendix I: Quasi-State Decomposition for Quantum States . . . . . . .  56 
Appendix II: FKG Structure and the Rising Tide Lemma . . . . . . . . .  59 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

1. Introduction 

There is a geometric aspect to the structure of the spin-spin correlations found at 
low temperatures in a number of quantum spin systems. Our purpose is to 
introduce some generally applicable tools for the analysis of such phenomena. That  
is done in the context of the SU(2S+ 1) invariant models introduced by Affieck 
[55] and also studied by Batchelor and Barber, and Kliimper [6, 10, 11, 38, 39], 
which include the spin 1/2 Heisenberg antiferromagnet as a special case. 

The systems considered here are one dimensional chains of spin S variables, 
with the Hamiltonian 

~ 3 x r  . . . .  1, (1.1) H = - (2S + 1) -(o) , 
x 

where p~O~ is the orthogonal projection onto the singlet state of two quantum spins 
of magnitude S, and Jx > 0. The models with translation invariant (all J~ = J )  or 
staggered coupling constants (possibly with two different values for x even and 
odd) are of special interest and some of our results are specific for these cases. We 
will refer to the Hamiltonians (1.1) as the spin S models with interaction -p(o) .  The 
explicit form of the interaction in the basis of eigenstates of S 3 is: 

S 

(2S+I)P(~ ~ ( -1 ) ' - a ] f l ,  - / l )  (~, - ~ ] .  (1.2) 
~,~= -S  

The interaction can of course also be expressed as a polynomial in the Heisenberg 
interaction S~. S~+ 1. For  S = 1/2 and S = 1 one obtains 

p(o} = ~'�88 Sx+ 1 for S=1 /2  (1.3) 
1 2 1 -x'Y (~(S,-S~+D - ~  for S = l  

The analogous expressions for general S can be found, e.g., in [11]. 
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The phenomena which we shall address are: 

1) The nature of the order parameters which characterize the possible occur- 
rence of symmetry breaking in the ground state. 

i. Ndel order. In higher dimensions such models may exhibit N6el order in the 
ground state. For the standard Heisenberg antiferromagnet this has been proved 
for dimensions d > 3  and also for d = 2  if S>1  [16, 35]. The representation 
introduced here permits to rule out that possibility for the translation invariant 
models with interaction (1.1) in one dimension, on the basis of known results in 
percolation theory (in two dimensions). (In one dimension, the representation 
relates N6el order to a transient behavior in a system of random loops which form 
the boundaries of the connected clusters of a random cluster model.) 

ii. Dimerization. The one dimensional models may, nevertheless, exhibit a two- 
fold translation symmetry breaking, caused by dimerization. While the interaction 
favors the pairing of neighboring spins into singlet states, not all neighboring spins 
can be paired simultaneously. There are, of course, states - corresponding to 
different dimerizations of the lattice, in which half (or, on the lattice ;ge, a fraction 
1/(2d)) of the interaction terms are minimized. While these are not true ground 
states, it turns out that in one dimension for S large enough (S > 1) this structure is 
present in the ground state, which decomposes into a superposition of two partially 
dimerized states. Spins on even sites have stronger correlations with their neigh- 
bors to the right in one of the states, and to the left in the other. 

The classical dimerization picture is too naive in two aspects: 1) the model's 
correlation functions extend beyond nearest neighbors, and 2) the spins correlate in 
larger clusters than pairs. A virtue of the method employed here is that it permits to 
describe this phenomenon (and the picture of the correlated clusters) in explicit and 
precise terms. In particular, we find the following behavior: in the state where the 
spins on the even sites are more correlated with their neighbors to the right one 
finds that with probability 1 some spins on the left half-infinite chain ( -  o% x] form 
a singlet with some spins on the right half-infinite chain I x +  1, + o9), for each 
x even. In the same state this probability is < 1 for x odd. 

2) The "dimerization versus power law decay" dichotomy. The dimerization does 
not always occur. However, we show that there is a dichotomy: the ground state 
either dimerizes, or exhibits slow decay of correlations (with 2x [x (So 3 S~)[= + oo). 
The dichotomy has the following geometric content. When the (even) clusters of 
correlated spins are tightly bound, with only a finite number of clusters having the 
origin in their span, then a topological argument implies that the translation 
symmetry has to be broken. The alternative is that the clusters of correlated spins 
are loosely bound, with the origin (as well as any other lattice site) belonging to the 
span of infinitely many correlated pairs. In that case, the above sum of the 
correlation function diverges. In fact, in our representation, that sum measures the 
number of correlated spin pairs with x < 0 and y > 0. 

The dichotomy discussed here is reminiscent of the one found by Attteck and 
Lieb for the Heisenberg antiferromagnetic spin chain with half-integer spins [7]. 
However, unlike the dichotomy of [3], the one discussed here is not restricted to 
half-integer spin. The string order parameter mentioned above is also a variant of 
one which has been found relevant before in the context of the Heisenberg model. 
In fact, the method introduced here applies to quite a broad class of antiferromag- 
netic spin models, to be discussed in a subsequent paper [5]. 
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3) Relation with the Ports models. The ground states of the 1D spin chains with the 
Hamiltonian (1.1), as well as the Gibbs states exp(-/~/-/) are related to Potts model, 
which in case of the translation invariant interaction are always at the self-dual 
point. The existence of a relation was noted, at the level of a similarity of the spectra 
of the relevant transfer matrices, by Baxter [8] for the spin 1/2 model, and by 
Attteck (who introduced the general spin S model with interaction _p(o)), 
Batchelor and Barber, and Kliimper [6, 11, 39] for general spins. The representa- 
tion employed here makes this relation very explicit. In particular, the dimerization 
corresponds to the existence of long range order in the corresponding Potts model, 
and the expectation values of any observable of the spin chain can be expressed in 
terms of quantities calculated within the Potts model. The relation presented here 
extends also to models with inhomogeneous couplings (for which the correspond- 
ing Potts models are no longer at their transition point), and thus extends beyond 
the exactly soluble cases discussed in [8, 6, 11, 39]. 

4) Decay rate. Using the geometric representation, and the FKG inequalities 
which it allows to bring to bear on the problem, we derive an effective bound on the 
decay of correlations of general observables in terms of the truncated two-point 
function z(x, y) of an associated two-dimensional (2S+ 1)2-state Potts model: 

I(AB~)I~CACB Z ~(x, y) . (1.4) 
x ~ s u p p A  

y~suppBz 

For a more complete statement and the notation see Theorem 7.2. Assuming that 
the truncated two-point function of the two-dimensional Potts model in a magneti- 
cally ordered pure phase always has exponential decay, this result implies the 
existence of a spectral gap in the ground states of the spin S models with interaction 
_ p(O) whenever dimerization occurs. The case of staggered couplings, {J ... . .  Jodd}, 
is of interest for the discussion of the spin Peierls instability. Our method confirms 
the results obtained by Cross and Fisher for the exponents describing the leading 
behavior of the energy and the mass gap as a function of lJ . . . .  --Joadl [15]. 

This paper serves as an introduction to a technique of wider application, which 
is based on a decomposition of the Gibbs states of a large class of quantum 
spin Hamiltonians as superpositions of what we call quasi-states (see Appendix I). 
In a subsequent paper we show that such a representation exists for any iso- 
tropic nearest neighbor interaction under the condition that there are no frustra- 
tion effects. No frustration essentially means that the lattice is bipartite and the 
Hamiltonian has ferromagnetic interactions only within each sublattice, and all 
interactions between spins of different sublattices are antiferromagnetic. In case 
there are only ferromagnetic interactions the bipartite structure is irrelevant. 

For the more general case, the method used here permits to give a natural 
description of the occurrence of a fractional spins at the edges of finite chains. 
Let us just mention some results for the spin-1 antiferromagnetic chain with 
Hamiltonian: 

H = ~  aSx. Sx+l + b(S~. Sx+ 1) 2 (1.5) 
x 

with the coupling constants a and b satisfying a >0 and b <0. Again there is 
a dichotomy [5]: under the assumption of sufficiently fast decay of correlations 
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(expected to be violated only when a = - b )  either 

1) the ground state of the infinite system dimerizes, and thus breaks the translation 
invariance of the Hamiltonian, 

or, 2) finite pieces of the chain behave as if near each edge there was an excess spin 
s=~. 

The latter case corresponds to the Haldane phase [30] and the spin-1/2's at 
the edges have been observed in electron spin resonance experiments on NENP 
[-29, 27, 28]. 

2. Quasi-State Decompositions for Equilibrium States of Quantum Spin Systems 

In this section we derive the path integral representation for the ground state, and 
the equilibrium states, which is employed in the derivation of the results described 
in the introduction. The discussion applies to a more general class of systems than 
those covered by Eq. (1.1). We also introduce here the notion of a "quasi-state 
decomposition" of a quantum state. Some of its basic properties are presented in 
Appendix I. 

Before turning to the derivation, let us state the net result for the spin S models 
with interaction - p(o). 

2.1. The Functional Integral Representation for the Spin S Models with Interaction 
_ p(O). Absorbing a convenient constant in its definition, the Hamiltonian is now 
given by: 

+ 1)Px, x+l} ,  (2.1) H = Z { 1 - (2S (o) 
X 

and we are considering finite chains of spins of magnitude S. (The validity of 
Proposition 2.1 below is actually not restricted to the one-dimensional case, 
though it requires the model to be frustration free, i.e., to have a bipartite structure.) 

We denote by a = {O'x) a configuration of joint values for the commuting family 
of observables {S(~3)}. These configurations form a natural parametrization for an 
orthonormal basis of the Hilbert space of the system's state vectors. We obtain the 
following representation for the matrix elements, in this basis, of the operator e ~n. 

For each specified pair of configurations, e -P ' ( a  ', o-) is given by an integral over 
various possible histories of a time dependent configuration a(t)= {ax(t)}, with the 
time t ranging over the interval [0, fi], and a(0)= a and a(fi)= a'. What remains to 
be specified is the description of the configurations contributing to this integral, 
and the measure with which they are integrated over. 

The contributing spin configurations are piecewise constant in time. When 
a change occurs, the spins change simultaneously at a pair of neighboring sites, but 
the two spins are constrained to add to zero both before and after the change. 
A useful description of the process is obtained by associating with each spin 
configuration a collection of "horizontal" bonds (in the space-time diagram in 
which time is in the vertical direction) linking the pairs of related sites in all the 
discontinuity events. For a technical reason, we find it convenient to somewhat 
modify this relation, and consider the bonds as enabling, rather than forcing the 
spin flips. (This extension yields a higher degree of independence in the measure 
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seen below.) The integral over the time dependent spin configurations is based on 
an integral over those time indexed bonds, which we denote by the symbol co. 

We shall use the following symbol for the consistency indicator function: 

I[-a(.)lcoJ = { 1 
0 

if ax(t) satisfies the above described constraints 
and all its discontinuities occur at bonds in co 
otherwise 

(2.2) 

and Iper[-r which equals one if, in addition, o-(.) is periodic in time 
= 

The collection of all the spin configurations which are consistent with a given 
bond configuration co is conveniently described with the aid of a loop decomposi- 
tion of the space-time diagram (which forms a finite-volume subset of ~ • [0, fl] as 
illustrated in Fig. 1). The loop to which a point (x, t) belongs is found by moving 
from it along the vertical line till a bond is reached. Upon reaching a bond, the path 
traverses it, and then continues in the reversed time direction along the vertical line 
to which it just crossed. This procedure is continued until the path either closes (by 
returning to its starting point), or reaches the time t = 0 or t =/~. For  the time- 
periodic constraint, the loops do not stop at t = 0, fi but reemerge at the other end. 
Following these instructions, space-time is decomposed into a collection of lines 
which may form either closed loops or lines connecting pairs of "boundary sites" (at 
t = 0, fl) (in the non-periodic case). Drawing each bond in duplicate, the corres- 
ponding lines may be drawn so that they do not cross. For  a specified co, the 
consistent spin configurations are completely characterized by the condition that 
the staggered spins, (-1)xo-x(t), are constant along each of the loops of co. In 
particular, for the periodic constraint, the number of consistent spin configurations 
is, (2S+ 1) ~~176 with Iper(co) being the number of loops. 

t=0 

- i  x=0 t 2 x 

Fig. 1. A space-time configuration co for the _p(o) quantum spin chain, at an inverse temperature ,8. 
As in a more general case, the spins are correlated within loops drawn by following the lines in the 
space-time. A special feature of this interaction is that the loops can be viewed as the boundaries of 
the connected clusters of two random cluster models, dual to each other. The shaded areas are the 
connected A-clusters, the connected B-clusters are left blank. A1, Az, B1, B2 are the four 
independent regions surrounding a bond that appear in the proof of the Euler relation. The trace 
of the loops on the t = 0 line shows a decomposition of the spins into random clusters of zero spin 
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The relevant measure for the time dependent spin configurations can be 
constructed by means of a product measure, obtained by the integration over 
co with an auxiliary Poisson process distribution, p[o,r and the discrete 
summation over the (2S+ 1) z"~'(~ consistent spin configurations (i.e., those with 
I[-o-(.)[co] = 1). The Poisson measure is characterized by the condition that the 
mean bond density is 1, and that they occur independently in disjoint regions. The 
contribution of a given bond configuration to the integral is enhanced by the factor 
(2S + 1) z,~ and therefore its effective weight in the partition sum is given by the 
probability measure 

#p(dco)=(~p)-lpto,p](dco)(2S+ 1) ~"~176 . (2.3) 

The situation is summarized in the following proposition. 

Proposition 2.1. For a finite system with the Hamiltonian (2.1): 

i) 
<a'[e-PUla)=sign(a ', a)Sp~o,~l(dco ) ~ I]a(fl)=a' ,  a(O)=a] . (2.4) 

a(.) :I[a(.) la~] = 1 

ii) The partition function is given by: 

Ltep = Tre a Zx((2s+ 1)P~x+ 1 -  1 ) = I  Pto,Bl(de))( 2S + 1)/p~176 �9 (2.5) 

iii) The equilibrium expectation values of observables which are functions of the 
operators S ~3) can be expressed as 

Trf({S~})e -p~ 
~ -~  #(dco)E~(f), (2.6) 

where #(dco) = ~ i  lP~o,~1 (do))(2S + 1) z;~ and the expectation functional Eo~(f) is 
obtained by averaging, with equal weights, over all the spin configurations consistent 
with co: 

1 
Z f(a(t=O)). (2.7) 

Eo(f)=(2S+ 1)IP"r(W)a:ila(.)lo~]= 1 

In the above proposition and in the rest of this paper by I [ . . .  ] we denote the 
indicator function of the event described between the brackets. Of course, the 
objects ~p,pto,aj(dco), E,o(f) and #(do)), depend on the size of the finite system and 
the magnitude S of the spins. 

