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Abstract. The triangle condition for percolation states that  ~ ~ (0, x) ~: (x ,y)  
x , y  

�9 r (y, 0) is finite at the critical point, where r (x,y) is the probability that the sites 
x and y are connected. We use an expansion related to the lace expansion for a 
self-avoiding walk to prove that  the triangle condition is satisfied in two 
situations: (i) for nearest-neighbour independent bond percolation on the 
d-dimensional hypercubic lattice, if d is sufficiently large, and (ii) in more 
than six dimensions for a class of  "spread-out"  models of  independent bond 
percolation which are believed to be in the same universality class as 
the nearest-neighbour model. The class of  models in (ii) includes the case 
where the bond occupation probabil i ty is constant for bonds of length less 
than some large number,  and is zero otherwise. In the course of  the p roof  an 
infrared bound is obtained. T h e  triangle condition is known to imply 
that  various critical exponents take their mean-field (Bethe lattice) values 
(~ = fl = 1, g = At = 2, t > 2) and that the percolation density is continuous at 
the critical point. We also prove that v2 --- 1/2 in (i) and (ii), where v2 is the 
critical exponent for the correlation length. 
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1. Introduction 

In the last decade significant progress has been made in the rigorous understand- 
ing of  critical phenomena, particularly concerning its mean-field behaviour in 
high dimensions. For  Ising and (o4 spin systems one of  the important  ideas has 
been the combination of  the infrared bound [16] with correlation inequalities. This 
method, together with other ideas, has led to considerable understanding of  these 
models in four or more dimensions, including a p roof  of  the triviality of  ~04 field 
theories in more than four dimensions and a p roof  that many critical exponents 
take their mean-field values above four dimensions [35, 1, 15, 4, 3]. 

For  the self-avoiding walk no general p roof  of  an infrared bound is known, 
and the methods which were successful for the spin systems cannot  be applied. An 
alternate approach was introduced by Brydges and Spencer [12], who used the lace 
expansion to prove mean-field critical behaviour for the weakly self-avoiding walk 
in more than four dimensions. This method was further developed in [31-33], 
where mean-field critical behaviour was proved for the strictly self-avoiding walk 
above some undetermined dimension do > 4, and in [25], where the infinite self- 
avoiding walk was constructed in high dimensions. 

For  percolation there is also no general p roof  of  an infrared bound, and in fact 
there arc indications that the infrared bound is violated in less than six dimensions 
[14, 41]. However based on an analogy with the bubble diagram, which played an 
important  role in the analysis of  the Ising and ~04 models, Aizenman and Newman 
[6] introduced an unverified condition, the so-called triangle condition, which was 
shown by them to imply mean-field behaviour for the susceptibility in percolation 
models. The triangle condition is expected to hold above six dimensions. 
Subsequently further implications of  the triangle condition were obtained in 
[8, 28]. In this paper we prove that the triangle condition is satisfied in two 
situations: (i) for independent nearest-neighbour Bernoulli bond percolation in 
sufficiently high dimensions, and (ii) in more than six dimensions for a class of  
"spread-out"  models of  independent bond percolation, which includes certain 
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finite range models as well as certain models in which the bond occupation 
probability decays exponentially as a function of the length of the bond. In the 
course of the proof we obtain a uniform infrared bound below the critical point, 
which is valid in high dimensions for model (i), and above six dimensions for the 
models in (ii). The method of proof can also be applied to site percolation, and 
yields the same results (with a suitable interpretation of the spread-out models). 
Consequences of the triangle condition are that the critical exponents 7, t ,  c~, and 
At (defined below) exist and take their mean-field values, and that the percolation 
density is continuous at the critical point. 

The models in class (ii) are believed to be in the same universality class as the 
nearest neighbour-model. It is known that for the nearest neighbour model the 
upper critical dimension is at least six [13, 38], and the proof of this fact can be 
extended to the models in (ii) [39]. Thus our result strongly supports the conjecture 
that for these models the upper critical dimension is equal to six. 

The proof of these results is based on an expansion for the two-point function 
which is related to the lace expansion for self-avoiding walk. The expansion is used 
to treat a percolation model as a perturbation of the random walk model whose 
transition probabilities are proportional to the percolation bond occupation 
probabilities. Similar methods can also be applied to branched polymers [21]. 

1.1. The Models 

We consider independent Bernoulli bond percolation on the infinite d- 
dimensional hypercubic lattice 2g ~. To each unordered bond (pair of distinct sites) 
b = {x, y} (x, y ~TZ. d) a random variable nb is associated, which takes the values 0 
and 1. The set of random variables {nb ) is independent, and the distribution of nb is 
given by 

Prob (rib = 1) =Pb, Prob (rib = O) = 1 --Pb" 

We require 7Z<invariance (translation, reflection and rotation by ~z/2) for the 
P~x, r} = P(o, r-  x). 

We consider the following possibilities for Pb: 
(i) the nearest-neighbour model: 

(~ if x is a nearest neighbour of 0 
P~o, x/= otherwise. 

(ii) The spread-out models: 

P~o.xl =P" L-ag (x/L) ,  

where g: IR d---, [0, o~) is a given function which is normalized so that ~ g (x) d x  = 1, 
and is invariant under rotations by 7c/2 and reflections in the coordinate 
hyperplanes. The parameter L will be taken to be large. (This type of limit to study 
mean-field behaviour is related to the so-called Kac limit [23, 26].) A basic example 
is 

1 if blx[]o~- m a x  ]xi[<=l 
g(x) -- 0 otherwise, l_<i_<a 
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We require that g decay exponentially at infinity (i. e., there exist C, e > 0 such that 
g(x) < C exp [ - e  II x J[ ~]). Then models (i) and (ii) are expected to be in the same 
universality class. The bond densityp is the only parameter in these models (apart 
from an additional parameter h we shall mention briefly to define the critical 
exponent 6). For  the models in (ii) we will show that the triangle condition is 
satisfied for d > 6, if L is sufficiently large and g is piecewise differentiable. 

Ifn b = 1 we say that b is occupied, while ifn b = 0 we say that b is vacant. We use 
Probp (E) to denote the probability of  an event E with respect to the joint 
distribution of  the {n~}, and denote expectation with respect to this distribution 
by ( ' ) v "  

Given a bond configuration {nb}, two sites x and y in the lattice are said to be 
connected if there exists a path from x to y which consists of  occupied bonds. The 
connected cluster C(x)  of x is the random set of  sites defined by 

C(x) = {y~2U: y is connected to x}. 

The number of  sites in C(x) is denoted by [ C(x)[.  
We define the two-point function 

the susceptibility 

the percolation density 

rp (x, y) = Probp (y is connected to x), (1.1) 

z(p)=Y. (1.2) 
X 

P~ (p) = Probp (I C(O)] = oo), (1.3) 

and the magnetization 

M(p,  h) = 1 - e-h"Prob~([C(O)[ = n). (1.4) 
, < n < o e  

We also define two correlation lengths 

~(p) =- - [ l i m  1_lnvp(0,(n, 0 , . . . ,0 ) ) ]  -1 
Ln~co f l  

and 

Ixl 2  p(0, '/2 

(1.5) 

(1.6) 

To simplify the notation we will often omit the subscript p. 
For the nearest-neighbour model it has been known for thirty years that 

(except for the trivial case d = 1) there is a critical valuepc e (0, 1) (depending on the 
dimension) such that the percolation density vanishes forp  < Pc and is nonzero for 
P > Pc [10, 19]. Such a critical value ofp  also exists for the models in (ii), for the g's 
we will consider. Recently it has been proved that Pc can also be characterized as 
sup {p: x (p) < oe} [27,2]. In this paper we are concerned with the critical 
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behaviour of the model, i.e., the behaviour of functions such as those defined 
above in the vicinity of ( p , h )=  (pc,0). By analogy with other statistical 
mechanical models, and in agreement with numerical calculations, this behaviour 
is expected to be in the form of power laws, and we introduce the critical exponents 
y, fl, 6, A,+ 1, v and vz as follows: 

z (p) ~ (pc - p ) - '  

P~ (p) ~ ( p - p S  

M (p~, h) ~ h 1/~ 

as P~Pc, 

as P$Pc, 

as h$0 ,  

<lC(O)l,+l>/(iC(O)l,>~ (p_p)-~=+l as 

(P) ~ ( P c - P ) - V  as p T pc, 

{2 (p) ~ (pc - p )  - ~  as pTpc. 

pTp~, 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

Here f ( p )  ~ t P -  Pc l- a is defined to mean that there exist positive constants C~ 
and C2 such that 

Clip -pc[ - z < f ( p )  < C21p -Pc] -~" 

There are other critical exponents that can be defined (see [17, 24, 37]), but these 
are the ones for which we can conclude mean-field values. The exponent 6 is also 
often defined by the (formally) equivalent relation 

Probpc (I c ( o )  l = n) ~ n - 1 - 1 / ~  

So far very little has been rigorously proved about the existence of the above 
critical exponents. See [17, 24] for a review. 

On the Bethe lattice (Cayley tree), it can be shown that 7, fl, ~, and A t + 1 exist 
and have the values 7 = fl = 1, 6 = At+ 1 = 2 for t + 1 = 2, 3, 4, . . .  [17]. The Bethe 
lattice critical exponents are known as the mean-field values, and it is expected that 
for the models (i) and (ii) in more than six dimensions all critical exponents take 
their mean-field values. The definition of v and v2 is problematic on the Bethe 
lattice since these exponents are defined using the Euclidean structure, but with a 
proper definition it can be shown that v2 = 1/2 [17]. On the hypercubic lattice it is 
expected that v and v 2 are equal, so the mean field values of  these exponents is 1/2. 
On the other hand, it has been rigorously shown by Chayes and Chayes [13] and by 
Tasaki [38] that if all the critical exponents exist, then they cannot simultaneously 
take their mean-field values in any dimension less than six. Thus the upper critical 
dimension of the system is expected to be six. 

1.2. Main Results 

Aizenman and Newman [6] introduced an unverified condition, the triangle 
condition, and showed that it implies that (1.7) holds with 7 = 1. The triangle 
condition states that 

V(p 0 < oo, (1.13) 
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where V(p) is the triangle diagram 

V(p) = ~ zp(O, x) zp(x,y) zp(y, 0). (1.14) 
x , y  

Since the susceptibility 2' (P) = ~ T (0, x) diverges as p approaches p~ from below for 
or 

the models (i) and (ii) we are considering [6], the statement that the triangle 
diagram is finite at the critical point is not without content. Denoting by fp (k) the 
Fourier transform of  the two-point function, defined by 

%(k) =Y  p(0, x) e 
x 

the triangle diagram can be written 

V(p)=(2~) -d ~ ddk%(k) 3. 

If an infrared bound 

~p(k)<C(p)k -2, a s k s 0 ,  

were known, it would then follow that V (p) < ~ for d > 6. A uniform bound on 
C(p) fo rp  <Pc would thus be tantamount  to (1.J3). Such a uniform bound, and 
hence the triangle condition, is expected to hold in more than six dimensions. 

In addition to the fact that the triangle condition implies y = 1, Barsky and 
Aizenman [8] have shown that the triangle condition implies that (1.8) and (1.9) 
hold with fl = 1 and ~ = 2, and Nguyen [28] has shown that it implies that (1.10) 
holds with A t - -2  for t = 2, 3, 4 , . . . .  It follows from (1.8) that the percolation 
density P~ is continuous at the critical point, a fact which has been proved until 
now only for d = 2 [30]. (Continuity of  P~ has been shown for all other values o fp  
in [5].) Our main result is that the triangle condition is satisfied (i) for the nearest- 
neighbour model if the dimension dis sufficiently large, and (ii) for the spread-out 
models if L is sufficiently large, for d > 6. Hence all the above consequences of  this 
condition also hold in these situations. 

In this paper we prove the following theorems. 

Theorem 1.1. For nearest-neighbour independent Bernoulli bond percolation on ;gd 
there is a do > 6 such that for d > do the infrared bound 

"gp (k) < const k -  2, uniformly in p < Pc 

holds. In addition the triangle condition is satisfied, i.e., 

v (pc) = (o, x) y)  (y, o) < 0 0 .  

Xg y 

Theorem 1.2. The infrared bound 

"~p (k) <_ const k -  2, uniformly in p < Pc, 

and the triangle condition both hold.for d > 6, for the spread-out models (ii), if L is 

8ag is piecewise continuous sufficiently large (depending on d and g) and if  ~x 1 ... Ox d 
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and g satisfies the following conditions." 

geallxHleLooORd) for some ~ > 0 ,  

S g(x) d~x = 1, 

~ [OI g(x)l ddx < 0% where the derivative is interpreted as a distribution, and 

O 
I] and I=  {1,2, . . . ,d} ,  
#eI  

g is invariant under rotations by n/2 and reflections in the coordinate hyperplanes. 

As a consequence of the proofs of these theorems, we will also show that the 
exponent v2 for the correlation length ~2 exists and takes its mean-field value 

v2 = 1/2 (1.15) 

for the nearest neighbour model if d > do and for the spread-out models if d > 6 
and L > Lo. However a more complicated analysis is required to control the 
correlation length ~. It is proved in [20] that v = 1/2, under the same hypotheses as 
(1.15). 

Also, Eq. (4.10) below gives an upper bound for the critical probability for the 
nearest-neighbour model in high dimensions, which together with a well-known 
lower bound states that there is a constant C > 0 (independent of d) such that 

1 1 C 
2 a - 1  <-Pc<= 2 ~ + ~  �9 

We have done little to obtain the best possible value of d o in Theorem 1.1. Our 
current best estimate is do -- 48, obtained by a slightly more complicated analysis 
than that presented in this paper. This value can doubtless be improved, but a new 
idea will be needed to obtain the triangle condition for the nearest-neighbour 
model right down to the expected upper critical dimension of six. The fact that we 
are unable to do much better than do = 48 suggests that we still do not have a very 
efficient expansion for percolation. (For the self-avoiding walk the situation is 
better: the lace expansion can be used to show that the bubble diagram is finite and 
y = 1, v2 = 1/2 for the self-avoiding walk if d > 7 [22]. Here 7 is the exponent which 
measures the rate of divergence of the generating function at the critical point, and 
v 2 is defined as for percolation. The upper critical dimension for self-avoiding 
walk is expected to be 4, so d > 5 should be optimal.) However in view of the fact 
that all of the models we are considering are believed to be in the same universality 
class, the conjecture of universality, together with Theorem 1.2, strongly supports 
mean-field behaviour for the nearest-neighbour model in more than six 
dimensions. 

The method of proof involves an expansion whose convergence is assured by 
taking l id  to be small in Theorem 1.1 and 1/L to be small in Theorem 1.2. 

1.3. Overview of the Proof 

In this section we describe the general structure of the proof of Theorem 1.1. The 
same ideas are used to prove Theorem 1.2. The basic structure of the proof is the 
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same as that used in [31], where in particular it was shown that the bubble diagram 
for the self-avoiding walk is finite at the critical point, in sufficiently high 
dimensions. (Proofs with this type of structure, in different contexts, can be found 
in [11, 36].) In order to focus on the main ideas here we make some simplifications 
and omit some details, deferring the complete proof to the remainder of the paper. 