The functionals Eo~ can be extended to the full algebra of observables (see Sect. 
2.5 for explicit expressions). Thus Eq. (2.6) is akin to a representation of the 
equilibrium state as a superposition of states. That, however, is only partially true. 
The linear functionals do not have the full positivity properties of quantum states. 
Nevertheless, this point of view is very useful, and is well justified in so far as the 
expectation values of the special (but important) subalgebra of observables 
{f({S~})} is concerned. We refer to such functionals as quasi-states. The notion is 
elucidated in Appendix I. 

As given by Eq. (2.7), in each quasi-state Eo, the joint distribution of the spins 
takes a very simple form. In particular: 

3 3 Eo~(SxSr)= (-1)Ix-ylC(S)I[(x, 0) and (y, 0) are on the same loop] (2.8) 

S 2 1 
with C(S)=2SI+ 1 ~ = - s m  = ~ S ( S +  1). 
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Hence, the spin-spin correlation is proportional to the probability, with respect 
to the effective probability measure on the space of bond configurations, that two 
sites are on the same loop of co: 

3 3 (S~Sy) =(-1)l~-yIC(S)Prob,((x, O) and (y, 0) are on the same loop). (2.9) 

The rest of this section is devoted to the derivation of Proposition 2.1, and 
of similar results for other systems (e.g. the Heisenberg ferromagnet). The dis- 
cussion of the specific properties of the model with H =  -~xP~~ a is resumed in 
Sect. 3. 

2.2 Poisson Process Representation ofe -pn. We now turn to the derivation of the 
functional integral representation, which is done in the broader context of oper- 
ators of the form 

Hr = -  ~ Jbhb. (2.10) 
beg 

where F is a (finite) collection of sites, N is a collection of subsets of F, and for each 
be~ ,  hb is a self-adjoint operator acting in the Hilbert space @~bWi, with Wi the 
state space at the site i, and Jb are non-negative coupling constants. We refer to the 
sets b~N as bonds, although for the moment they are not required to be pairs of 
sites. 

Thermal equilibrium states of the system, and its ground state (approached in 
the limit f i ~  oo), are associated with the operator e -pH. Following is a general 
expansion of such operators by means of integrals over a Poisson process. The 
symbols p and co appearing here are defined afresh, but their usage is consistent 
with the example discussed in the previous subsection. 

e- 'U=e IjL~eJb lim ( ]-[ e (- s~ + Jbh~')At) 
At--+O \be , .~  / 

(b~N )B/A t 
=e  pyb~sb lim {(1--JbAt)+JbhbAt} 

At~O 

=ePZb~ do,~3(dco) II* hb, 
(b,t)eo~ 

(2.11) 

where co = {(bi, h)} ~ N x [0, fi] is a configuration of time indexed bonds, I ]*  is the 
time ordered product: 

H *  h b  = h b k  " . hb2hb, , such that tbl < tb2 �9 �9 �9 < t bk  , 
boo) 

(2.12) 

and pS(dco) is a probability measure, under which co forms a Poisson process over 
• [0, fi], with the Poisson density ~[bJbdt. Thus, co forms a random countable 

collection of time-indexed bonds which occur independently in disjoint regions of 
• [o , /3] .  
The Poisson integral formula (2.11) offers a non-commutative version of the 

familiar power series expansion of the exponential function. 
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2.3. The Quasi-State Decomposition. In a wide class of models there exists an 
orthonormal basis { [a)} of the Hilbert space of the system such that for all co 

(~  ]-[* hb O~)>O. (2.13) 
(b,t)~e) 

For such models the Poisson integral formula (2.11) provides a starting point for 
a quasi-state decomposition (Q-S decomposition) of the Gibbs state defined by 

Tre-P~Q 
( Q } =  Tre_~n . (2.14) 

As we shall see, the condition (2.13) can be met, in suitable bases, for both 
ferromagnetic and antiferromagnetic models, and it does not require the existence 
of a basis in which all hb have only non-negative matrix elements as was the case in 
various previous approaches [14, 24, 26, 33, 37, 44, 45, 51, 52, 53] (for a treatment of 
a much wider class of interactions see [5]). 

The Q-S decomposition resulting from (2.13) takes the form: 

( " )  =S #(dco)(. )o) (2.15) 

with 

and 

TrK(co)Q [ [ ,  
(Q)o , -  TrK(co) ' K(co)= hb, (2.16) 

(b,t)e(o 

t'doo " -  P(o,~l (dco)TrK(co) (2.17) 
t )--ip[o,~l(dco)TrK(co ) �9 

Important features of the model are reflected in: i) the structure of the quasi- 
states (-)~,, and ii) the relative weights in the decomposition (2.15) of different 
classes of o2. To illustrate this, we now look in detail at the spin-l/2 ferromagnetic 
and antiferromagnetic models. 

The Spin-l/2 Heisenberg Ferro- and Antiferromagnet. The Heisenberg Hami1- 

(2.18) 

(2.19) 

2 . 4 .  

tonian is 
AF 

H(F)=t2)�89 Y', dx, yffx-Sr+Const. 
(~,y) 

AF 
= _  ~ ? h(F) ~-Const. ~x,y-{x,y} - (x,~) 

where ff = (a 1, a 2, a 3) are the usual Pauli matrices and the sum is over a set of pairs 
of sites. The signs are chosen such that we can always assume that the coupling 
constants Jx, y are non-negative. The following choice of hb permits us to cast both 
the ferromagnetic and the antiferromagnetic Hamiltonians in the form of (2.10): 

(T~ y ferromagnet (2.20) 
hb=12p(O~ antiferromagnet ' 

where T~ y - -(o) , and rx, y are the transposition and singlet-projection operators acting in 
the Hilbert space of the sites x and y (so, Tx, y interchanges the states at the sites 
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x and y). Use is made here of the relations 
--, An(O) ~x" ~y = 2Tx, y -  1 = 1 - '~rx,  y �9 (2.21) 

In discussing the matrix elements 

(tT l-[* hb tT'~= 2 (tTlhbllatl)(tTtl[hb21tTtz). . . (tTtk_llhbkltT') , (2.22) 
\ / b E ( . o  fit1 , . , . ,  O'tk_ t 

it is convenient to consider a space time picture in which the RHS is viewed as 
a sum over paths in the spin configuration space, with {~3} defined at all times. 
That configuration is piecewise constant, and the amplitude for the process is 
determined by the matrix elements of the operators {hb}. Beyond this point the two 
cases need be discussed separately. 

2.4.a: Theferromagnet (HV). In the ferromagnetic case, the h b a r e  transpositions, 
which occur with amplitude 1. Thus, the time-ordered product (2.12) consists of 
a sequence of transpositions which result in a permutation which we denote n(co). 
In particular, it is easily seen that 

TrK(co) = 2 tr(~) , (2.23) 

where 1F(co) is the number of cycles in the corresponding permutation. (The factor 
2 reflects the dimension of the single-site Hilbert space.) More generally, quantities 
of the form T r f (  {a~ })e- p'~ are described by the following construction- which is 
similar to but not quite the same as the one presented in Sect. 2.1 for the 
Hamiltonian considered there. 

The paths a(t) which contribute are constrained, by the nature of the trace, to 
have a(t=O)=a(t=fl),  and thus are periodic in time. The configuration co is 
visualised, in a space-time graph, by a collection of "horizontal" bonds connecting 
"vertical" lines indexed by the lattice sites. For each co, the contributing spin 
configurations are obtained by decomposing the graph into a collection of loops. 
The ferromagnetic loops are obtained by replacing the antiferromagnetic bonds in 
Fig. 1 by ferromagnetic ones (see Fig. 2). The loop to which a point (x, t) belongs is 
found by moving "upward" along the vertical line at that point till a bond is 
reached. At a ferromagnetic bond b = {x, y}, the path crosses from x to y and 
continues in the positive time direction. This procedure is continued until the time 
t = fl is reached at which point the path jumps to t = 0 at the same site, i.e. t = 0 and 
t = fl are identified. The process is repeated until one comes back at the point (x, t). 

The permutation K(co) and its cycle decomposition is easily read from the 
above picture: K(co) takes x into the site where the loop drawn starting from (x, 0) 
returns, for the first time, to t = 0. 

The discussion in Sect. 2.3 yields now the following proposition. 

F I ] 
Fig. 2. The graphical representation of the ferro- and antiferromagnetic bonds used in the 
drawing of the loop configuration co 
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Proposition 2.2 For the spin-�89 Heisenberg ferromagnet , the partition function and the 
expectation values of observables 9enerated by {a2}~r are 9iven by: 

~e~= Tre~ Y<x,y>Jx.,(rx.,- 1)=S P/o,pl(dc~ 2'F(~ , (2.24) 

and 
Tr f (aa)e-~ nv 

Lr~ -~  #F(do))E~(f), (2.25) 

where #V (dco) is the probability measure 

#v (do)) = ( ~ )  -1 P~o, p](dco) 2 F('~ (2.26) 

and the expectation functional EF (f) is obtained by averaging, with equal weights, 
over all the spins configurations which take common values (t/~ = + 1) on the cycles 
{7}co), correspondino to K(o)): 

F 2-  F~) E ~ ( f ) =  ~ f(~(t/)).  (2.27) 
q~= _+1 

In fact, EF(f) are quasi-states (adapted to the algebra generated by {a3}x~r 
according to the definition in Appendix I). In Sect. 2.5, below, we shall discuss the 
expectation values of other observables. However, let us note here that two 
interesting choices for f a r e :  f l  (0-3) = a~3 ay3 and fz(a3)=exp(flh~x~ra~). Here, in 
contrast to our overall convention, a~ denotes a Pauli matrix with eigenvalues _+ 1. 
For these functions E~(f) is given by 

F Eo~(fl)=I[(x, 0) and (y, 0) are on the same loop] , (2.28) 

EV~(f2) = l ]  c~ (2.29) 
7EO 

where 171 denotes the number of times 7 intersects the t = 0 axis (so, ] 7 [ = the length 
of the cycle ~).  In fact very similar expressions to the ones above can be derived 
also for itinerant electron models. The analogue of formula (2.29) for the Hubbard 
model was used by Aizenman and Lieb in [3] to derive a generalization of 
Nagaoka's Theorem to finite temperatures. 

2.4.b: The antiferromagnet (HAF). A significant difference between the ferromag- 
netic interaction and the antiferromagnetic one, which is seen already at the 
classical level, is the possibility of "frustration." Our analysis is restricted to the 
frustration-free case, which is characterized by the existence of a bipartite structure: 
the lattice F decomposes into two sublattices, FA and FB, with the couplings 
between two sites restricted to be antiferromagnetic if the sites belong to distinct 
sublattices, and, in more elaborate models in which both kinds of interactions are 
present (see [-5]), ferromagnetic within each sublattice. For convenience we also 
define 

1)lx-Yl=f'[ + 11 if x and y belong to the same sublattice ( -  (2.30) 
if x and y belong to distinct sublattices " 

As we shall see now, under the assumption of a bipartite structure, the positivity 
condition (2.13) is satisfied even though not all the matrix elements of the operators 
K(o)) are positive. 
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In the computation of quantities of the form Trf({o.~})e -anAF we need the 
matrix elements of hb for the antiferromagnet: 

hb=2P~ ~ ~ (-- 1)~-al/3, - - f i ) (e ,  --c~ I . (2.31) 
~,pe{~. -�89 

Note the similarity between (2.31) and (1.2). 
At this point we have a choice: the spin 1/2 AF system can be discussed in 

a form close to that of the spin 1/2 ferromagnet or in a form which is suitable for the 
more general spin-S models (with the Hamiltonian (2.1)). In order to lay the 
grounds for a sequel to this paper, where we encounter spin 1/2 systems with mixed 
F and AF interactions, we shall present the first option before treating the general 
spin case. 

As in the ferromagnetic case, for a given co the allowed time dependent spin 
configurations {0.~} are piecewise constant (in time) and can change only at pairs of 
sites where a bond occurs. When a change occurs it is again a transposition. 
However, there are the following differences from the ferromagnetic case: 

i) there is a restriction that where a bond occurs the two spins add up to zero 
(both before and after the event), 

ii) at a given bond a transposition may or may not occur, 
iii) the amplitude for a given "path" is ( -  1) raised to the number of transpositions, 

i.e. it equals the parity of the resulting permutation. 

Lemma 2.3. In a bipartite system, for each pair of configurations {0., 0.'}, all the 
permutations which take o. into 0: and which can be written as products of transposi- 
tions exchanging sites on different sublattices have a common parity, denoted here 
sign(o-, 0.'), with 

sign(o-, 0.)= + 1 . (2.32) 

Proof. Each transposition changes the number of positive spins on the A-sublattice 
by _+ 1. Therefore, noting that the spin configurations take values _+�89 the parity of 
any admissible permutation is 

(-- 1) Z~~176 . (2.33) 

We now derive the following formula for the matrix elements of the operators 
K(co): 

@ [I* hb 0.')= ~ <o.,hbl,o.tl)<o.,~,hb~,%>'"<o.,~ ~,hb~,o.') 
b@o~) ~  - - - ,  O'tk 1 

= sign(a, O.')2~o~(~ [a, o.'lco] , (2.34) 

where l~V(co) and I a f [ o .  , O-'; CO] are defined graphically, in a decomposition of the 
spacetime graph into paths, which in many ways is similar to the one seen in the 
ferromagnetic case. The paths now come in two kinds: open paths with end points 
of the form (x, 0) and (x, fi), and closed paths which we call internal loops (see Fig. 1). 
The open paths are constructed by starting from any point (x, t) with xEF and t = 0 
or fi, by moving in the vertical direction until a bond is met. Upon the traversal of 
a bond, the orientation of the motion in time is reversed. The path stops upon 
reaching t = 0 or t = ft. The internal loops are obtained in the same way, starting 
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from any point (x, t ) eF  x [0, fl] that does not already belong to an open path and 
a loop is completed when the path comes back to its starting point, loAF(co) denotes 
the number of internal loops. IAF [a, a'; co] is defined in terms of the open paths 
which we interpret as imposing a pairing condition on the spin configurations 
a = a ( 0 )  and a '=a(f l ) .  The condition is that for any pair of points x = (x ,  t) 
and y = (y, t') with t and t' either 0 or fl, that are the end points of a path in co, one 
has 

a(t)xa(t'),  = ( -  1) I~-'1= 1 - 26t, t , ,  (2.35) 

IAF[a, a'Ico] = 1 if (2.35) is satisfied for all open paths in co and 0 otherwise. 
Formula (2.34) is now a direct consequence of the graphical representation of 

co and the definitions given above. 
When computing TrK(co) one identifies t = 0  and t=fl .  Then, all paths are 

closed, i.e. they are loops, and we write IAF(CO) or/per(co) to denote the total number 
of loops in co. 