We define the following quantities: 

T(p) = V ( p ) -  1 = ~ T(O,x)T(x,y) z ( y ,O) -  z(0,0) 3, (1.16) 
X,Y 

V/(p)--~ I x l  2 v(O,x) z. (1.17) 
x 

The massless gaussian propagator is given by 

f eik.(y-x ) d -1 d C(x 'Y)=(2~)-d d d k l - D ( k ) ' w h e r e D ( k ) =  ~ cosk u. 
# = 1  

We also introduce the gaussian quantities TG and W~ corresponding to T(p) and 
W(p), defined by replacing r by C in (1.16) and (1.17). It is not difficult to show 
that for d=>7 there are constants K 1 and /(2 such that TG=<Kld -1 and 
W G <= K2d -1 (e.g., using Appendix B of [20] or Lemma 3.1 of [31]). 

1.3.1. General Framework. The proof that the triangle condition is satisfied in 
high dimensions is accomplished by showing that the following three statements 
hold: 

(i) For p < Pc, T(p) and W(p) are continuous functions of p. 
(ii) For p <= I/2d, T(p) < T G <- K 1 d-  1 and W(p) <_ W c < K 2 d -1 

(iii) Let d be sufficiently large and fix any p e [1/2d, pc ). If 

T(p)<__4K~d -1, W ( p ) < 4 K 2 d  -1, and 2dp<=4, (1.18) 

then in fact 
T(p) < 3 Kl d -1, W(p) <=3 K2 d - l ,  and 2dp<=3. (1.19) 

(In reality the precise statement of (iii) is more involved and can be found in 
Sect. 4.) In the course of the proof of (iii) the infrared bound is obtained. 

Together (i), (ii) and (iii) imply that there is a forbidden region in the graph of 
T(p) or W(p), as depicted in Fig. 1. Therefore (1.19) holds and hence by definition 
of T(p) it follows that 

V(p)< 1 +3K1 d - l ,  for a l l p < & ,  (1.20) 

But since ~p (x, y) is an increasing and continuous function ofp [5], it follows from 
(1.20) and the monotone convergence theorem that 

V (Pc) = lira V (p) < 1 + 3 K1 d-  1, 
p~f p~ 

and hence the triangle condition holds. 
The proofs of(i) and (ii) are simple and are given in Sect. 4.2. The difficult part 

of the proof is to obtain (iii). This is done by obtaining an expression for the 
Fourier transform "ce (k), which under the assumption (1.18) can be shown to be a 
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3 ~  

P Pc 3/2d 4lad 

Fig. 1, Forbidden region (shaded) in the graph of T or W versus p, for p <Pc 

small perturbation of the massless gaussian propagator C(k)= [1-D(k)]  -1 
Hence T(p) and W(p) are close to their gaussian counterparts TG and WG, and 
thus the improved bounds on T(p) and W(p) in (1.19) follow. 

For the self-avoiding walk the analogue &step (iii) was obtained using the lace 
expansion. Here we derive and use an analogous expansion for percolation, which 
yields an expression for gp(k). The lace expansion was derived in [12] using an 
expansion followed by resummation, but it can also be derived using the inclusion- 
exclusion relation [34]. It is the latter approach that we use for percolation. (In a 
similar spirit, Park [29] has used the inclusion-exclusion relation to study 
intersection probabilities for simple random walk.) 

1.3.2. The Expansion. We describe the expansion in detail in Sect. 2, but let us 
here give the basic idea of the expansion and explain how it can be used to obtain 
(iii). We begin with some definitions. Two sites x and y are said to be doubly 
connected (in a given configuration) if there exist two self-avoiding walks from x to 
y, consisting of occupied bonds, which are distinct in the sense that they do not 
share a common bond (although they may share common sites). If x and y are 
connected, but not doubly connected, then there must be at least one bond in the 
connected cluster of x whose removal would disconnect x and y. Such a bond is 
referred to as apivotal bond for the connection ofx  and y. There is a natural order 
for the set of pivotal bonds, namely the first pivotal bond is the pivotal bond 
b = {u, v} such that one endpoint, say u, orb is doubly connected to x. Either the 
other endpoint v of b is doubly connected to y, in which case there are no further 
pivotal bonds for the connection of x and y, or it is not. In the latter case, the 
second pivotal bond is the one for which one endpoint is doubly connected to v, 
and so on. This leads to the picture of a cluster joining x and y shown in Fig. 2. This 
picture was also used in [27]. It is convenient to always regard a site as being 
doubly connected to itself. In Fig. 2(b), the pivotal bonds divide the cluster into 
parts which are mutually avoiding in the sense that no two can share a common 
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(a) 

L__J 3 4  x [ 

I U  

U 
Y 

(b) X t a 3 4 ~ 7 g 9 Y 

Fig. 2. (a) A configuration in which x and y are connected. (b) Schematic representation of the 
configuration in (a) 

site. This represents a kind of  repulsive interaction similar to that of  self-avoiding 
walk. 

The event that 0 is connected to x is then the disjoint union of  the event that 0 
is doubly connected to x and the event that there is a pivotal bond for the 
connection (and hence a first pivotal bond for the connection). We denote the 
former event symbolically as 

{0 is doubly connected to x} = 0 0 x,  

and the latter as 

{0 is connected to x but not doubly} = U 0 ~  �9 x .  (1.21) 
U v (u, v) 

Here the ordered bond (u, v) is the first pivotal bond for the connection, so 0 is 
doubly connected to u. The union in (1.21) is disjoint. Using this notation, and the 
convention that r (x, x) = i,  we have 

r ( O , x ) = P r o b  ( O ~ x ) +  y '  Prob ( 0 0  �9 x). (1.22) 
(u, v) u v 

At this point we need to make the following definitions. 

Definition 1.3. Given a bond configuration {rib} and a set A of  sites, we define 
(a) the connected cluster of  x in 2U\A: 
C A (x) = {y ~7Z/: y and x are connected using bonds having no endpoint in A}. 

I f  y e C A (x) we say that y and x are connected in Ze \A ,  
(b) the reduced two-point function: 

rA (X, y) = Prob~(y e C A (x)) ,  

(c) the connected cluster of  x after the bond {u, v} has been made vacant: 
(;~,, v~ (x) = {y  ~ C(x):  y remains connected to x after n{,, v} is set equal to zero}. 
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Now we use a lemma from [6] (which is stated and proved in Sect. 2.1) to write 
the summand in the second term on the right side of  Eq. (1.22) as follows: 

Prob ( 0 ~  x)  = p  { I [ 0 ~  u] r O~"" ~ (o)(v, x ) ) .  (1.23) 
U V 

The factor o fp  on the right side is due to the fact that {u, v} is occupied, while the 
restricted two-point function and the double connection of  0 and u are due to the 
fact that (u, v) is the first pivotal bond. Next we replace the restricted two-point 
function in (1.23) by 

c~"'v~ (~ x) = ~ (v, x) - [~(v, x) - z c'"'~ (~ x)]. (1.24) 

This yields the equation 

z (0, x) = Prob (0 ~ x) + p ~ Prob (0 0 u) r (v, x) 
(u, v) 

- p  ~ < I [ 0 ~ u ]  ( v ( v , x ) -  ~e'"'v~(~ (v,x))) .  (1.25) 
(u, v) 

Our goal is to manipulate the right-hand side of (1.25) so as to obtain terms 
which either involve a convolution with r evaluated at x, as in the second term on 
the right side, or involve a multiple connection from x and no explicit two-point 
function, as in the first term on the right side. (The reason for this will become clear 
when we take Fourier transforms.) To this end we first observe that 

(v, x) - ~  e~'v~ (o)(v, x ) =  ~I[v is connected to x in Z d but  not in 7Zd\C ~"'~ (0)]). 