The above discussion leads now directly to the representation given by Prop- 
osition 2.1 for S = 1/2. 

2.5. Structure of  the Quasi-States. From the expressions in Proposition 2.1 and 2.2 
it is obvious that the quasi-states ( . ) ~  depend only on the structural properties of 
co revealed in the random loop picture of the configuration. In fact, the only 
relevant property of co is how its random loops link together sets of sites at t = 0. In 
both the ferro- and the antiferromagnet a quasi-state E~ is uniquely determined by 
the permutation n~ of the sites in F, which takes the site x ~ F  to the site n(x) which 
is where the loop at x, starting off in the positive time direction, intersects t = 0 for 
the next time. There is a one-to-one correspondence between the cycles in n~ and 
the loops in co that intersect the t = 0 hyperplane. Let 70 denote such a generic cycle: 

7o . (2.36) 
X 2  X 3 �9 . . X r X l  

A first observation to make is then that in the functional Eg,  with # = F  or AF, 
there are no correlations between the spins on two sets of sites which support 
distinct cycles in the permutation: 

E~ A,o = Eo~ (A~o), (2.37) 

where A~o is an arbitrary operator acting on the sites { x l , . . . ,  x~}. Moreover, 
E2 (Aso) depends on co only through 7o and we therefore might as well denote it by 
EUA,0). 

As the E~ are linear, they are completely determined by their values on 
operators of the form A~o = a~l 1 �9 �9 ir " axr, where ij~{0, 1, 2, 3}, and by a ~ we denote the 
identity operator. It is a straightforward exercise to compute E ~ o ( a ~ . . .  a~~) 
starting from the space-time picture: we consider the spin to be a piecewise 
constant function along ~o taking values a 3 = _+ 1. Where there is a factor a 3 the 
expectation value picks up a factor _+ 1 according to what the spin is at that point. 
a 1 reverses the spin and o-2= iaaa 3. For  the ferromagnet the result is: 

E F : ia ir " ~ot~rx~.., Gx~)=�89189162 d~1�89189 oZ'l-~)} �9 (2.38) 
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Classically, the antiferromagnetic state is equivalent to a ferromagnetic one of the 
staggered spins 

~ = ( -  1)xa~. (2.39) 

We find that such a relation holds between the two quasi-states corresponding to 
the same permutation 7o. The relation (2.39) does of course not correspond to 
a unitary transformation of the full algebra of observables of the system and is 
possible only because we are not dealing with true quantum states but only with 
quasi-states. A compact expression for the antiferromagnetic functionals is: 

EAF(tTil ir ~ir D#{x,}~rAE F :ail i~ �9 . . ( ~ X r ) =  ~ F  / ^ i l  ]~0 \ Xl ~ay0[O-Xl  " " " X r ) =  ( - -  / yO \ Xl . . . .  O'agw) ( 2 . 4 0 )  

We conclude this section by summarizing the results of Propositions 2.1 and 2.2 
in the following way: we found a representation of the ferro- and antiferromagnetic 
ground states as a convex combination of quasi-states which for the ferromagnet 
are a partition of the lattice into subsets on which the spins are locked together in 
a parallel state. For the antiferromagnet the spins are rigidly correlated in a stag- 
gered manner. This picture can be considered as a generalization of the VBS-states 
where neigboring spins are paired into the singlet state (for a different generaliz- 
ation see [17]). In particular, depending on the properties of #(&o), the states can 
also have long range order, characterized by the fact that the clusters percolate 
throughout the system. Finally we want to remark that the quasi-states each have 
a much larger symmetry group (which depends on co) than the ground state itself. 
Because there are no correlations between the sets of sites belonging to different 
loops, the spins on the distinct cycles in rco, can be rotated independently. 

2.6. The SU(2S + 1)-Invariant Spin-S Models with Interaction -p(O). We now turn 
to the Q-S decomposition of a generalization of the spin-�89 Heisenberg ferro- and 
antiferromagnet to arbitrary values of the spin. In particular this generalization 
includes the one-dimensional antiferromagnets that are the main subject of this 
paper. Starting from the Heisenberg Hamiltonians as they were written in Sect. 2.4, 
we just replace T~ y and --(o) , 2rx, y by the corresponding operators for a spin S system: in 
the "ferromagnetic" case the interaction hb e = Tx y interchanges the states at the sites 
x and y and for the antiferromagnet h as =(2S +'I)P~~ where p(O) is given in (1.2). It 
is obvious that both h~ and h f f  are SU(2)-invariant. Due to the invariance of this 
interaction under parity preserving relabelings of the 2S + 1 states, this SU(2)- 
symmetry is actually embedded in a larger (for S>  1) SU(2S+ 1)-symmetry. The 
model with interaction h F is a degenerate ferromagnet and its ground states 
are given by all permutation symmetric states of the system. (The integrability of 
the one-dimensional models with interactions hE and - h ~  was demonstrated in 
the well-known work of Sutherland [50]). The interaction hf f  is much more 
interesting and is the actual subject of the rest of the paper. In the case of the 
one-dimensional lattice, we recover the SU(2S+ 1)-invariant model that was 
first studied by Affleck [6] and also by Kliimper [39] and Batchelor and 
Barber [11]. 

As before, we can only deal with the non-frustrated case, and let Fa and FB 
denote the two sublattices defining the bipartite structure of the system. The 
SU(2S + 1)-symmetry of the Hamiltonian with interaction (1.2) is then represented 
by the fundamental representation on one sublattice and the antifundamental 
representation on the other sublattice. 
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The matrix elements of e -~H and the partition function for this model can be 
expressed using the same correspondence between configurations c0 and sets of 
loops as for the spin - 1/2 antiferromagnet. But now each loop has to be decorated 
with a label e taking the 2S + 1 values - S, - S + 1 , . . .  S -  1, S. The spin configura- 
tion as a function of x ~ F  and t~[0, fl], is now the following: 

S3(x,t)= ~ a if the label of the loop is e and xeFA 
(2.41) 

-- ~ if the label of the loop is ~ and x~FB 

The proof of Proposition 2.1 now follows by the same arguments of Sect. 2.4, 
taking into account the correspondence between loop labelings and space-time 
spin configurations given in (2.41). 

In the one-dimensional case the loops can be interpreted as the boundaries of 
the elements in a partition of the two-dimensional space-time. As we will see in the 
next section, the weights with which these partitions occur are given by the Gibbs 
weight for the associated configurations of a Potts model at the selfdual point. This 
will enable us to analyse the possible long-range order in the ground state of these 
models. 

3. Equivalence with the Two-Dimensional (2S+ 1)2-State Potts Models 

It will be natural to consider the spin chain with a priori different coupling 
strengths for the even and odd bonds. More generally, we are concerned with the 
Hamiltonian for a spin-S chain given by: 

L + - I  
AF AF 

H[L-,L+]= 2 1} -- Jxh{x.x+ , (3.1) 
x=L 

where hAF=(2S+ 1)P (~ is defined in (1.2), J x > 0  and L_,  L+ e2g, L_ N 0 < L + .  
We shall now show that associated to the geometric structure of Sect. 2 is 

a Potts model, or rather a pair of dual Potts models (the A- and the B-model). In 
the translation invariant case (Jx -- J for all x) one arrives at the Potts model at its 
self-dual point, where it is exactly solvable [8]. In this situation the equivalence was 
conjectured by Affieck and established on the level of the spectrum of the transfer 
matrices by Batchelor and Barber [11] and Kliimper [38, 39]. 

The Potts models are defined over a 1 + 1 dimensional lattice, 2g x IR, in which 
one of the directions (corresponding to the "time" of Sect. 2) is continuous. 

To introduce the lattices on which the A- and B-Potts model variables reside, 
we start from the space-time of the quantum spin chain embedded in IR 2 and 
partition IR 2 into vertical strips of width l which we label alternatingly A and B, 
with the strip 0 < x < 1 getting the label A, as in Fig. 1. The Potts variables of the 
A-model reside on the vertical lines bisecting the A-strips and the variables of the 
B-model are situated on the lines bisecting the B-strips. 

For  a volume [-0, T] x [L_, L+],  the Potts configurations of the A-model are 
functions ~(x, t), x = even +�89 [L_, L+],  which are piecewise constant in time and 
take values in {1 . . . .  , q}. In the time direction we always take the periodic 
boundary conditions. Other than that, there are two natural boundary conditions 
for a Potts model, which are exchanged under the standard duality map: the free  
and the wired, the latter corresponding to adding an extra strip to the left and to 
the right of the volume where the spins are required to assume a common value 
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(we assume the convention that the partition function includes also the sum over 
this common value). As will emerge from our discussion, the relevant boundary 
conditions here depend on the label of the strip along the boundary. If it is A then 
the A-model gets the free b.c. and the B-model the wired one, and otherwise it is the 
other way around. 

The partition function of the A-model (with the relevant boundary terms) is 
given by 

~ e e o t t s  = ~ PA (de)) 2 ~ exp 2 H dtJx (c~r162 1) , (3.2) 
x = e v e n + � 8 9  0 

L _  - 1 < x < L +  

where j v  = {jv} and {J~} are sets of positive constants (these are the ferromagnetic 
coupling constants in the vertical and horizontal direction respectively and in 

, /v  
which we have absorbed the inverse temperature of the Potts model), PA is 
a product of independent Poisson point processes on the lines {x = 2n + �89 x [0, iv] 
with intensity j v  and ~e, denotes the sum over all configurations ~ for which the 
discontinuities happen only at points (x, t) in the configuration co of the Poisson 
process. The sum in (3.2) should be interpreted as incorporating the boundary 
condition convention explained in the previous paragraph. 

The Poisson measure incorporates the interaction in the vertical direction, and 
it can be arrived at by way of a continuum limit of ordinary discrete Potts models 
with vertical couplings analogous to those seen in (3.2) for the horizontal inter- 
action. 

For the B-model we have an analogous expression with the condition 
{x = even +�89 replaced by {x = odd +�89 

Potts models are conveniently studied via an embedding in the random cluster 
model formulated by Fortuin and Kasteleyn [19]. As we shall see, it is at that level 
that the correspondence with the quantum spin chain is most explicit. The theorem 
below and Theorem 7.2 present some key results which are derived by that route. 

Theorem 3.1. Let the parameters of the finite quantum spin chain with interaction 
_ p(O) on the interval [L_, L+ ], and the ones of the A- and B-Ports models be related 
as follows: 

d n = (2S + J v 1)x+~, Jx=(2S+l)  1j~_~, 

q = (2S + 1) 2, fl = T. (3.3) 
T h e n  

i) 
1 1 2S 
fi ln2ge(s)= - -  ln~eP~ a 2S+1 2 Jx+  2S 

x = even  
L _  ~ x < - L +  - 1 

11- 1 L - ~ ( ~ { ( -  ) - - ( -  1) L+} - 1)ln(2S+ 1) 

Jx 
x = o d d  

L < x < L + - -  1 

(3.4) 

In particular the ground state energy per site of the quantum chain equals the free 
energy per unit volume of the associated Potts model up to a trivial constant. 

ii) The Potts model has periodic boundary conditions in the vertical direction and free 
boundary conditions in the horizontal direction. 

iii) The distribution #(dco) of the random loop representation for the quantum chain as 
described in Sect. 2, is identical to the distribution of the boundaries of the 
connected clusters of the Ports model in the FK-representation (see below). 
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It should be noted that the coupling constants of both the A and the B Potts 
model depend on all the coupling constants {Jx} of the quantum spin chain. The 
relevant coupling constants as defined in Theorem 3.1 are jv  and J~ with 
x=even+�89 for A-model, and x=odd+�89  for the B-model. 

In Sect. 7 we present some explicit relations between the correlation functions 
of the quantum chain and those of the Potts models, which, in particular, imply 
a non-perturbative result on the spectral gap in the quantum spin chains with 
staggered couplings (see Theorem 7.1). 

We now turn to the proof of Theorem 3.1. 
First we derive the Fortuin-Kasteleyn representation [18, 19] of the two- 

dimensional Potts models described above, by showing that the partition function 
and the probability measure of the Potts model are equal to the ones of a random 
cluster model. The random cluster model is obtained by considering a configura- 

�9 . v j R  . . 

tlon co = COAX COB generated by the Po~sson process PJA (dcoA)pB (&%), as a partition 
of the union of the vertical strips of type A in the following way: a point (x, t)+ cod is 
considered as cutting the vertical strip with coordinate x at the height t and a point 
(x, t)ecoB connects the two A-strips adjacent to the B-strip at coordinate x and 
height t (see Fig. 1). The partition function of the random cluster (RC) model is then 
given by: 

~fRC = I p~V (dO)A)pff (dco,)qCA(~OA • ~o,) , (3.5) 

where CA(COA X COB) denotes the number of connected clusters (consisting of pieces 
of strips of type A) in the configuration COAX CO,. The equality of 2~ P~ and ~RC can 
be derived straightforwardly by expanding the exponential in (3.2): 

Potts jV f } ~=~gA ~'~IOA (dco) ~ ~  e x p  ~ ~dtJnx((~,(x,O,,(x+2,t) -1) 
k x = 2 n + � 8 9  

=~ p~V(dco ) ~(oA~ .x=O ~ n~ T'(J~)'=e-~+'~ 

• S d t T .  �9 �9 a t  (~)a~.  + .  - + -  ~, . . . .  nx ~tx. tl ~,r 2,q ~ ~(x,t(.~)),r (x) 2,t,~) 

jv jH 
7--~ PA (dcoA)PB (dcoB) 2 r176 ~ (~*(y,t),~(y+2,t) 

(y,t)eo), 
---- I PJAV (alcoA) pjlt (dO)B) qCA (mA x Co.) = ~,RC . (3.6)  

In the sequel we shall write co for COA X COB and y(dco) or p(J~' J')(dco) instead of jv jH 
PA (dcoA)p, (de)B). 

A by now standard and very convenient tool for the study of the random cluster 
model is provided by the FKG inequalities [20J. Following is the FKG-structure 
which will be used to derive some of the main results of this paper in Sects. 4-7. 

We define a partial order on the configurations co as follows: co'~co if the set of 
A-bonds in co is contained in the set of A-bonds in co' and the set of B-bonds in 
co contains the set of B-bonds in O)'. (By A-bonds we mean bonds occurring in an 
A-strip and analogously for B-bonds.) As before, let/pr denote the number of 
loops in co, considered with periodic boundary conditions in time. We consider the 
loops as the boundaries of a collection of connected subsets (connected clusters) of 
the plane. Each such connected set consists of the vertical strips n < x < n +  1 
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connected by horizontal bridges. All strips in a given cluster are either of A or of 
B type. Let CA(CO) denote the number of connected clusters of A type and CB(co) the 
number of clusters of B type. With these definitions one then has the following 
obvious but crucial properties: NA(co) and CA(CO) are decreasing functions of co and 
NB(co) and CB(c0) are increasing, where Nc(co) denotes the number of bonds in 
co which occur in the strips of type C, C = A, B. 

In the following proposition and throughout the rest of the paper, pS(dco) 
denotes the Poisson measure on the configurations co for the quantum spin chain 
on a finite interval, [L_, L+], containing L+ - L _  + 1 sites, and at inverse temper- 
ature fi (see Sect. 2.1). J stands for the collection of coupling constants {Jx}r___~_<L+ 
which determine the intensities of the independent Poisson measures for each 
bond. We will sometimes need to distinguish between the coupling constants for 
even and odd x; we then use the notation: J = (J . . . . .  Jodd)" 

One then has the following relations: 

Proposition 3.2. With  boundary conditions described above, the fo l lowing relations 
hold: for  any u > O, 

p(S ..... Soda) (de)) u l.or(o) = c 1 P (J ..... J~ ~) (de)) u cA(o,) + c.(o,) 

=c2p(u ~S ...... Jod~)(dco)uZCA(e~) 

= ca p("J ...... - 1s~ u 2c.(o.), 

where 

C l = l g  - 1  

c 2 = u � 8 9  u t) 
x e v e n  

(3.7) 

J x + ( 1 - u )  ~ J x ) } ,  
x o d d  

c3=u-@((-1)L -(-1)L+}-lexp{fi((l-u) ~ J ~ + ( 1 - u - l )  Z J~)}. (3.8) 
x e v e n  x o d d  

Proof. We start by reformulating the random loop picture as follows. As before we 
consider the loops as being embedded in the plane which we have divided into 
vertical strips labeled alternatingly A and B as in Fig. 1. We can then associate with 
each configuration co, a set of A- and B-clusters as follows. When co contains an 
activated bond in an A-strip this bond is considered as forming a connection 
between the two B-strips to the immediate left and right of it and as cutting through 
the A-strip to which it belongs, and analogously for the bonds in a B-strip. Thus for 
each configuration co we have obtained a collection of clusters of A and B type and 
such that two different clusters with a piece of common border are of different type. 
CA(co) and CB(co) are the number of A-clusters and B-clusters in co, respectively. 

We consider a finite interval of the chain of the form [L_ ,L+] ,  with 
L_ N 0 < L + ,  and such that the number of sites is even. 

For concreteness, let us suppose first that the number of sites (L+ --L_ + 1) is 
even. Then, the boundary strips are either both of the A or both of the B type; 
suppose they are of the A type. Recall that we then have free boundary conditions 
for the A-clusters and wired boundary conditions for the B-clusters (wired indepen- 
dently at the left and at the right boundary) in the space (horizontal) direction. In 
the time (vertical) direction the boundary conditions are periodic. Call everything 
connected to the leftmost B-cluster the "outside." Then each loop in co unambigu- 
ously encloses a domain and has the complement of that domain as its outside, 
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i.e. every loop in co is the outer boundary of exactly one domain and except for the 
"outside," each domain has a loop as its outer boundary. 

Therefore the following relation holds: 

/ p e r ( ( / ) )  = CA(O) ) -]- CB(CO ) - -  1 . (3.9) 

Obviously we would have arrived at the same relation (3.7) if the boundary strips 
are of the B type or if the number of sites is odd. Denote by Na(co) and NB(co) the 
number of activated bonds that occur in co in the A-strips and B-strips, respectively. 
Then, with the boundary conditions described above, the following Euler relation 
holds (see Lemma 3.3 below): 

C . ( c o ) - C a ( c o ) + N A ( c o ) - N ~ ( c o ) = � 8 9  L - ( - 1 ) L + } .  (3.10) 

Using (3.9) and (3.10) we have: 

pJ ( dco) ulpor(~) = pJ (dco) uC A(~) + cB(o)- I 

= U�89  1) L -  - - ( - -  1) L+ } -- 1 pJ(dco)u2Ca(o)--NA(o)+NB(o) 

= u - �89 - 1)L- _ (_ a)L + } _ a pJ (de)) u 2 c,(o~) - N,(o) + UA ~,o). (3.11 ) 

The factors u u~('~ and u u"(~ can easily be absorbed in the measure p(dco) as a mere 
modification of the intensity and the normalization of the Poisson process using 
the relation: 

pJ (dco)2 N(~ = e p J(1 - a) pXJ (dco) (3.12) 

for any 2 > 0. That completes the proof. �9 

P r o o f  o f  T h e o r e m  3.1. In Proposition 2.1 we obtained the following expression for 
the partition function of the spin S model with interaction -p(0): 

~ ( s )  = ~ pJ(dco)(2S + 1) z~~176 . (3.13) 

We apply the second equality of Proposition 3.2 with u = 2 S  + 1. Comparing the 
result with (3.6) one then sees that up to a trivial constant ~e(s) is equal to the 
partition function of the A-Potts model in the Fortuin-Kasteleyn representation 
with q = (2S + 1) 2. Taking the logarithm one obtains i) of Theorem 3.1. In the same 
way one obtains ii). �9 

We still have to prove the particular form of the Euler relation that was used in 
the proof of Proposition 3.2. We will use the following lemma also to determine the 
self-dual point of the "continuous time" Potts models. 

Lemma 3.3 (The Euler relation). W i t h  the  prescr ip t ion  o f  above  one has: 

E(CO)- -CB(CO)--CA(CO)+NA(CO)--NB(CO)=�89  z+} . (3.14) 

Proof .  It is obvious that (3.14) holds for the configuration co that contains no bonds 
at all. We now prove that (3.14) is valid in general by showing that for any 
configuration co' obtained from any other configuration co by removing a bond, one 
has E(co') = E(co). 

Suppose for concreteness that the bond to be removed is in an A-strip and call it 
b. We divide the neighborhood ofb into four regions and label them A1, A2, B1 and 
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B 2 a s  shown in Fig. 1. There are two possibilities: 

1) In the cases where the domains A~ and A2 are connected with the bond 
b present, we must have that after the bond has been removed B1 and Bz are no 
longer connected. So in this case removing b leaves the number of A-clusters 
unchanged, but increases the number of B-clusters by 1. Hence indeed 

2) If with b present A~ and A2 are not connected, then there at least one of these 
two A-clusters must be surrounded by a B-cluster that contains both B~ and B2. 
Therefore B1 and B2 will still be connected when b is removed. So, in this case 
removing b leaves the number of B-clusters unchanged and decreases the 
number of A-clusters by 1. Again E(c0')= E(co). �9 

The Potts models are exactly solvable at their self-dual point in the thermo- 
dynamic limit. For quantum spin chains this corresponds to the translation 
invariant case where Jx = J for all x, and taking the limit fi--* oo. This relation 
follows from the next proposition. 

Proposition 3.4. The relation 
jH 
7 = q  (3.15) 

determines the self-dual point of the continuous time Potts model with partition 
function (3.2). 

Proof The statement is a direct consequence of the Euler relation. In Fig. 1 a cer- 
tain configuration co of cuts and bonds is depicted. The clusters consist of the pieces 
of vertical strips connected by the horizontal bonds in between. Recall that in the 
time direction the boundary conditions are periodic. In the horizontal direction the 
clusters at the boundary strips are subject to free boundary conditions. We also 
added an extra strip without bonds to the left and to the right of the interval. This is 
the situation where Lemma 3.3 holds and the A and the B Potts model are then 
exactly each others dual. 

Using Lemma 3.3 and (3.12), the expression (3.6) for the partition function of the 
A Potts model can then be transformed into the partition function of the B Potts 
model with new coupling constants: 

= q-~((- 1) L- - ( -  1) L+) ~ pyiJV(dCOA)p~ i S'(dco~)qC,(o~A x ~,,). (3.16) 

As p~V(dcoa) generates the horizontal and p~ 1J'(dcoB) the vertical bonds of the 
B-model, the condition for self-duality is d ~ =  qd v. �9 

Note that because of the relations between the parameters of the quantum spin 
chain and the Potts models, self-duality of the Potts models is equivalent to 
translation invariance of the spin chain. 

We end this section by deriving an expression for the spin-spin correlation 
function of the spin chain under consideration, in terms of the associated random 
cluster model (3.6). This random cluster model is a simultaneous realization of the 
A Potts model and its dual, the B Potts model. As remarked before, the boundary 
conditions are periodic in the vertical direction for both realizations, but at the left 
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and right edges one has wired boundary conditions for one and free boundary 
conditions for the other realization. 

In terms of the random loop model the (imaginary time) spin-chain correlation 
function is given by (see (2.9)): 

(S3(x, t)S3(y, s ) ) = ( -  1)x-rC(S)Prob((x, t) is connected by a loop to (y, s)). 

(3.17) 

In the random cluster model the loops are viewed as the boundaries between two 
domains of opposite type. It is therefore clear that: 

(S3(x, t)S3(y, s ) ) = ( -  1) x YC(S)I~(IA(X, y)IB(X, y)),  (3.18) 

where, for C=A, B, Ic(x, y) is the indicator function of the event that Xc and Yc 
belong to the same cluster. Here Xc = (Xc, t), with Xc defined by the requirements 
that [X-Xc] =1, and that Xc belongs to strip of type C. Note that for any two 
space-time points x and y, 1A(X, y) is an increasing and 1B(x, y) a decreasing 
function. 

We will often use the notation x ~ y  to indicate the event that x and y are 
connected. If x and y have integer space coordinates (i.e. they are on the vertical 
lines) connected means connected by a loop or a line in co. If the space coordinates 
of x and y are not integer the notation means that they belong to the same 
connected cluster. The event is empty if the two points belong to strips of different 
type or if the space coordinate of one of them is an integer and of the other one is 
not. 

The individual probabilities Prob(XA and YA belong to the same cluster), can be 
computed in the q-state Potts model (see the proof of Proposition 3.2, where we 
applied the Euler relation). So, 

(S3(x)S3(y))( - 1) x - r <  C(S)Probpotts(XA and YA belong to the same cluster), 

(3.19) 

and if I x - y l  = 1 and t = s, we have 

(SZ(x)S3(x + 1))= -C(S)Probeotts(x-�89 x +-~ belong to the same cluster). 

(3.20) 

4. Finite Systems and the Thermodynamic Limit 

As a first application of the equivalence with the Potts model obtained in the 
previous section we now prove some preliminary properties of the spin S model 
with interaction - p(o). Except when mentioned otherwise we only assume that the 
coupling constants are strictly positive. 

Theorem 4.1 (Finite Systems). For each finite interval [L_, L+], the limit 

(")tL-,L+1 = lira (" ) t~  ,L+~ (4.1) 

exists, both for the quantum spin chain and for the associated random cluster model. 
Furthermore, if the number of sites (i.e. L + - L  + 1) is even, the limiting quantum 
state has S t o  t = 0 and in the random cluster model there are no infinite lines (almost 
surely). 
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That the finite volume ground state of a finite chain of even length is unique and 
is a spin singlet confirms the antiferromagnetic nature of the models. The above 
theorem can be viewed as the analogue of the well known result of Lieb and Mattis 
[42] for the Heisenberg antiferromagnet for the class of Hamiltonians under 
consideration here. 

Theorem 4.2 (The Thermodynamic Limit). 

1) The finite volume ground states for the quantum spin chains and the probability 
measures for the random cluster models converge to a well-defined thermodynamic 
limit provided the parity of the boundary sites is preserved; i.e. for any local 
observable Q the following limits exist: 

(Q)even -- lim lira (Q)~L-,L+~, (4.2) 
L - ~ - o o , L - e v e n  f l ~ o z  
L +  ~ + c o , L + o d d  

(O)odd = lim l im (Q)[BL-,L+] , (4.3) 
L - ~  -- c o , L -  odd f l ~ o o  
L +  ~ + a o , L + e v e n  

and with similar limits defining f 1 ... .  (do) and #odd(dO)- 
2) Therelation between the quantum states and the probability measure of the random 

cluster model valid infinite volume (see Sects. 2 and 3) persist in the infinite volume 
limit. In particular: 

(Sx* Sy)  . . . .  (odd)=( - 1)x-yc(S)Probuovon~o~((x, 0) is connected by a loop to (y, 0)).  

(4.4) 

3) For translation invariant couplings the states ( . )  .... and (.)od~ are translates of 
each other, and each is invariant under translation of period two, as well as under 
global spin rotations. 

Remark 4.3. For translation invariant and staggered couplings the states ( . )  . . . .  
and ( .)odd are also ergodic and weakly mixing [21] under even translations. This 
fact follows from the clustering relation and the clustering properties of the Potts 
model which are implied by F K G  arguments (see Sect. 7 (Theorem 7.2)). 

The rest of the section is devoted to the proofs of Theorems 4.1 and 4.2. 

Proof of Theorem 4.1. Since the arguments are fairly standard we shall be satisfied 
with an outline of the proof. 

The existence of the limiting quantum state for the finite chains is trivial. For  
the random cluster model we can use the one-dimensionality of the system and the 
Perron-Frobenius theorem. 

If the number of sites in the spin chain (L§ - - L +  1) is even, it follows that if 
there is one infinite line, then there must be at least two infinite lines with opposite 
parity, i.e. such that at any given time the distance between the two lines is odd. In 
the random cluster picture this means that there are two infinite clusters of the 
same color (A or B) which is impossible by the theorem of Burton and Keane [12]. 
Alternatively, one can show by a variational argument that maintaining two 
infinite lines of opposite parity in a finite system costs a non-vanishing amount  of 
free energy per unit of imaginary time. 

By construction the state of the spin chain is necessarily rotation invariant and 
because there are no infinite lines one easily shows that (f(S3tot))=f(O) for any 
func t ion f  Hence the state must have Stot=0. �9 
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Proof of  Theorern 4.2. From the F K G  structure defined in Sect. 3 it follows that the 
measures #[L_,L+](&O) form a monotone sequence in F K G  sense (see Appendix II) 
if L_ and L+ are chosen such that the boundary strips are always of the same 
type (A or B). The standard argument then guarantees that the thermodynamic 
limit converges (see e.g. [1]). 