(1.26) 

The event on the right side of (1.26) is such that every occupied self-avoiding 
walk from v to x must pass through C ~"'~ (0) (which within the inner expectation 
(1.26) on the right side of  (1.25) represents a given deterministic fixed set of  sites). 
As an example of a situation that can occur in this event, we consider the 
configuration in Fig. 3. There (u~, v~) is the first pivotal bond such that every 
occupied self-avoiding walk from v to u~ passes through C~"'~(0), and z' is the 

U u 

Z I 

~ •  

Fig. 3. An example of a configuration contributing to the right side of Eq. (1.26). Thick lines 
represent the bonds connecting the sites in fflu, vl (0). Thin lines represent the bonds connecting v 
and x. The point t is a point in C~u'v!(0) on an occupied self-avoiding walk from z' to ul 
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latter endpoint of  the previous pivotal bond {z, z'}. Other possibilities and special 
cases exist, for example v could be doubly connected to x, but we ignore such cases 
in this overview. By another application of  the lemma quoted above (1.23), the 
contribution to (1.26) due to the configuration in Fig. 3 is equal to 

~ (I[E(v, z', (ul, Vl))] r c ~ ' ' ~  (v) (vl ,  x ) ) ,  (1.27) 
(Ul  , t31) Z '  

where E(v, z', (ul, vl) ) is the event that (a) v is connected to z' via a pivotal bond 
{z, z'}, (b) z' is doubly connected to ul ,  with one of  the occupied paths passing 
through a site in C ~"' ~} (0), and (c) {ux, Vl } is occupied and is the first pivotal bond 
such that every occupied self-avoiding walk from v to u 1 passes through C{"'~(0). 
As before we will replace the restricted two-point function in (1.27) using the 
analogue of  (1.24). 

This allows us to write (1.25) as 

r(O,x) = Prob ( 0 o x ) §  ~ Prob ( 0 o u )  r(v,x)  
(u, v) 

- -p  ~ ~ ( I [ 0 ~ u ]  (I[E(v,z ' , (Ul,Vl))]))  "c(vl,x) 
(u, v) z' 

(ul, vl) 

+ other cases + remainder. (1.28) 

The remainder comes from the use of  (1.24) in (1.27). Let us now for simplicity 
ignore the other cases and the remainder in (1.28). We take the Fourier transform 
of  (1.28), and use the fact that the Fourier transform of a convolution is the 
product of  the Fourier transforms. Solving the resulting equation for "~p (k) yields 

1 + g0 (k) + corrections, (1.29) 
(k) = 1 - 2 dp D (k) - f l  o (k) + FI 1 (k) 

where 
do(k) = ~ Prob ( O o x )  e ik'x, (1.30) 

x~:O 

2dp D(k) + flo(lc)= p y' P r o b ( O o u )  e ik'v, (1.31) 
(u, v) 

(the first term on the left side of  (1.31) is the u = 0 term on the right side) and 

/rIl(k) ~-P ~ 2 < I [ 0 ~ u ]  ( I [ E ( u , z ' ,  (Ul,/A1))])) e ik'vl.  (1.32) 
(u, v) z, 

(ul,vl) 

1.3.3. Bounding Terms in the Expansion. We can estimate go , / l o ,  and/11 using 
the van den Berg-Kesten inequality [9]. In the form that we need it the van den 
Berg-Kesten inequality states the following. Let V1,..., V, be sets of  paths in the 
lattice, and let E~, i = 1 . . . .  , n, be the event that at least one of the paths in V~ is 
occupied. Then 

Prob [there exist pairwise distinct occupied paths co~ ~ V1 . . . . .  co, e V,] 

< Prob [Eli ... Prob [E,]. (1.33) 



Percolation in High Dimensions 345 

The inequality (1.33) with n = 2 can be used to estimate (1.30) and (1.31) by 
taking V1 = V2 to be the set of all paths from 0 to x: 

[g0(k)l < ~ z(0,x) 2 < T(p), (1.34) 
x ~ O  

[17o(k)l <_2dp Z P r o b ( O ~ u )  < 2dp ~, z(O,x)Z < Zdp T(p). (1.35) 
u:~O x~r 

The estimation of (1.32) is more involved. We will use the inequality 

l[E(v,z,  (ul vl)] < ~  I[teC(u'~(O)] - ' (1.36) ' , I[E(v, z ,  t, (u I , Va))], 
t 

where E (v, z', t, (u~, vl)) is the event that (a) v is connected to z', (b) z' is doubly 
connected to ul, with one of the occupied paths passing through t, (c) (ul, vl) is 
occupied, and (d) all of these connections are given by distinct paths. With (1.33), 
this gives 

I/~1 (k) I _<-p Y, 
(u, v) 

(ul,vl) 

< 2dp 2 
(u , v ) ,u l , t , z '  

~ 2dp 2 ~. 
{u ,v ) ,u t , t ,g ' ,  W 

<I[0 ~ u] I[t ~ C ("' v} (0)] </[/2(v, z', t, (ul, vl))]>> 
t , z '  

< I[O ~ u] I[t e C{"'~} (O)l> z(v,z') ~(z', t)r(t, uO r(z',uO 

r(o, u) ~ (0, w) ~(w, u) ~(w, t) ~(v, z') T(z', t) ~(t, uO ~(z', ul). 

To better visualize this inequality we will introduce a diagrammatic notation in 
which it is represented by 

Ill 1 [< 2dp ~ .  (1.37) 

(One factor ofp is inherent in the diagram.) As we shall show in Sects. 2.3 and 3.1, 
the right side of (1.37) can be bounded in terms of T(p) to give 

IBll < (2 dp) 2 (1 -+- T(p)) 2 [Z(p)/3 + (2 T(p)/3 d) 1/u + 1/d]. (1.38) 

The right side of (1.38) is O(d -1) for large d, under the assumption (1.18). 
Analogous upper bounds can be obtained for first and second k-derivatives of go, 
/lo, and/~1 involving W(p) as well as T(p). 

1.3.4. Bounds on f(k). Proof Completed. In this section we describe how (1.19) 
can be obtained, assuming (1.18). Incorporating the corrections in Eq. (1.29) into 
corrections to g0 and/I0 - / I 1 ,  f (k) can be written in the form 

1 + ~(k) (1.39) 
~(k) = 1 - 2dp D(k) - f l (k ,p) '  

where 

and 
g (k) = go (k) + corrections, 

f l (k ,p)=llo(k)-I ) l (k)+correct ions .  
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Now for any p < Pc, 

1 - 2dpD(k)  - f l (k ,p)  = 1 - 2dp D(k) - f l (k ,p)  - [1 - 2dp -/2r(0,p)] 

+ [1 - 2dp - ~(0,p)].  