That also for the quantum system the thermodynamic limit converges and 
satisfies the relation (4.4) is not immediately evident because local observables for 
the quantum chain are typically related to probabilities of a non-monotone and 
non-local event, e.g. 

( S  3 3 Sy ) . . . .  

= ( -  1)~'-,J c(s) lim Prob, rL_ L ] ((x, 0) is connected by a loop to (y, 0)). 
L -  ~ -- o o , L  e v e n  
L +  --+ + o o , L + o d d  

(4.5) 

The event "(x, 0) is connected by a loop to (y, 0)" is non-local and it is non- 
monotone because 

PrObloops(X and y are connected by a loop) 

(xA and yA belong to the same cluster and)  (4.6) 
=Probr,ndomcl~sters XB and YB belong to the same cluster 

is the probability of a non-monotone event since the connectivity of the A clusters 
is increasing and the connectivity of the B clusters is decreasing for the order 
structure at hand. Therefore we need a separate argument to show that 

lim ProbuE ..... ~ ((x, O) is connected by a loop to (y, 0)) 
L -  --* -- r e , L -  e v e n  
L +  ~ + o o , L + o d d  

= Prob,,,.((x, 0) is connected by a loop to (y, 0)). (4.7) 

If (4.7) holds (and also its obvious extensions to probabilities of more general 
connectivities of finite sets of sites), the result follows by Proposition 2.1. 

For convenience we introduce the following shorthand notation: 

L-~[L_,L+] , 

AM=-[ -M,  M] x I - M ,  M] , 

L _ ~ - oo, L_ even 
L --~ oo =- 

L+ ~ + o % L + o d d  ' 

AL =-- 

AL, M~ 

Aoo = 

It is obvious that 

Prob~cL_ L j(x is connected by a loop to y),  

Prob.~ ..... ~(x is connected to y in the box AM), 

Prob~ovo.(x is connected by a loop to y) .  

for each finite L, 

A L = sup AL, M , 
M 

(4.8) 

(4.9) 
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and also that 

Az,~t<Probi~(~oandy are connected to A~I but not )  
O<=A L -- each other by a loop inside AM /. (4.10) \_v 

For M fixed we take the limSUpL-.~o of (4.10). For local events the limsup is 
actually a convergent limit. Therefore: 

0 < lim sup Am-Prob ,  ..... (x and y are connected inside AM) 
L- -*  oo 

< P rob ,  .... (x and y are connected to A~ but not inside Ag) .  (4.11) 

The RHS is monotone decreasing in M. Taking the limM-~ ~: 

0__<lira sup AL-Ao~ < Prob,ev0o(xA and YA belong to two distinct oe clusters). 
L ~ o o  

(4.12) 

Since the RHS vanishes, the value of lim SUpL ~ o~ AL is independent of the sequence 
of L's and so the limit exists and equals A~. �9 

5. Absence of NOel Order 

An infinite volume ground state of a quantum spin chain is said to be N0el ordered 
if 

lim i n f ( -  1) r (So. St> > 0 .  (5.1) 
r 

The aim of this section is to prove that in the spin S model with interaction - pr 
NOel order does not occur. More specifically we prove the following theorem. 

Theorem 5.1 (Absence of NOel Order). For translation invariant or staggered coup- 
ling constants the infinite volume ground states ( .  > . . . .  and <" >odd satisfy: 

lim (So. S,3 . . . . .  0.  (5.2) 
r ~ oo - ( o d d )  

In absence of NOel order in the ground state of isotropic antiferromagnetic 
quantum spin chains is believed to hold quite generally, but a rigorous proof of this 
general fact is lacking. More was done for the Heisenberg antiferromagnetic chains: 
1) for S=  1/2 the exact Bethe Ansatz solution shows no NOel order, and 2) for 
general spin, an argument for the absence of N0el order was given in [48] on the 
basis of a new correlation inequality (which is further discussed in 1-49]). 

A key role for the argument is played by a result of Gandolfi, Kean, and Russo 
[22], whose adaptation to our system takes the following form. 

Proposition 5.2. For the wired state of the A Ports model 

Prob(within a box of size r, (0, 0) is surrounded by an A-connected path) , 1 , 
r ~ o o  

(5.3) 
which holds regardless of q. 
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It is easy to see that (5.3) is equivalent to the statement that there is no 
B-percolation in the state obtained with the boundary conditions which favor 
A-connections. The reason for that fact is that if the A-clusters percolate then, then 
any finite region is encircled by A-connected closed paths which prevent B- 
percolation. If there is no A-percolation in this A-preferred state then neither do 
B-clusters percolate. The proof of [22] rests on the planar nature of the connect- 
ivity graph (i.e. the nearest neighbor nature of the interaction), its reflection 
symmetries, and the FKG property. 

Proof o f  Theorem 5.1. Theorem 4.2 permits us to express the expectation values of 
any local observable of the infinite spin chain in terms of the random cluster 
measures p ....  (&o) and godd(dco). The correspondence is identical to what Proposi- 
tion 2.1 provides for finite systems. In particular, by (2.9): 

( -1) '<S0.  Sr>odd=ProbA-wired((0, 0) and (r, 0) are on the same loop). (5.4) 

As the loops are the boundaries of the connected clusters in the equivalent 
random cluster model, when two sites x and y are on the same loop then both 
Xa~--yA (in the A-sense) and xB~y~ (in the B-sense). Hence the probability is 
bounded by 

< 1 - Prob(within a box of size r, 

(0, 0) is surrounded by an A-connected path) ~ 0 ,  
r ---> oo  

(5.5) 

where the last step is by Proposition 5.2. 

Let us remark that assuming the validity of the exact results for the Ports 
model, absence of N6el order is also implied by the bound on the spin-spin 
correlation function in terms of the truncated two:point function of the Potts 
model, which is derived in Sect. 7. 

6. Dimerization versos Power Law Decay: A Dichotomy 

Despite the result of the last section, the models considered here may exhibit 
symmetry breaking. However, the symmetry is that of translation, and the phe- 
nomenon is caused by dimerization of the spin chain. The main result of this 
section is the following dichotomy: for the models considered here, the ground state 
either dimerizes (and exhibits spontaneous breaking of the translation invariance), 
or the spin-spin correlations have a slow (non-exponential) decay, satisfying 

Ix<S3oS~)l= + oo . (6.1) 
x 

Both possibilities occur (see the discussion at the end of Sect. 7). 
A version of this dichotomy was first proved by Afiteck and Lieb [7], extending 

a result of Lieb, Schulz and Mattis [43]. They prove that the uniqueness of the 
ground state implies the existence of low energy excitations (of the order of the 
inverse size of the system). The argument in [3] applies only to half-integer 
SU(2)-spin chains, and to SU(n)-spin chains with a self-conjugate representation 
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acting at a site. Thus, the domains of applicability of our analysis and that of [7] 
have some partial overlap, but none includes the other. 

We also show that, when translation invariance is spontaneously broken, the 
two periodic states are distinguished by the nearest neighbour spin-spin correlation 
function. In this sense (and more if one looks into the representation) the states are 
dimerized. The phenomenon can also be detected by the long distance behavior of 
quantity: 

�9 2~ V y  S 3 

(_0x, y = e~XT/+, . . . . .  , (6.2) 

considered here only for x < ye• with x - y  odd. 
Observables very similar to (gx, y have been used earlier in studies of ground 

states of quantum spin systems (see [7, 25, 36, 47]) and in the computation of the 
magnetization of the critical Potts model [9]. In the second part of this section we 
introduce the "total spin on half of the infinite chain" as an operator in the GNS 
Hilbert space of the ground state. This quantity appears to us as of more funda- 
mental significance than the string observables (gx,y, and the latter can be expressed 
in terms of it. Moreover this new operator serves as a dimerization order parameter 
which reveals more clearly the detailed nature of the dimer order. 

6.1. The dichotomy. Following is the main result of this section. 

Theorem 6.1. For the ground states of the translation invariant spin S model with 
interaction -p(o) ((3.1) with Jx -J ) ,  the following dichotomy holds: 

- either the translation symmetry is spontaneously broken in the infinite volume 
ground states 

- or the spin-spin correlation function decays slowly (non-exponential) with 

~, Ix<SgS~>l = + oe . (6.3) 
x 

In the first case, the symmetry breaking is manifested in the non-invariance of the 
pair correlation: 

<So ~ S i >  . . . .  =~ <S1 ~ 82> . . . .  = < S o ,  S l>od d (6.4) 

and also in the string order parameter: 

lim <(9o,2N-1) . . . .  = lim <(91,2U)odd>0, (6.5) 
N~c~ N~oo 

l im  <(Q1,2N--l>odd = l i ra  <(~l,2N> . . . .  = 0 .  (6.6) 
N--* oo N~ov 

Proof. We again rely on Theorem 4.2 to express the infinite volume state in terms 
of the random cluster measures # . . . .  (dco) and godd(dCo). Since the even and the odd 
states are translates of each other, it suffices to consider one of them, for concrete- 
ness say the odd state. 

The physical origin of the dichotomy was outlined in the introduction�9 The 
random cluster representation permits us now to express these ideas in a precise 
way. 

First we note that the result of [22], on the absence of simultaneous A and 
B percolation, implies that the configurations co contain no infinite lines, i.e. the 
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lines (in space-time) along which the spins are correlated occur only in the form of 
finite, non-intersecting, closed loops. The most important implication is that at any 
given time, the spins are locked into rigidly correlated even clusters, with ~ S a =  0 
within each cluster. 

The alternative may now be posed as between the following two possibilities: 
the number of loops surrounding each site is either almost surely finite, or it is 
almost surely infinite. Equivalently, there either is percolation or no percolation 
(and if there is percolation then either A or B percolates, never both, and hence the 
translation symmetry breaking). The zero-one nature of these probabilities is due 
to the ergodicity of the measures under even translations (Remark 4.3). 

In the absence of percolation, by the identity (2.9): 

[(S3xS3>[=C(S) ~, Prob((x, 0)~(y, 0)) 
x<=O,y>l x<O,y>l 

= C(S)lEoaa(# connected pairs {(x, 0), (y, 0)}, 

x __< 0,y > 1) = ~ ,  (6.7) 

where lEoa d is the expectation with respect to the probability measure/toad. 
That the alternative necessitates symmetry breaking can be seen in different 

ways: i) via the existence of either A or B percolation, ii) by the distinction between 
the two sublattices in the values of a topological index, or iii) via the staggered 
values taken by the string order parameter. More explicitly: 

i) If (6.1) fails then the origin is surrounded by a finite number of finite loops. 
The last of those necessarily touches the infinite cluster. For the random cluster 
state corresponding to the spin state ( .  >oda, percolation is possible only for the 
A-cluster. (The argument is presented in Sect. 5). It then easily follows that 

PrObodd(X belongs to an infinite cluster)={ m > 0  if x = e v e n +  1 
0 if x = o d d +  1 " (6.8) 

A relevant question now is whether the probabilities of these events, which 
are expressed purely in terms of the configurations co, can be expressed in terms 
of the expectation values of some spin observables. As we show below, the answer is 
- yes! 

ii) An alternative way to express the translation symmetry breaking, though 
still at the level of the random cluster measure, is by considering the topological 
index: 

W(X, co) = ( - -  1) ~ ' ~ '  I(7 encloses x) (6.9) 

The index is defined only if the number of loops is finite, and it is easy to see that, 
when defined, its values alternate (with the overall phase dependent on co). 

iii) We now show that the string order parameter (6.2), which is an observable 
of the quantum spin chain, directly detects cluster connectivity (as opposed to loop 
connectivity which determines the spin-spin correlation). By an application of 
(2.6-7): 

<~x,y> . . . .  (odd) : Y # . . . .  (odd)Ea)((~x, y) (6.10) 

with 

Eo)((gx, y)= I [each loop of co intersects [x, y] an even number of times] . (6.11) 
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We use here the observation that the net flux of any simple loop through an 
interval is either zero or _+ 1. If ~o has a loop with a non-zero flux through the 
interval Ix, y] then the conditional average of (gx, y, over the consistent spin 

V y $3=0. configurations, vanishes. In the other case, ~ . . . .  

Hence, the string order parameter can be given a neat geometrical meaning: 

(Cx, y) = Prob(a11 loops intersect [x, y7 an even number of times) 

= Prob(any loop that encloses (x-�89 0) also encloses (y +�89 0) and vice 
v e r s a )  

= Prob((x-�89 0) and (y +�89 0) belong to the same cluster). (6.12) 

It immediately follows that (C~, r )=0  if y - x - 1  is odd. 
For the odd boundary conditions the percolating cluster can only be of the 

A-type and it is unique. It follows that 

lim ((~x,x+2N+l)odd---- lim Probuodd((x-�89 0) and ( x + 2 N + ~ ,  0) 
N-*m N--*m 

belong to the oe cluster) 

~m 2 for x odd (6.13) 
(o for x even 

Equation (6.13) is an explicit proof that the alternative to (6.7) is symmetry 
breaking. 

Going beyond the last statement, we can also show that the translation 
symmetry breaking is necessarily manifested in the nearest neighbor correlations. 
By (4.4): 

3 3 ( S x S x +  l)odd = -- C(S)Prob,odd(x --2~1 X ~_3"~2f 

={I#odo(dCO)IA(X,X+I ) if X is odd 

#oad(do~)IB(x, x + 1) if x is even 

={I#odd(dCo)IA(x,x+I ) if X is odd 
# .... (dco)Ia(x,x+l) if x is even '  (6.14) 

where we also used the duality relation. 
When there is percolation, A-clusters percolate in the state #oad but not in the 

state # . . . .  . The fact that this difference is then detected also at the level of the 
nearest-neighbor connections is an implication of the general criterion of the Rising 
Tide Lemma, which is derived here in Appendix II. (In the terminology explained 
there, Ic(x, y) (with C = A, B) are strictly monotone functions.) �9 

6.2. Thedimerization order parameter. More can be said about the dimerized state 
in algebraic terms, by referring to the Hilbert space associated with the ground 
states ( . )  ..... and (.)odd via the GNS construction. 

In physical terms, when it is correct to view the spins as organized into neutral 
clusters it is natural to talk about the total excess spin to the right of x, i.e., the total 
spin in half of the chain. This observation explains the following claim, which can 
be derived within our representation of the states ( . )  . . . .  and (.)oda- 
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Claim 6.2. Under the condition: 

(SoSx)l< oo (6.15) 
x 

(i.e., the opposite of(6.1)) the followin9 limits exist 

S3=lim ~ e - e ly  ~lS3=lim S~(e), (6.16) 
~ 0  y > x  ~ 0  

in the sense of strong resolvent convergence of operators in the GNS Hilbert space 
associated with either ( . )  . . . .  o r  ( , ) o d d -  

In terms of the random cluster representation: 

S~3 _- ~ Sy3 I[the loop of y intersects ( -  o% x]] . (6.17) 
y > x  

We omit here the proof, except for the comment that what is proven explicitly is 
the convergence of the quantities: 

( A e it~(e) B) ..... ~oaa) (6.18) 

for all strictly local spin observables. Equation (6.15) is a natural condition for both 
the existence of the limiting operator gx 3 and for the proof of the convergence. The 
first statement is the simpler task, e.g., it is easy to see that: 

~3 12\  ~ 
( l O x l  / . . . .  (odd) ~-. 2 3 3 ly(SoSy )1 (6.19) 

y > 0  

The operator S~ is the third component of a vector (under spin rotations), with 
~ and ~2 defined analogously. Using the invariance of the states: 

(e ~ g ~ )  . . . .  (odd) = (PISxl 2 = o) . . . .  (odd) , (6.20) 

where Pl~xl2_o is the orthogonal projection onto the subspace with I~xl 2 =0. 
The operators thus constructed permit to express the string quantity as follows: 

(9 - e  2s+~ ~-~- " for y>xe7Z (6.21) x,y - -  

Under the condition (6.15), the formula (6.17) for ~3 implies the clustering be- 
havior: 

((9~, y) . . . .  (odd) -- (PIsx , 12 = o) (PIg~l ~ - 0) --* 0 (6.22) 

for I x - y l  ~oo. Hence, by comparison with (6.13) or directly from (6.17), 

(Plgol~=O)odd=m, (PiSd~=O)oda=0. (6.23) 

Thus, the rotation of all the spins to the right of an odd site, by an angle 
2krc/(2S + 1), k = 1 , . . . ,  2S, produces a state orthogonal to the ground state {. )oaa. 
The orthogonality expresses the fact that such a rotation will necessarily break an 
existing bond. That is not the case for rotations of the spins to the right of an even 
site since, within the odd state, there is a positive probability that none of the 
clusters within which the spins are correlated are broken by this division. 

Remark 6.3. In the above discussion we used percolation ideas to relate the failure 
of (6.1) to the positivity of m. For half integer spins, that can be replaced by an 
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S~, which shows how remarkable is alternative argument based on the operators ^3 
the fact of their existence. For half integer spins 

E~o(Plgxl~2~)=I[w(x, co)= + 1] =0, 1, (6.24) 

where the important observation is the 0-1 property. Therefore, due to the 
ergodicity of the state #oad(dco) under the even translations, for each x: 

(PILl~)oda=0, 1 depending on the parity of x .  (6.25) 

Since, 
^3 ^3 3 (6.26) S~=Sx+I+S~+I , 

the projections obey 

Pl~xlGg = 1 -- PI~+ 1lee �9 (6.27) 

That directly implies the lack of translation invariance, in the following explicit 
form: 

( e Z ~ i ~ 3 ) o d d  = (PIsx[~TZ)odd-- (Plgxl~2g +~)odd 
-- ( -  1) ~ , (6.28) 

where the overall phase was determined by parity considerations. 
This line of reasoning is reminiscent of the structural proof, by Aizenman and 

Martin [4], of symmetry breaking ill one dimensional Coulomb systems. It may be 
noted that a string quantity related to the exponent seen in (6.28) was used in the 
argument of [7], which was also restricted to half integer spins. 

The above argument expresses a different mechanism for dimerization than the 
one used in the proof of Theorem 6.1. The restriction to half-integer spin is 
compensated by the fact that (6.28) can be extended to a different class of (frustra- 
tion free) Hamiltonians for which the percolation picture is not valid, where the 
result does hinge on the parity of 2S. 

7. Decay of Correlations in the Spin S Model with Interaction -p(0) 

Some elementary properties of the infinite volume limit of the states ( . )  . . . .  and 
(")odd were discussed in Theorem 4.2. We now present sufficient conditions for the 
exponential decay of correlations in these states. The main result is: 

Theorem 7.1. I f  either the A or the B Ports model associated with the ground state of 
the Hamiltonian 

p(O) , Yx>O for all x (7.1) H = - - ~  Jx ~,~-1, 
x 

has an exponentially decaying truncated pair correlation function (of the Potts 
variables), then the limiting states ( . )  . . . .  and (.)oaa exhibit exponential decay of 
correlations of local observables, and a non-vanishing spectral gap above the ground 
state energy. 

For a more explicit statement we introduce the following terminology. Let Q be 
a local observable of the form 

k 

Q = e t~ I1 S~x ~, em (7.2) 
i = 1  
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(any local observable can be written as a finite sum of such products). Then suppQ 
(the support of Q) is the set of space-time points {(xi, t)}. We also define ~ Q to 
be the minimal interval (consisting of points at time t with integer space coordinate) 
containing supp Q. 

The truncated correlation of two local observables Q and Q', is defined as 
( Q ; Q ' ) = ( Q Q ' ) - < Q ) ( Q ' ) .  For the A Potts model the truncated two-point 
function, in a state which is symmetric under permutations of the q values of the 
spin, has the random cluster interpretation 

rA(x, y)= <~xa ~yA> - <~xa) (~ya) 

_ c ( q )  (q(ar ,r ) -  i) 
q - 1  . A 

=c(q)Prob(xa and YA belong to the same connected cluster), (7.3) 

where 

1 
c(q) = ~ ( q 2 _  1) (7.4) 

with a similar relation holding for the B Potts model. 

Theorem 7.2. Let ( . )  denote the expectation in the #round state of a finite chain 
containing an even number of sites, or in one of the limiting states ( . )  .... or (.)odd of 
Theorem 4.2. Then,for any pair of local observables of the quantum system of the form 
(7.2), 

I<Q; Q'>l~CoCo-' ~ min rc(y, z), (7.5) 
yesuppQ C - A , B  
z~suppQ' 

where Co. and C o, are invariant under space-time translations of the observables. The 
relations between the coupling constants of the quantum spin chain and the Ports 
models are #iven in Theorem 3.1. 

The minimum over the two Potts models in (7.5) is important since it is 
expected that in any situation one of the correlation functions vanishes, as 
(x - y) --. oo. If that is indeed the case, then the implication is that the limiting states 
( " )  . . . .  and (.)oad are always clustering and hence pure phases. In the case of 
translation invariant or staggered couplings we have the following remark. 

Remark 7.3. The following inequality is obvious: 

//'the connected cluster of Xc reaches beyond\  
Zc(X'y)<c(q)Pr~ box of size 2llxc-ycH centered at Xc / ] .  

(7.6) 

Therefore, whenever one can show that there is no simultaneous percolation of the 
A-and B-clusters, one also obtains 

lira min Zc(X, y ) = 0 .  (7.7) 
41x-Yll-+ ~ C=A,B 

In the case of translation invariant or staggered coupling constants the argument of 
1-22] applies, but we expect that simultaneous A and B percolation is absent under 
much weaker conditions. 
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The bound (7.5), and some of the arguments used in its derivation are reminis- 
cent of the estimate derived in [2] for the quantum Ising model in transverse field. 
However, the case considered here is less direct. From (3.18) it is clear that the 
spin-spin correlation function of the quantum chain is not equal to the truncated 
two-point function of the associated Potts model. Nevertheless the decay rates of 
the two are equal (Theorem 7.6). 

At the end of this section we discuss some implications for models with 
alternating coupling constants. 

There are three steps to the proof of Theorem 7.2: 

1) When the truncated correlations of quantum spins are transcribed in terms 
of the Potts model, we obtain two distinct contributions. The first is easily bounded 
in terms of the random cluster model's connectivity function, and the second is a 
truncated correlation function of suitable observables of the random cluster model. 

2) Using a general domination principle for F K G  measures, the latter correla- 
tion function is bound in terms of four point functions of the form 

(Icl(X, y); Ic2(U, v)) , (7.8) 

where C~ are either A or B, and Ic(x, y) are indicator functions for the events that Xc 
and yc are in the same connected C-cluster (for the definition of Xc see at the end of 
Sect. 3). 

3) It is shown that for any combination of C1 and C2 the truncated correlation 
(7.8) is bounded in terms of the connectivity function of the A-model. By symmetry, 
the same is true for the B-model (in any situation, only one of these bounds will 
have a non-trivial consequence). The argument is based on a combination of the 
F K G  inequality and the Markov property of the random cluster measure. 

The argument relies on two auxiliary results. The first one, used in step 2, is the 
following domination principle for correlation functions with respect to an F K G  
measure. 

Lemma 7.4 ([46]). For a pair of functions f and g, let F and G be two monotone 
functions with which f +  F and g + G are increasing and f -  F and g - G are decreasing. 
Then the truncated correlations with respect to any measure with the F K G  property 
satisfy: 

I<J~ g)l < (F;  G ) .  (7.9) 

The proof is elementary: it consists of two linear combinations of the four 
correlation inequalities resulting from the monotonicity off_+ F and g_+ G. 

The next Lemma is needed for step 3. It provides an upper bound for the 
truncated correlation of two monotone increasing functions of the random cluster 
model. 

Lemma 7.5. Let I1 and [2 be two monotone increasing events for the random cluster 
model, which are determined by the A-connected clusters of two non-random sets D1 
and Dz. Then: 

0 < (I1; I2) < Prob(D1 and D2 are A-connected). (7.10) 

Proof. The key observation is the following inequality which results from the 
combination of the Markov structure and the F K G  property of the random cluster 
measure: 

IE[I2[I[D1 @D2]II] =< ( I2 )  . (7.11) 
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The reason for this inequality is that in the complement of CA[D1], the A- 
connected cluster of D1, the system can be considered as having free boundary 
conditions on the boundary. These boundary conditions mask the positive event 11 
which is determined within CA [D1]. 

The above reasoning was first employed in [13] for the Ising model and similar 
arguments have later been used for a variety of other applications. 

Using (7.11) and the trivial bound [111< 1, one then obtains: 

( / , ~ , )  = lg [11112] = IE [11 I I [D1 ~ D2] 12] I g  [I [D1 "-~ D21112] 

+ IE [I1 [I[DI @D2]I2]IE[I[D1 ~D2] 112] 

__< IE [I [D1 ~ D2] ]I2] + <I1 >.  (7.12) 

Thus, 

( I1)  (I2)  < ( I l I2 )  _-< (11)(12) + IE[I[D1 "-,D2] ] ,  (7.13) 

where the first inequality is just by FKG. That implies the bound stated in the 
Lemma for the truncated correlation (11; 12). �9 

Proof of Theorem 7.2. For convenience, we first carry the analysis for observables 
which are products, of the form (7.2), of only S 1 and S 3 variables at non-coinciden- 
tal sites, and break the proof into the steps described above. 

1) In terms of the random cluster representation of the spin chains: 

Therefore 

I<Q; Q'>l_ -< ~ #(dco)Eo,(QQ')-~ #(dco)Eo,(Q)Eo(Q') 

+ , #(dco)Eo(Q)E~o(Q')-(S #(dco)E~o(Q)) ( '  #(dco')Eo,(Q')) . 

(7.15) 

The first term on the right side can be interpreted as the average over co of the 
truncated correlation within the quasi states Eo,. The second term is a truncated 
correlation function of the random cluster model. 

To eliminate the first term we note the factorization property (see (2.37)) 

E~(QQ')=Eo~(Q)Eo(Q') if co does not contain a loop 
connecting supp Q and supp Q'.  (7.16) 

Using also the bound [E~(Q)I__< S IsuppQI, one has 

#(dco)Eo,(QQ') ~ #(dco)E~ (Q)E~ (Q') 

<S  tSuppob+lsupp~ ~ Prob(x and y are connected by a loop). (7.17) 
•  
y~supp Q' 
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When x and y are connected by a loop then both x x ~  YA and x9 ~ YB, where Xc'-~ Yc 
is our notation for the event that Xc and Yc belong to the same C cluster. Thus we 
can continue the bound as: 

<:S IsuppQI+IsuppQ'I ~ min Prob(xc--~ yc) 
x~ suppQ C=A,B 
y~supp Q' 

~c(q) 1S]SuppQ[+lsuppQ'[ 2 min zc(y,z).  (7.18) 
yssuppQ C=A,B 
z~ supp Q' 

2) In order to estimate the second term in the RHS of (7.15) we invoke Lemma 
7.4. For the functions 

f(co)=E~(Q), g(co)=Eo,(Q'), (7.19) 

we take 

F(co)=2slsuppQl(x,y~suppQlA(X,y)--IB(x,y)) (7.20) 

and 

G(CO)=2SIsuppQ'I(x,y~suppQ, IA(X,y)--IB(x,y)). (7.21) 

That  the conditions of Lemma 7.4 are satisfied follows from the following observa- 
tions. An elementary change of a configuration co consists of the addition or the 
removal of a single bond. Such a change will either join a pair of loops or cut a loop 
into two. If E~o(Q) is affected, the change is by not more than 2S IsuppQI . However, the 
change is zero unless there is a pair of sites x, yesuppQ whose loops are either 
joined or disconnected in the process. In this situation the value of the increasing 
function ~x,y~supvQIA(X, y)--IR(x, y) is changed by at least 1. 

Applying the Lemma we get: 

~ #(dco)E o, (Q)E o~ (Q')- ( ~ #(dco)E,o (Q) ) ( ~ #(dco)E o, (Q')) 

<4S I~uppQl+l~uppe'l ~ ~ I(Ic~(X, y); Ic~(U, v))l (7.22) 
C1,C2 x,y~suppQ 

u,v~supp Q' 

which concludes the second step of the proof. 
3) Our goal now is to estimate the quantities (Icl(x, y); Ic2(U, v)) appearing in 

the right side of (7.22). By the "A - B" symmetry, it suffices to derive an estimate in 
terms of the A-model's connectivity function "CA(','). 

The events lc(x, y) are of two possible types: 

i) two A-sites, XA and YA, are in the same connected A-cluster, or 
ii) two B-sites, xB and YB, are not separated by a connected A-cluster (i.e. are 

connected by a B-cluster). 