Using (1.18), it follows from (I .34) that 1 + ~(0) ~ 1 for large d, and hence (since 
"g (0) =Z  (P)) the last term on the right side is 

i - 2 d p - f I ( O , p ) = [ 1  + ~(0)])~(p) -~ ~Z(p)  -1 ~ 0 .  (1.40) 

Therefore 
1 + I (k)l 

(k) < 
2dp (1 - D(k)) + lr - f I (k ,p)  " 

The difference o f / I ' s  in the denominator can be controlled in terms of the 
second k-derivative o f / I  using (1.18), along the lines we have outlined above for 
bounding/I , .  The assumption on Win (1.18) is used at this point. This allows us 
to absorb the difference o f / I ' s  into the gaussian term 2dp (1 - D (k)), which with 
(1.34) yields an infrared bound. The fact that 2 dp > 1 is used at this point. We then 
write T(p) and W(p) in terms of ~ (k), and using this infrared bound obtain the 
improved estimate (1.19) for T(p) and W(p). The inequality 2 dp -< 3 follows from 
(1.40) and the fact that /1  is O (d-1). Although the proof of the infrared bound 
initially uses the assumption (1.18), once we have derived the stronger statement 
(1.19) the assumption holds automatically. 

This completes the outline of the proof. The remainder of the paper is devoted 
to giving a rigorous proof of Theorems 1.1 and 1.2, following this outline. In the 
next section we describe the organization of the remainder of the paper and 
summarize some notation and definitions. 

1.4. Organization, Notation and Definitions 

In this section we describe the organization of the remainder of the paper and 
summarize some definitions. We also introduce a convenient diagrammatic 
notation. 

In Sect. 2 a detailed derivation of the expansion for the two-point function is 
given, and estimates are given for the terms of the expansion in both x-space and k- 
space. These estimates are given by diagrams as in (1.37). In Sect. 3 it is shown how 
the diagrams can be bounded by products of T, W and a small number of related 
quantities which play a role in the precise version of the assumption (1.18). In 
Sect. 4 the statements (i), (ii) and the precise version of (iii) (from Sect. 1.3.1) are 
proved, completing the proof of Theorem 1.1. In Sect. 4.4 the proof that v2 = 1/2 
for the nearest-neighbour model when d >  do is given. Finally in Sect. 5 the 
modifications to the proof of Theorem 1.1 which are necessary to prove 
Theorem 1.2 are described. 

We now list several definitions, some of which were made in the last section 
and some of which are new. 

Definition 1.4. (a) A bond is an unordered pair of distinct sites {x, y}. An ordered 
bond is denoted (x, y). A path from x to y is a self-avoiding walk (not necessarily 
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nearest-neighbour for the spread-out models) from x to y, considered as a set of  
bonds. Given a bond configuration {%}, an occupied path is a path consisting of  
occupied bonds. Two paths are distinct if they have no bonds in common. 
(Distinct paths may have common sites.) 

(b) Given a bond configuration, two sites x and y are connected if there is an 
occupied path from x to y. They are doubly connected if there are at least two 
distinct occupied paths from x to y. A site x is always considered to be doubly- 
connected to itself. 

(c) Given a set of  sites A c ;ge and a bond configuration, two sites x and y are 
connected in A if there is an occupied path from x to y consisting of bonds whose 
endpoints both lie in A. The sites x and y are doubly-connected in A if there are at 
least two distinct occupied paths from x to y consisting of  bonds whose endpoints 
both lie in A. Two sites x and y are connected through A if there is at least one 
occupied path from x to y and if in addition every occupied path from x to y has at 
least one bond with an endpoint in A. Similarly we define x and y to be doubly- 
connected through A if x and y are doubly-connected and connected through A. 

(d) Given a bond configuration, the connected cluster C(x) of x is given by 

C(x) = {y~2gd: y is connected to x}. 

Given a set A of sites, we define 

C A (x)= {y e2gd: y and x are connected in 2gd\A}, 

and the restricted two-point function 

A r v (x, y) = Probp (y e C A (x)). 

Given a bond {u, v}, we define 

(7 ("'"~ (x) = {y e ;ga: y is connected to x in the new configuration 
obtained by setting n(,,v~ = 0}. 

(e) Given a bond configuration, a bond {u, v} (occupied or not) is called 
pivotal for the connection from x to y if either x ~ C (u) and y e C (v), or x ~ C (v) and 
y~C(u),  but y(~"'V~(x). Similarly an ordered bond (u,v) is pivotal for the 
connection from x to y if x~  C{U'V}(u), yeC~"'V}(v), y ~  ~u'V}(x). If  x and y are 
connected then there is a natural order to the set of occupied pivotal bonds for the 
connection from x to y (providing there exists one or more occupied pivotal bond), 
and each of  these pivotal bonds can be ordered in a natural way, as follows. The 
first pivotal bond from x to y is the ordered occupied pivotal bond (u, v) such that 
u is doubly connected to x. If(u, v) is the first pivotal bond for the connection from 
x to y, then the secondpivotal bond is the first pivotal bond for the connection from 
v to y, and so on. 

Finally we describe the diagrammatic notation that will be used for the 
remainder of  the paper. This notation has the virtue of  making cumbersome 
expressions more transparent. We will denote the event that there is an occupied 
path between x and y by a solid line joining x and y: x y. In a diagram 
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consisting of several such solid lines it is always to be understood that there are 
distinct paths making the required connections. For example, the diagram 

denotes the event that y is connected to z, z is connected to u, z is connected to x, 
and x is connected to u, all by distinct paths. 

We will also use a Feynman diagram notation in which full propagators are 
represented by wavy lines, unlabelled vertices are summed over the lattice, and 
labelled vertices are fixed. In addition we will shade in any loop for which all 
vertices on the loop may coincide. In unshaded loops the summation is 
constrained such that at least two of the vertices must be distinct. For example the 
diagram 

represents 

r Z r r r162 V(p), 
U,x 

while the diagram 

represents "1 

I ~  "~(Z, U)"~(U,.~)'~(X,Z)--'C(Z, Z ) 3 /  : T(..]], ~ ) I V  (.p) - -  1] .  $(y, Z) 
_1 

A pair of wavy lines terminating together in bars denotes two propagators 
ending at two sites y and y' and carries a factor ofp~y, y,) and a sum over all ordered 
bonds (y,y'). For example, 

0 0 : r(y',o). (y,y') 

2. The Expansion 

In this section we derive the expansion for vp(0, x) which is the main tool used in 
the proof of Theorems 1.1 and 1.2. The results of this section are valid for general 
;gd-invariant bond percolation models, long or short range. (In fact, Proposi- 
tions 2.3 and 2.4 hold without the assumption of Zd-invariance.) To simplify the 
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notation we write Pxy for p{x,y}, In Sect. 2.1 we use the inclusion-exclusion principle 
to prove an identity of the form: 

N 

"C(0 'X)=C$0 ,xq ' -  2 (--l)ngn(O'x)q-(--1) N+I RN(O'x)-'}- E Poyz(Y, x) 
n=O y~O 

N 

+ }-" ( - 1 ) " ~  H,(O,y') z(y',x). (2.1) 
n=O y' 

The identity (2.1) is valid for any p <Pc and any nonnegative integer N, and the 
nonnegative quantities g,, H, and RN are given by explicit formulas in Proposi- 
tion 2.3. There is a close relation between H, and g,: 

//,  (0, y') --- ~ g, (0, y) pyy,. 
y 

In Sect. 2.2 the van den Berg-Kesten inequality is used to obtain x-space estimates 
for g,, H, and RN in terms of the full propagator r itself. These estimates are stated 
in Proposition 2.4. 

Taking the Fourier transform of Eq. (2.1) gives the following formula for f (k), 
which will play a key role in obtaining the infrared bound in Sect. 4: 

N 

1 + Y, (-1)" d.(k)+(-1)N+lkN(k) 
~(k) = ,=0 N (2.2) 

1 - ~ Poy eik'Y- Z (-1)" /1 . (k)  
y=t=0 n=0  

To control i(k) we will employ k-space estimates for d,(k), _O,(k) and kN(k). 
These follow easily from the x-space estimates and are given in Proposition 2.6 in 
Sect. 2.3. 

Throughout this section we make use of the definitions and notation given in 
Sect. 1.4. 

2.1. Derivation of the Expansion 

The expansion is derived using a lemma from [6] together with repeated use of 
inclusion-exclusion. We begin (as outlined in Sect. 1.3.2) by writing 

r(0, x ) =  Prob (0 is connected to x) 

-- Prob ( 0 ~ x ) +  ~ Prob (0 is connected to x but not doubly, 
(u, v) 

and (u, v) is the nrst pivotal bond). (2.3) 

We define 

go (0, x) -= Prob (0 ~ x) - 6o, x- (2.4) 

To analyze the second term on the right side of (2.3), we use the lemma from [6]. 
Before stating the lemma, we first introduce some definitions. Let B be a 

random or deterministic set of bonds, and let E be any event. We denote by B~ the 
set of sites consisting of endpoints of bonds in B, and we denote by C ~u' v~ (0)b the 
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connected bond cluster of the origin which remains after setting n~,, ~ = 0. The 
event that E occurs on B is defined to be the set consisting of those bond 
configurations for which the new configuration obtained by setting nb = 0 for all 
b r B is a configuration in the event E. The lemma involves events satisfying: 

E occurs and the ordered bond (u, v) is pivotal for the connection from 0 to x 

=, E occurs on C~'~(0)b. (2.5) 

An example of an E satisfying (2.5) is the event that 0 is doubly connected to u. 
For simplicity we consider only the case p < p~, which is sufficient for our 

needs. 

Lemma 2.1. Let E be an event satisfying (2.5), and f ix  p < p~. Then 

(I[E occurs and (u, v) is occupied and pivotal for the connection from 0 to x]) 
=p,~ (I[E occurs and u � 9  C(0)] r eC~'~ (~ x) ) .  

Proof. The proof  is by conditioning on C ("' ~ (0). Since p < p,,  this cluster is finite 
with probability one. Let 

# = {finite connected bond clusters B: 0, u �9 Bs and E occurs on B}. 

Since E satisfies (2.5), apart from a set of  measure zero 

{E occurs and (u, v) is pivotal} = Q) {C~"'~(0)b = B and (u, v) is pivotal}. 
B e g  

Therefore 

(I[E occurs and (u, v) is occupied and pivotal]) 

=p,o (I[E occurs and (u, v) is pivotal]) 

=p,~ ~ Prob ((u, v) is pivotal l C~"'v)(0)b = B) Prob (C~"'~(0)b = B). 
B e g  

Since 
{(~{"'o}(0)b = B and (u, v) is pivotal} 

= {C{U'v}(0)b = B and v is connected to x in Zd\Bs}, 

and since the events {C/U'~}(0)b = B} and {v is connected to x in Zd\Bs} are 
independent, the conditional probability is equal to 

(I[v is connected to x in ~gd\Bs])= ~I~'(V, x). 

Therefore the above sum can be written 

p,~ ~ zBs(v,x) (I[C~"'~(0)b=B])=puv ~ (ze'""~(~ I[C("")(0)b =B] )  
B e g  Be6~ 

= p.~ (I[u �9 (7 ("' ~ (0) and E occurs on C ~' ~/(0)] ~C'"' ~' (0) (v, x)) 

= p~ (I[u �9 C ("' ~ (0) and E occurs] ,e'"' ~' (0) (v, x)) .  (2.6) 

The last equality is due to the fact that if E occurs, but not on C~"' ~ (0)b, then by 
(2.5) (u, v) cannot be pivotal, in which case either v e C ~"' ~ (0) or v is not connected 
to x, and hence Te~u'~(~ x)= 0. 
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Fig. 4. Examples of configurations contributing to ID (v, x; A) 
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But now if u e C(0) \C  ~"'~) (0) then 0 is connected to u through {v}, and hence 
ve cu,"~ (0)(v, x ) =  0. Thus the right side of  (2.6) is equal to 

p,v ( I [E  occurs and u e C (0)] ~ e~" ~ c0)(v, x)}, 

and the lemma is proved. [] 

We now use this lemma, with E the event that 0 is doubly connected to u, to 
write the second term on the right side of (2.3) as 

Y, po~ ( I [0  ~ u] ~ e~~ ~ (o)(v, x ) ) .  
(u, v) 

To implement the inclusion-exclusion principle, we replace the restricted two 
point function by 

v e'~'~' (~ x) = v(v, x) - [r(v, x) - v e'~'~' (~ x)]. (2.7) 

This gives (2.1) with N =  0, if we define 

Ho(O,y') = Z Py,' ( l [ 0 o y ] )  = Z P y , '  go(O,y) (2.8a) 
y * 0  y 

and 

Ro(O,x) = ~ P,v ( I [ O ~ u ]  {~(v,x) - vC~"'~'(~ (2.8b) 
(u, v) 

To proceed further we rewrite the difference of  two-point functions occurring 
in the remainder R o using the following lemma. In preparation for the statement 
of  the lemma we make the following definition, which is illustrated in Fig. 4. Given 
a set A of sites, define 

Io(v,x; A ) =  I[v and x are doubly connected through A] 

+ I[~ z ' .  v such that z' is connected to v in 2~a\A, 
z' is an endpoint of  a pivotal bond for the connection of  v and x, 

and z' is doubly connected to x through A]. (2.9) 

Lemma 2.2. Given a set A of  sites and two f ixed sites v and x, 

r (v, x) -- zA (V, X) = ( I  v (V, X; A ) )  + Z Pyy' ( Iv  (v, y; A) r c~''''~(v) (y,, x ) ) .  
(y ,y ' )  

Proof. By definition of  zA, 

T(V, X ) -  rA(v, X)---- (I[v and x are connected through A]).  
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Each configuration contributing to the right side belongs to exactly one of  the 
following two cases. 
Case 1. The sites v and x are doubly connected through A. This contributes to ID, 
giving the first term on the right side of  (2.9). 
Case 2. The sites v and x are connected through A but are not doubly connected 
through A. In this case there is at least one pivotal bond for the connection from v 
to x, and we subdivide this case into the following cases. 
Case 2a. There is no pivotal bond (w, w') (for the connection from v to x) such 
that w is connected to v through A. This gives the other contribution to ID in (2.9). 
There z' is the latter endpoint of  the last pivotal bond for the connection ofv  to x. 
Case 2b. There is a pivotal bond whose first endpoint is connected to v through A. 
In this case there is a first such pivotal bond (y, y'). The contribution due to this 
case to ~ (v, x) - ~a (v, x) is 

( l [ (y ,  y') is the first pivotal bond (for the connection from v to x) 

(Y'Y') whose first endpoint is connected to v through A]).  