In either case, the events are determined by the A cluster of the set [-Xc, YC]A 
defined by: 

[XA, YA]A=the tWO point set {XA, YA}, (7.23) 

[XB, YB]A =the  collection of the A sites in the interval joining x~ and YB - 

(7.24) 
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For the application of Lemma 7.5 we define two monotone increasing events as 
follows: if C1 =A put I1 = IA(X, y) and D1 = [-XA, YA]A; if C1 = B  put I1 = 1 -- IB(X, y) 
and D1 = [xB, YB]A. I2 and D2 are defined in terms of Ic2(U, v) and [Uc2, VC2]A in the 
same way. Lemma 7.5 then implies: 

I (Ic~(X, Y); Ic2(U, v))l < Prob(Exc~, YCI']A ''~ [Ucz , VC2"]A) 

< ~ Prob(ZA~Z3), (7.25) 
Z ~ [Xcl ,  UcI]A 

Z t U [Uc2 ' VC2] A 

where we have also used that I (1 - I1; I2) J = I (11; [2 ) I �9 
Interchanging the rSles of A and B and using (7.3) one finally obtains the estimate 

](Iq(x,y); lc~(u,v)) l<c(q)  -a min ~ "cc(z, z') . (7.26) 
C=A,B z E  [xcz ,  yc~]C 

Z '  ~ [Uc2, Vc2]C 

Combining the inequalities (7.15), (7.18), (7.22), and (7.26), one obtains the 
estimate (7.5), for the case where Q and Q' are products of S 1 and S 3 operators at 
distinct sites. 

For the general case we use the identity S 2 = i[S ~, S 3] to express the product of 
spin operators as a linear combination of products of only S 1 and S 3. The products 
may contain repeated factors. With a trivial modification the argument given 
above applies to such products as well. �9 

Proof o f  Theorem 7.1. Theorem 7.1 is a direct consequence of Theorem 7.2. �9 

It is interesting to consider the implications of the above analysis for the spin 
chains with alternating coupling constants 

~J  . . . .  if x is even 
Jx=[Joaa  if x is odd " 

(7.27) 

First it should be appreciated that while the spin system's Hamiltonian is only 
periodic, the associated Potts models are translation invariant. A great deal is 
known about such Potts models (though at varying levels of mathematical rigor), 
and our methods allow one to extract from that some relevant information on the 
ground states of the quantum spin chains. 

For the Potts models it is known that the correlation length is a meaningful 
notion, defined by the limit 

- 1  1 
~ P o t t s  = - -  lim in zc(O, x) . (7.28) 

The existence of the limit is an easy consequence of the supermultiplicativity (itself 
implied by an F K G  type argument): Zo(X, z)> Zo(X, y)zo(y, z), where % = c(q)-1~c, 
C - - A o r B .  

Since Theorem 7.2 provides only upper bounds, let us first strengthen the relation- 
ship between the long distance behavior of the correlations in the two models. 

Theorem 7.6. For the models with alternatin9 couplin9 constants (7.27):/f ~Po.~ < oo 
then also 

- 1  1 
~QSChain = - -  x~lim ~ ln] ( S 3 Sx 3 >l (7.29) 

exists and ~Potts= ~QSChain - 
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Proof Let 0 < m = ~p-ot~ts be defined by the limit (7.28). The theorem will follow from 
the following inequalities: for any 8>0 not too large, there exist constants 
C+, C_ >0  such that 

C + e-"(1 - ~)lxl > ] (S 3, S 3 ) ] > C_ e- m(1 + ~)lxl (7.30) 

for all x large enough. Since the spin-spin correlations are dominated by the 
function v(. ), the upper bound is trivial (in fact, an auxiliary argument shows that 
C(S)e -mlxl would do). We now provide the argument for the lower bound on the 
spin-spin correlation function. For concreteness let us assume that there is no 
percolation in the A Potts model. 

By (2.8) the problem amounts to estimating from below 

P(0, x) = Prob(0 and x are on the same loop). 

We first show that for all small 8>0 and finite D > 0  (D will be taken O(1)) the 
following quantity satisfies an exponential lower bound as in (7.30): 

there are sites u~[(-48x)A, 0], v~[x, (x+4ex)A], 

J 
such that u and v are on the same loop and each of 

P~.D(0, x ) - P r o b  the A-strips at the edges of the two intervals does not 

contain any bonds at times t~[-D,D] 
(7.31) 

with x odd. As the outer boundary of any A-cluster is a loop for the spin chain we 
obviously have: 

P~,D(O, X)> 
there is an A-cluster intersecting both [ -48x ,  0] and [x, x +  

|48x] but not [ -48x,  x+4exy ,  and each of the A-strips 

Pr~ at (--48X)A,�89 X--�89 and (x+4ex)A does not 

\contain any bonds at times te[-D,D] 

and therefore 

P~,D(O, X)> 

Prob 

an A-cluster connecting [ - 0 %  0] and [x, +oo] and each of 1 

the A-strips centered at (--48X)A,�89 X--�89 and (x-l-48X)A I 
does not contain any bonds at times tE[-D,D] / 

-P rob (3  an A-cluster connecting [-- o% 0] and [x+48x, + oo]) 

-P rob (3  an A-cluster connecting [ -  o% -48x] and [x, + m ] ) .  

i) By F K G  and translation invariance 

I 
3 an A-cluster connecting [--oo, 0] and [x, + oo] and each of 

Prob the A-strips centered at (--48X)A,�89 X--�89 and (x+48x)A 

does not contain any bonds at times t~[--D,D] 

(7.32) 
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> Prob(3 an A-cluster connecting [ -  o% 0] and [-x + o0]) 

• Prob(the A-strip centered at �89 does not contain any bonds at times 
t e [ - D , D ] )  4 

and, using (7.28), 

Prob [-3 A-cluster connecting [ -  0% 0] and 

Ix, + oo]) => c(q)-  1"CA(O, X) >-->= C' e -(z +,)ml~l (7.33) 

ii) The middle term in (7.32) can be replaced by the straightforward estimate 

Prob(3 A-cluster intersecting both [ -  o% 0] and Ix + 4ex, + oo]) 

<= E  A(y, z) 
y<O,z>x 

= < C " e  (l+2~)mlxl , (7.34) 

where C">O depends only on m, and it is assumed that 0<e<�88 By symmetry, 
(7.34) applies also to the last term in (7.32). Combining (7.32-33) we obtain the 
desired bound for P~,D(0, x): for some C > 0 (depending on D): 

P~,o(0, x)> C(1 -- Ce ~mlxl)e-(X +~)mlxl . 

In order to complete the proof we have to argue that the exponential lower 
bound on P~,D(0, x) implies a similar lower bound on P(0, x). More precisely, we 
use the bound for P~,D(0, x), which we only need for "0" even and x odd, to obtain 
the desired estimate on P(y, z) with y = - 1  or y = 0  and z = x  or z = x +  1. This 
covers all possible combinations of parities for the two sites. 

We use Lemma 7.7 given below to show that there is some e > 0 such that for 
y = - I  or 0 and z = x  or x + l :  

Prob(y and z are on the same loop]the event described in (7.31))>e ,,~1~1 , 

(7.35) 

from which the desired bound immediately follows. 
The basis for the claim (7.35) are the following three observations: 

i) The event described in (7.31) implies the existence of a line (forming part of 
a loop) outside of the rectangular neighborhoods B1 - [(--4eX)A, 0] • [--D, D] 
and B 2 =--IX, (X+48X)A] • I - D ,  D], connecting a point of the form (u, s) with 
a point (v, t), where UE[(--4eX)A, 0], re[X,  (X-{-4eX)A ] and s, t =  _+O. 

ii) For every pair of points (u, s) and (v, t), on the boundary of the boxes Ba and 
B2 respectively (see i)), there is a pair of local events ~1 and g2 in the boxes B1 and 
B 2 such that under gz (u, s) is connected by a line to ( - 1, 0) or (0, 0), ad libitum, and 
under C2(v, t) is connected with (x, 0) or (x + 1, 0). The events, whose choice depends 
on u, s, v, and t, are depicted in Fig. 3. 

iii) The conditional probability of the above mentioned local events g~ and 82 
occurring together - conditioned on any explicit configuration in the complement 
of B~ and B2 - is not smaller than e -m~l~l, for some c~>0. 

More explicitly, the local events are constructed as follows (see Fig. 3). Assum- 
ing the line connecting B~ and B2 (in the complement of B~ and B2), reaches B1 at 
the point Uo(U, D). The event g~ (Uo) inside B~ is then described by specifying that in 
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Fig. 3. A schematic representation of the local event ~1 used in the proof of Theorem 7.6. Crossed 
areas do not contain any bonds and gray areas contain at least one bond 

the vertical strips between u and  0 one sees al ternatingly the following picture: in 
the first, third, fifth, ... strip, counted start ing from u, there is no b o n d  at t imes 
0_< t _< D and at least one bond  at a t ime - D _< t < 0; in the second, fourth .... strip 
there is at least one bond  with 0 < t__< D and no bond  with - D _< t_< 0. The  strip to 
the left of u is required not  to contain  any bonds  at t imes - D_< t_< D. It  is then 
obvious  that  in the box B1 there will be a line connect ing (u, D) and ( -  1, 0) and 
(0, 0). The  case u = 0 is t reated by  a trivial modif icat ion of the above  prescription.  
The  event d~ in B2 is defined in a similar way. 

Note  that  the r a n d o m  loop measure  # condi t ioned on an arb i t ra ry  configura-  
t ion outside any  finite domain  in space-t ime is of the form stated in L e m m a  7.7. The  
f u n c t i o n f i s  the number  of  loops inside the finite vo lume taking into account  the 
connect ions in the configurat ions outside, and q = 2S + 1. I t  is then obvious  that  
f always satisfies the bounded-grad ien t  condit ion with a = b = 1 because the addi- 
tion or removal  of a single bond  can change the n u m b e r  of loops by at mos t  one. 

The  indicator  funct ion of the event ~1 c~ ~2 is of  the form FG with F increasing 
and G decreasing. 

I t  is useful to introduce the auxil iary events gu0,vo, which fo rm a par t i t ion of the 
event described in (7.31): {Uo = (u, s), Vo = (v, t)} is the "first" pair  of points  on the top 
or bo t t om boundar ies  of BI and  B2 connected by a line outside these boxes ("first" 
e.g. in lexicographic order). We also define Jmin(ma• . . . . .  Jodd} and 
put  D = 1. 

The  observat ions  i-iii) and L e m m a  7.7 then yield for y = ( - 1, 0) or  (0, 0) and 
z = (x, 0) or  (x + 1, 0): 

P rob(y  and z are on the same loop  [the event  described in (7.31)) 

> ~ Prob(El(Uo)C~E2(Vo)[Nuo,vo)Prob(guo, vo Ithe event described in (7.31)) 
no ~c3B1 
Vo ~ ~B2 

> ~ pSm~~ is at least one bond in the strip [0, 1] x [0, 1]] 

{ }2t~lx,j 
• .[ p(2S+l)Sm~x(dco)I[there is no bond  in the strip [0, 1] • [0, 13] 
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x .f p(2S+l)sm"x(dco)I[ there is no bond in the strip [0, 1-] x [ - 1 ,  1]] 

= e -  4 2s + l Jm x { ( 1  - - e  -J io/(2s + 1 ) ) e -  (2s + 2 I 11 

>= Ce-m~lxl 

for some e > 0 independent of e and x. We can now conclude that for a > 0 small 
enough one has 

P(O, x)>e-~l~lP~(O,  x ) > e  -~(1 +(~+ 1)~)1~1 

for all x large enough, which is a lower bound of the form (7.30). �9 

In the above argument we use the following lemma, in which we refer to the 
order structure on the space of configurations given by the inclusion relation: 
co > co'iff the set of bonds in co contains the set of bonds in co'. The proof  is a rather 
standard FKG- type  argument, and is therefore omitted here. 

Lemma 7.7. Let #(dco) be a probability measure of the form: 

, ,  , pJA(dco)q f(~) #taco =y ,, 
where YA(dco) is a Poisson measure on configurations co in a finite volume A (in our 
case, A is a subset of the space-time), q > 1, and f (co) is a function of bounded gradient, in the 
sense that there are constants, a, b>O such that f + a N  is non-decreasing and 
f - b N  is non-increasing with N(co) the total number of time-indexed bonds in co. Then, for 
any two functions, F non-decreasing and G non-increasing, which depend on co in two 
disjoint subsets of A (one determining F and the other determining G) one has the following 
comparison inequalities, with expectation values with respect to modified Poisson measures: 

i #(dco)f(co)G(co) <=f P3~S(dco)F(co) f Pff~ G(co), 

#(dco) F(co) G(co) >__ ~ F(co) Pn (dco)G(co). (7.36) 

Assuming now the validity of all the results on Potts models presented in 
references [31, 40, 41, 54] (not all of which have been derived rigorously), we obtain 
the following implications. 

i) If  J . . . .  4: Jo~a, the ground state is unique, with exponential decay of correlations 
and a spectral gap. 
A perturbative version of this statement, for small (or large) enough ratio of the 

two couplings, is contained in a theorem of Kennedy and Tasaki [36]. 

ii) The case J . . . .  = Joaa corresponds to self dual Potts models, in which case there 
is a dichotomy, which we have discussed above in Sect. 6. Its manifestation in 
the Potts model language is: at the self dual point there either is a first order 
phase transition with coexistence of the ordered and disordered phases, or the 
transition is second order - with a unique state at which the correlations decay 
by a power law. The threshold value of q is q = 4, which corresponds to S = 1/2. 
The implication of the Potts model calculation is: 
ii.a For  S = 1/2, there is a unique state, but with algebraic decay of correlations 

and no spectral gap (Eq. (6.3) is satisfied). For  the spin system that was 
known independently of the Potts model result, by the Bethe Ansatz 
solution and a result of [43]. 
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ii.b For S > 1/2 the translation invariance is spontaneously broken and there 
are two partially dimerized ground states, translates of each other, with 
exponential decay of correlations and a non-vanishing spectral gap (the 
exact value of the spectral gap can be calculated, see 1-9, 38, 39]). 

iii) In the case S=�89 for weakly staggered coupling constants, J . . . .  = 1 + 3 ,  
Jodd = 1 -- 3, 0 < 3 ~ 1, the correlation length is finite but a divergent function of 
3. The conjectured values of the corresponding exponents of the 4-state Potts 
model 1-54], yield the following behaviour for the ground state energy per site 
e and the correlation length 4: 

~-~o~-131 ~, ~-131 -~ (7.37) 

(up to logarithmic corrections). 

This behavior of the spin �89 Heisenberg antiferromagnetic chain with alternating 
coupling strengths was first obtained by Cross and Fisher in their study of the 
spin-Peierls transition 1-15]. It has the implication that when the elastic deforma- 
tions of the underlying lattice are taken into account, the ground state of spin- 
�89 Heisenberg antiferromagnetic chain develops the spin-Peierls instability. (For 
a related rigorous result, see e.g. [34]). 