Let E be the event that v and y are connected through A, and there is no pivotal 
bond (w, w') for the connection from v to y such that w is connected to v through A. 
Then E satisfies (2.5) (with (u,v) replaced by (y ,y ' )  and 0 by v) and 
I[E] = ID(v,y; A), and hence by Lemma 2.1 the above expression is equal to the 
last term on the right side of  the equation in the statement of  the lemma. This 
completes the proof  of  Lemma 2.2. [] 

We now return to the derivation of  the expansion. Beginning with the equation 

r = +go(O,x) + F, r + 2 / / o  (0,y') r - Ro(O,x), 
v :l: O y" 

in which go, H0 and R o were defined in Eqs. (2.4), (2.8a), and (2.8b), we use 
Lemma 2.2, with A = C ~"' v/(0), to replace the difference of  two-point functions 
occurring in R o . This leads to a nested expectation in R0. In order to specify 
unambiguously to which expectation the set C ~"' ~ (0) (which is defined in terms of  
a given bond configuration) corresponds, we use subscripts in nested expectations, 
i.e., C, ~"' v~ (0) denotes C ~"' v~ (0) defined by the bond configuration corresponding 
to the configuration ( . ) ( , ) .  In applying Lemma 2.2 to (2.8 b), ~(u, ~ (0) is random 
in the expectation of  (2.8b), but deterministic with respect to the expectation 
produced by application of  Lemma 2.2. Using subscripts we have 

Ro (0, x) = ~ pu~ (I[0 ~ u] ( I  D (v, x; Co/"' ~ (0)))(1))(0) 
(u, v) 

+ p,o ( t [0< : :>u]  py,., (Io(v,y; 
(u,v) (y,y') 

The first term gives ga. In the second term we replace the restricted two-point 
function re~i ''''~(~) by an unrestricted two-point function plus a correction as in (2.7). 
The term involving the unrestricted two-point function gives rise to a term 

Hi  (0, y ')T (y', x), where Ha (like gl) contains two nested expectation values. 
y' 
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The correction term, containing a difference of  restricted and unrestricted two- 
point functions, is the remainder R~ (0, x). Now the same procedure can be 
iterated, beginning with the use of Lemma 2.2 to rewrite the difference of  two- 
point functions, and so on. The details are straightforward but tedious, and lead to 
the following result�9 To abbreviate the notation, we write 

and 
Po=ID(yj ,yj+I;  e j -1) .  

Proposition 2.3. For N > 0 and for p < p~, 

where 

I7 

r(0,x) = 6~,o + ~2 
n = O  

N 

+E 
n = O  

and for n >= 1, 

( -1 ) "  g.(O,x)+ E po.~(v,x) 
v*O 

( - 1 ) n  E H n ( O ' Y ' ) ' c ( Y " X ) ~ - ( - - ] ) N + I R N ( O ' x )  ' 
y' 

go (0, x) = Prob (0 ~ x )  - 6o,~, 

gn(O,x)= ~ p,~y; "'" ~ p , . , y ~ ( I [ O ~ y l ] ( I ~ ( I ~ ( I 3 . . . ( l ;  -1 
(Yl,Y'I) (Yn,Y~)  

�9 Go  (y;,  x; C._ 0>(.))c .-  1)'" ">c~)>c~}>.)>co), 

i where Yo = O. Also, for n > O, 

Finally 

RN (0, x)  = 

H, (0, y') = ~ p,y, g, (0, y). 
Y 

(Y l ,Y~ )  ( Y N +  1,Y~v + 1) 

~. ~ ~ + ~ ' � 9  �9 �9 (Ilo(Ig "'" ( I~"  { (YN+a x) -- ze~(y'N 1 x)})CU) "5C2))Cl))CO) 

Remark. In the nested expectation 

(I[0  ~ Yl] (I~ ([D (Y'2, X; C1)>(2)>(1)>Co) 

= (I[0 ~ Y a ]  (ID (Yl, Y2 ; Co ~yl''i} (0)) ( I  D (Yl, x; (~[y2, yl} (Yl))>c2)>cl} >c0}, 

which occurs in g2 (0, X), it is worth emphasizing again that within the innermost 
expectation, (7~ y2, Y~ (y[) represents a deterministic set of  sites, which is random in 
the middle expectation. Similarly (~o~Yl,Y;}(0) is deterministic in the middle 
expectation, but random in the outer expectation�9 The situation is entirely 
analogous for gn and R N. 



354 T. Hara and G. Slade 

2.2. Bounds in x-Space for Each Term of the Expansion 

Having completed the derivation of the expansion in the previous section, we now 
turn to the problem of obtaining bounds on each term in the expansion. We use the 
van den Berg-Kesten inequality [9] (in the form of(1.33)) as our principal tool, and 
obtain the bounds given in the following proposition. Before stating the 
proposition we introduce the following notation: 

hn(O,x)= Y~ .. .  2 
Iii, ~i utl~urt 

ho (0, x)  = z (0, x)  ~ - a o , . ,  (2.1 O) 

Aa (0, ul,v,) I2I A 2 ( u i _ l , v i _ l , u i , v i )  A 3 ( u n , V n , X ) ,  n ~ ] ,  
i = 2  

(2.11) 

where 

Al(O, ul,vl)=O ~ vl 
bl 1 

= ~] p,,~,~ ~ ~(O, yl) T(O, zl) ~(yl,zl) ~(yi ,vO ~(z~,us), 
(Y~,Yl) z~ 

(2.12) 

Di- 1 Hi Ui- 1 l'li 

bli - 1 ~i l'li - 1 Vi 

= ~ Py, ya ~. z(ui-, ,Yi) z(Yi,Zi) T(Zi,Lt,-I) T(Zi,UI-1) T(Ui-a,bli) T(Yi,1)i) 
(Yl,Y~) zi 

-t- 2 PYiY'~ ~ "C(Vi- l ' U i - 1 )  r ( U i -  l , Y i )  72(Yi , z i )  T ( Z i ' l ) i - 1 )  T ( Z i ' U i )  
(Yi,Yi) Zi 

�9 T ( y ; ,  Vi) Z (hi i _ 1, V i -  2, Yi, Zi ) ,  (2.13) 

where 

and 

Z (x, y, z, w) = {~ if x = y = Z = , 

A 3 ( u . , v . , x ) =  x = ~(x,v.)  r (v . ,u . )  r (u . , x ) .  
b! n 

(2.14) 

Figure 5 shows the diagrammatic representation for ho,ha, and h2. The 
diagrams which occur are closely related to the one particle irreducible Feynman 
diagrams of a ~03 field theory. The diagrammatic notation was introduced in 
Sect. 1.4. In particular, for an unshaded loop the summation over the unlabelled 
vertices is constrained to disallow the coincidence of all vertices on the loop, 
whereas a shaded loop has no such constraint. Note that any loop containing one 
of the summation bonds (Yi, Y~) cannot possibly shrink to a point and hence will 
always be unshaded. With this notation we are now ready to state the bounds on 
the terms in the expansion of Proposition 2.3. 
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h_(o,x) = o x U -  - 

355 

h~(o,x) - O ~ X  

,co, x , _  + 

Fig. 5. Diagrammatic representation for h o, hi, and h2, using the notation introduced in 
Sect. 1.4 

Proposition 2.4. The quantities g,, 1-1, and R N in the expansion (given in Proposi- 
tion 2.3) for the two-point function z (0, x) satisfy the following bounds,for n, N > 0: 

0 __< g. (0, x) ____ h . (0 ,x ) ,  

0 <= 17, (0, y') < ~ pyy, h, (0, y), (2.15) 
Y 

o <= RN(O, x) <= ~ p,~, hN(O,y) ~(y', x). 
(y,y') 

Proof. We begin with go and H o . By definition, 

go (0, x) = Prob (0 ~ x) - 5o,x, 

and by the van den Berg-Kesten inequality the right side is less than 
z (0, x) z - 6o, x = h 0 (0, x). This is the desired bound on go. Hence, by definition of  
Ho (2.8a), 

n o (0, y ')  =< Z Pyy' ho (0, y).  
Y 

This is the desired bound on H o . The bound on R o is similar. 
To bound g,, 17, and RN for n, N > 1, we use the following lemma: 

Lemma 2.5. y, 
' " ~ (2.16) (a) (ID (y ,  x, A)) < ~, I[u ~ A] x ,  

u 

b/ 

(b) (ID (Y~,Yi+ I ; A) I[v ~ ~(Y'+I'r;+ 1} (Yl)]) 

<~, I[usA] + �9 (2.17) 
u u ~ y i +  1 

The proof  of  Lemma 2.5 is deferred to the end of  this section. Now we show 
how the lemma can be used to complete the p roof  of  Proposition 2.4. The basic 
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idea is simple: the nested expectations given for g,, H,, and R N in Proposition 2.3 
are estimated using Lemma 2.5, working from the inside out. 