Appendix I. Quasi-State Decomposition for Quantum States 

Often, basic properties of the state of a quantum system are elucidated by presen- 
ting it as a convex combination of states with a particularly simple structure. In this 
work we find it useful to consider a broader class of affine decompositions - into 
convex combinations of what is called below quasi-states. These are linear func- 
tionals which are required to meet the positivity requirements (which are part of 
the definition of a quantum state) only in their restrictions to certain Abelian 
subalgebras. 

Quasi-state decompositions made already an implicit appearance in the dis- 
cussion of the itinerant ferromagnetism in reference [3]. The utility of such 
decompositions there, stems from the fact that the ferromagnetic (or antiferromag- 
netic) properties of a system with rotation-invariant spin-spin couplings can be 
expressed through the correlation functions of a commuting family of the spin 
variables (e.g., {a~} with x the site index and 3 referring to the third component of 
the Pauli spin matrices). The structure of the restriction of the state to such families 
is made particularly transparent by decomposing it into a convex combination of 
states in which the correlations are either "0 or 1," in the sense that spins are either 
locked in a parallel (or antiparallel) state, or are completely independent. This is 
also the major characteristic of the Fortuin-Kasteleyn representation of the Ising 
model [19, 18]. 

The purpose of this section is to formulate this notion, and discuss some of its 
general properties in the context of a simple example. 

I.a D@nition of Quasi-States 

Definition 1.1. Let d be a sub-algebra of observables of a quantum system. A densely 
defined linear functional p (providing the expectation value for observables) is called 
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a quasi-state relative to sd, and we will say that it is well adapted to sd, if p is: 

i) normalized: p(ll)= 1, (I.1) 

ii) positive on ~ ,  i.e. for each bounded A~sd, p(A*A)>O . (I.2) 

The property of states which is not required of quasi-states is the general 
positivity, i.e., the unrestricted validity of (1.2). 

For finite dimensional quantum systems, the observables form matrix algebras, 
and the linear functionals take the form: 

p(A) = TrQA,  (1.3) 

where Q is a corresponding density matrix. When d is the maximal-Abelian 
algebra of matrices which are diagonal in a certain common basis {]c~,)}, the 
conditions on Q under which p is a quasi-state relative to d are: i) TrQ = 1, and ii) 
Q has non-negative diagonal elements, 

(~,]Qlc~n)>0 f o r n = l , . . . .  (I.4) 

The last requirement is considerably weaker than the condition ii') Q > 0  (as 
a matrix) needed for p to be a state. 

Remark 1.2. At this point it is natural to ask whether (I.4) has any d-independent  
content. The answer is rather negative: any hermitian matrix with Tr Q > 0 satisfies 
(I.4) in some basis. 

As we shall see, in certain situations a convex decomposition of a state into 
quasi-states (relative to a naturally relevant algebra), provides a great deal of 
insight into a state's structure. Such decompositions take the form: 

P = X p,Q, (1.5) 
n 

with the Q, quasi-states relative to a common algebra, and p, weights satisfying: 

p, >0, Z P, = 1. (I.6) 
n 

I.b. An Elementary Example. As the simplest demonstration of the notion intro- 
duced above, consider the system consisting of two spin-l/2 objects, with the 
spin-spin ferromagnetic interaction: 

H = - G I "  ~2 " (I.7) 

The ground state of the related antiferromagnetic Hamiltonian ( - H )  is given by 
the rank-one projection 

Po = 10) (OI (I.8) 

onto the single state (10) = (I 1, - � 89  -1 - �89  �89 where the total spin is S = O. In 
this state one can safely say that al  = - J 2 ,  e.g., 

TrPo(J1 + ~2)  2 = 0 .  (I.9) 

The ground state of the ferromagnet is slightly less elementary. It has the three- 
fold degeneracy of the space on which S = 1. The corresponding projection is 



58 M. Aizenman, B. Nachtergaele 

P1 = n - P o = S  (S takes here only the values 0 and 1), and the (normalized) state 
operator is 

Q+ =�89  (I.10) 

While the spins are as parallel as the uncertainty relations allow, it is not true that 
~ 1  - -  ~ 2  = 0 .  In fact, 

Tr Q + (~t - ~2)2 = 1 > 0 .  (I. 11) 

The fact that except for the "zero-point fluctuations" the spins are basically aligned, 
is easily seen in the following quasi-state decomposition of the ferromagnetic 
ground state: 

Q+ =2(1) II +•177 (I.12) 

where T = 2 S -  1 is the exchange operator ( / la,  b )= ]b ,  a); a, b =  _+). 
Two basic observations here are: 

- For any non-zero vector n~lR 3 both 1~ and �89 are quasi-state operators 
relative to the Abelian algebra M. generated by {61. n, 62. n}. The former is 
actually a state operator. 

- On any of the Abelian factors tin, the quasi-states corresponding to �88 and to 
�89 two simple alternatives. In the first state, 61-n and ~2" n form 
a pair of uncorrelated variables (taking the values _+ �89 independently of each 
other), whereas in the quasi-state �89 61-n and ~z" n are locked together. 

By the rotational symmetry, it suffices to derive these statements for n = (0, 0, 1), 
within the standard Pauli spin matrix representation, which makes the first state- 
ment really obvious. For the second we note that the restriction of Tr(1T)A to 
A ed(o, o, 1) is determined by only the diagonal elements of �89 Tin the basis which 
diagonalizes {0-~, aga}. That diagonal part of �89 • 2, 2/iX, <1, ~1 q_ ] _ _ � 8 9  __�89 <__�89 
-�89 In particular, it follows that the quasi-state �89 Tyields the following ferromag- 

netic analog of (I.9): 
1 -+ Tr~ T(6I - 6 2 )  2 = 0 .  (I.13) 

Thus, insofar as the restriction to sr is concerned, the ground state of 
the quantum ferromagnetic Hamiltonian is equivalent to a positive temperature 
state of a classical ferromagnet, and the decomposition (I.12) is identical to the 
Fortuin-Kasteleyn random cluster decomposition of the latter. 

1.c. Words of caution. Some notes of caution are due here. The lack of full 
positivity implies that quasi-states may lack some of the properties which are 
familiar for the expectation value functionals ( . )  associated with regular states, 
such as: 

i )  A _ _ > 0 ~ < A ) > 0 ,  

ii) <A) __< [I A II (the supremum norm of A),  

iii) <A* A ) =  0 ~ <AB)= 0 for any (bounded) B .  

(I.14) 

(I.15) 

(I.16) 

In fact, the quasi-state operator �89 provides us with the following "counter- 
examples": 

i) 1 Trz T[(61 --62) 2 - 1] = -- 1, while (61 - -62)  2 -- 1 =_~0, (I.17) 

ii) Tr�89 712 -- (61 -~ 2 --a2) ] =2, while H2-(6a - 6 2 )  2 ][ = 1, (I.18) 
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and 

iii) 1 3 3 2 Tr :T(a : -o-2)  =0, y e t T r � 8 9 1 8 9 1 8 9 1 8 9  (I.19) 

These elementary assertions follow from (I.13) and the observation that 
-* "* 2 2 - ( o l - o 2 )  = 2 S - 1 =  +1. 

Nevertheless, the restriction of a quasi-state to any of the algebras for which it is 
well adapted is free of the above "pathologies." In particular, the three principles 
(I.14)-(I.16) are satisfied as long as A and B are restricted to any common d . .  

One may also note that while a quasi-state is not fully characterized by its 
restriction to a single Abelian factor, in the above case the operator Tis uniquely 
determined by its rotation invariance and the values of Tr�89 for Ae~Cn. 

Appendix II: Strictly Monotone Observables for Gibbs-Fields and the Rising Tide 
Lemma 

The F K G  structure of the probability measures # . . . .  (do)) and #oda(do)) is quite 
essential for our analysis in Sects. 4-7. Here we provide some details concerning 
this structure. We also introduce the notion of weak strict monotonicity and prove 
the Rising Tide Lemma which was needed in Theorem 6.1 to show that breaking of 
translation invariance (# . . . .  # #odd) implies staggered behavior of the nearest neigh- 
bor spin-spin correlation ((Sx. Sx + : ) . . . .  (odd) =# ~Sx  + 1" Sx + 2 )  . . . .  (odd)). 

Recall from Sect. 3 the definition of the partial order on the set of configurations 
o)=(~OA, o)~), with o)A(m the set of A(B)-bonds labeled by space-time points. The 
partial order is defined by declaring 

o)-<o)' ifo)A~o)~4 and o)~:o)~ .  (II.1) 

That leads to the notions of monotonicity of functions and domination of 
measures: i) A function f is called monotone increasing if 

f(o))<=f(o)') for all o)-<o)'. (11.2) 

ii) A probability measure #(do)) is said to be dominated by another probability 
measure v(do)), denoted as #(do))-< v(do)), if 

#(do))f(o))<__~ v(do))f(o)) for all monotone increasing f .  (I1.3) 

This structure is useful in a number of ways. 

1) Fortuin, Kasteleyn and Ginibre [20] provide a general criterion, under 
which a probability measure would have the property: 

#(do)) f (o))g(o)) >= ~ #(do)) f (o)) ~ #(do))g(o)) (11.4) 

for all monotone increasingfand g. The F K G  condition is satisfied by the random 
cluster measures (see [-1]). 

2) For p satisfying (II.4), the probability measures conditioned on the config- 
uration in the complement of a finite volume, are monotone in the sense: 

E~(. Io)Ac)~lEu(-Io);t,) for all o)A'-<o)~' - (II.5) 

3) There exist domination relations among the random cluster measures cor- 
responding to Potts models with various values of q(q=l corresponding to 
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independent percolation). Applications of these relations can be found in [19, 20, 
18] and [1]. 

4) Of particular interest in this work is the domination relation 

# . . . .  (dco) ~ #oad(dO)) , (II.6) 

which follows by a simple limiting argument from (II.5). 

The last relation includes the statement (So. S1)odd ~ ( S o  ~ S 1 )  . . . .  . Our goal 
now is to explain why whenever the two states are different, the inequality holds 
in the strict sense. A key role in the argument is played by Lemma II.2, 
whose name draws on the observation that a rising tide lifts all the ships in the 
harbor. 

It is useful to introduce the notion of strict monotonicity. 

Definition ILl.  Let JC[ be a set of probability measures on a configuration space 
Y2 with an order structure as above. A monotone increasing function on (~ is strictly 
increasing in the weak sense with respect to Jg (for short JC[-strictIy increasing), if 

#(dco)f(co)<~ v(dco)f(co) for all #, v ~ ,  # ~ v  and #=t=v . (II.7) 

The difference between the two random cluster measures is due only to the 
boundary conditions (pushed to infinity). They share, however, a common rule for 
the finite volume conditional distributions. (A phenomenon exhibited also by 
the family of the Gibbs equilibrium states at a first order phase transition.) In the 
terminology discussed in [23] the measures have the same set of specifications. 

Lemma II.2 (The Rising Tide Lemma). Let J/t be a family of probability measures 
with common specifications ? = {]E(. [coA~)}A . A sufficient condition for a function f ro  
be/d-strictly monotone increasing is that beyond some finite volume Ao the condi- 
tional expectation is strictly monotone increasing with respect to the boundary 
conditions: 

IE ( f  ] COA o) < lE(f ] cohc) (11.8) 

for all A ~ Ao and all pairs of boundary conditions such that 

coAC~Cn'A C and coAC+o.@modT, (II.9) 

where the last inequality means that the induced conditional expectations are not 
identical. 

Remark 11.3. For a given set of specifications, the relevant notion of boundary 
conditions consists of the equivalence classes of {coAt} defined by 

coAt,coSt ifflE(. [COAC)=]E(. [CO~IQ �9 (II.10) 

It is easy to see that for the random cluster model the equivalence class of boundary 
configurations is determined by specifying the connectivity relations of the bound- 
ary sites via the connecting paths in A c. (Obviously many configurations in the 
complement of A would be equivalent.) 

Proof of the Lemma. Let # and v ~ ,  #-< v. Then, by the general result of Holley 
([32]), there is a coupling p which is a probability measure on the space of pairs 
{(co, co')} with marginals # and v which is supported on pairs with co ~ co'. Using 
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first the condi t ional  expecta t ion formula  and  then the coupling, we have: 

v ( f ) - # ( f )  =S v(d~176 /z(dcoSc)lE(flogAC) 

=~ p(dOOAC X dCO'AO(IE(flo)Ac)--lE(flO)'AC)) . (II.11) 

Assuming the measures  are different, there is some finite vo lume A ~ Ao for which 
p assigns a positive measure  to pairs of configurat ions which are inequivalent  as 
b o u n d a r y  condit ions in A c. Since the in tegrand in (II. 11) is strictly posit ive at such 
points,  and is non-negat ive  in general, it follows tha t  v ( f ) - # ( f ) > O .  �9 

L e m m a  IL3. For the random cluster model,for any x, ye2g x IR, the random variable 
I A (X, y) satisfy the criterion of the Rising Tide Lemma II.2. ( The set Ao can be taken as 
any box with x and y in its interior.) 

Proof. Let A be a finite box containing x and y in its interior, and let ooAc_< co~t~. 
Then  each of these configurat ions induces a par t i t ion of the A-sites on the 
b o u n d a r y  of A into clusters connected in the exterior. The  relat ion between the 
configurat ions means  tha t  the bounda ry  par t i t ion cor responding  to mA c is a refine- 
men t  of that  cor responding  to co~tc. The difference in the condi t ional  expectat ions of 
IA(X, y) is the result of two effects: i) the induced measures  in A are different, and ii) 
the finite vo lume condit ions under  which x and y are connected are different (since 
co' provides a bet ter  connected boundary) .  Denot ing  by |~OA ~ and Ico~ the corres- 
ponding  indicator  functions (of only COA), we have: 

IE (IA (X, Y) I CO~) -- IE(IA (X, Y) I O)A c) 

= lE(I~o'Ac(x, y) l c@) -- IE(IoAo(X, y) l COA0 

= IE (IcoAo(x, y) I cob 0 -- IE (IcoA (x, y) I e)A ~) + IE (Ico'~o(x, y) - Iog~(x, y) I co5 c) 

=>lE(I(x,~y w.r.t, co~ and x ~ y  w.r.t. COA~)I O930 . (II.12) 

When  the two configurat ions are not  equivalent  then, due to the strict posit ivi ty of  
the measure,  the last term is strictly positive. �9 

In  this pape r  the Rising Tide L e m m a  was applied in Sect. 6. We expect it to be 
of  interest also in var ious other  situations where the F K G  structure is of relevance. 
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