We begin with g,, and consider the formula for g, given in Proposition 2.3. We 
fist estimate the innermost expectation (I~)(,) using Lemma 2.5 (a). (Within this 
expectation, ~,c~lY-'_ ~ ya~ ty,r,/_ ~ ~ is deterministic; it is random within the next expec- 
tation.) This gives 

= " ' n -  1 
,, y; 

Then we estimate the next expectation (which now contains a factor 
I[u,s~,L~iY~(y',_l) ] due to the above bound on (ID)(.~) using Lemma 2.5(b). 
This gives 

' ~ " - ~ '  ~ -  ~ (y ; -  2)) rr,, = c~, . ,  ,~  ~,,, ~)])<.- ~1 

~ I[u,-leCff-"~'v'-'~(Y',-2)]" + 
Un-  1 

un-  1 Y .  

Repeating this process gives the estimate for g, given in Proposition 2.4. 
The bound on H,, then follows from the fact (Proposition 2.3) that 

H, (0, y') = Z P,,' g, (0, y). 
Y 

R u using the formula given in Proposition2.3 and the Finally, we bound 
inequality 

0 ____ r (y', x) - r" (y', x) _< ~ (y', x) (2.18) 

to obtain 

RN(O,x)< ~ H~(O,Y'N+I)z(Y~+I,x) �9 
Y~v+ 1 

This completes the proof of Proposition 2.4, given Lemma 2.5. Now we give 
the proof of Lemma 2.5. 

Proof of Lemma 2.5. 

(a) By definition (Eq. 2.9, see also Fig. 4), 

( I  o (y', x; A)) = (I[y' and x are doubly connected through A]) 
+ (I[3 z + y' such that z is connected to y' in Z~kA, 

z is an endpoint of a pivotal bond for the connection of y' and x, 
and z is doubly connected to x through A]). 

For any bond configuration contributing to the first term on the right side, there 
exists a site u e A and three distinct occupied paths connecting y' and x, y' and u, u 
and x respectively. Therefore by the van den Berg-Kesten inequality the first term 
on the right side is bounded above by 

~ (y', u) ~ ( . ,  x) ~(x, y ' ) .  
u ~ A  
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Furthermore, for any bond configuration contributing to the second term on 
the right side of (2.19), there is a site u ~ A and four distinct paths connecting y'  and 
z, z and x, z and u, u and x. Note that z ,  y'. Thus by the van den Berg-Kesten 
inequality the second term is bounded above by 

u e A  z 
z , y "  

Combining these two gives (a). 

(b) By definition of ID, 

( J~D (Y~, Y i  + 1 ; A) I[v ~ C (y~ +1, y~ + l ~ (y~)]) 
<= (I[yi+ 1 and Y'i are doubly connected through A, and v is connected to Y'i]) 

+ (I[3 a last pivotal bond (z, z') for the connection from y'~ to Y~+I, z' and 
Y~+ 1 are doubly connected through A, z and y~ are connected in 7Ze\A, 
and v is connected to y~]). (2.20) 

We first consider the case y~ * Yi+ 1. For  a configuration contributing to the first 
term on the right side of (2.20), there are sites u e A  and w e2g d and five distinct 
occupied paths joining y~ to u, u to y~ + 1, Y~ to w, w to y~ + 1, and w to v. (Since Yi + 1 
and y~ are doubly connected through A, each path connecting y~ to y~+~ goes 
through A, and hence u e A can be chosen such that w and u lie on distinct paths 
from y~ to y~ + 1 .) Thus by the van den Berg-Kesten inequality the first term on the 
right side of (2.20) is bounded above by 

(y~ v )  

u ~ A  \ u ~',,,.,,.,'.,~ Y i + l  

The second term can be bounded similarly by 

y; z' 
! 

Prob 3 z' ~ 2g d, u ~ A such that [ 

U 

u c A  
Z ' ~ Z  d 

Yi+l 

y; z' v y ; ~  v 

Id Y i +  l U i + 1  

o r  

y~ v 

S 
u Y i + l  

(2.21 a) 

(2.21b) 

using the van den Berg-Kesten inequality in the last step. In (2:21 b), y~ ~ z', 
because z' is the latter endpoint of a pivotal bond. Combining these two estimates 
gives (2.17) for the case y~ 4= y~ + 1, apart from checking that the loop in the first 
term on the right side of  (2.21 b) cannot shrink to a point. However, the case where 
that loop skrinks to a point is already accounted for in the second term of (2.21 b). 
(The loop in (2.21 a) cannot shrink to a point when y~ 4= Yi+ 1 .) This proves (2.17) 
for the case when y~ +Yi+l .  
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When y~ = y~+ 1, it follows from the definition of  I v that 

(ID (Y~,Yi+ a ;A) I[v e ~ri+,,y'+,~ (y~)]) =< I[y~ ~ A] ( l [ v  ~ 8 ~ri+''y;+ '~ (y~)]) 
< I[y~ ~ A] Prob (y~ v) < I [y; E A] r (y~, v). (2.22) 

However the upper bound (2.22) is bounded above by the second term in (2.21 b) 
(which includes it as the case y~ = z' = u = y~+ a). Thus (2.17) holds also in the case 

Y~ =Y~+I. [] 

2.3. Bounds in k-Space for Each Term of the Expansion 

In this section we obtain bounds on ~ , (k) , / I ,  (k) and kN(k ) which will be used in 
Sects. 4 and 5 in deriving the infrared bound. These bounds are given in 
Proposition 2.6, and follow in a straightforward way from the x-space bounds 
obtained in Sect. 2.2. In the statement of  the bounds, derivatives with respect to ku 
are denoted by Ou, and I x l ( - Jl x IJ 2) is the Euclidean distance from x to the origin. 

Proposition 2.6. The following bounds are satisfied." 

[g.(k)l _-< ~ h.(0,x), 
x 

I~g.(k)l____d -1 Y~ lxl2 h.(O,x), s=1 ,2 ,  
x 

[/),(k)] < ZPo, Z h,(O,x), 
X 

h.(0,x)+2 o l j z . =  r O~B.(k)] __< d -1 
L v  x v x _J 

_ = - ~  po~ ~ l x  h.(0,x)+ Epo~lVl 2 ~h.(O,x) , 
x p x 

IkN(k) l _-< Y~ po~ z(p) Y h,,(0, x), 
t) x 

+ z 

+d- '  ZPo, ZhN(O, x) ZIYl2v(O,Y),  s - 1 , 2 .  
V X y 

Proof. These bounds all follow in a straightforward way from the x-space bounds 
given in Proposition 2.4. Beginning first with the bounds which do not involve 
derivatives, it follows from Proposition 2.4 that 

I~.(k)l = ~',e 'k~ g.(O,x) < E g.(O,x) < E h.(O,x), 
x x x 

I / I . (k)[-- I  E e~k'Y'II.(O,y') <= Z H.(O,y')<= ZPo~ Z h.(O,y), 
I y" y '  v y 
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and 

[/~N(k)l= ~ eik':'RN(O,x) < (o, x) __< z (p) hN (0, x). 

To obtain the bound on 0]. ~. (k), s = 1,2, we use symmetry and Proposition 2.4 
as follows: 

[0]`~,(k)] = ~ (ixu)~e ikx g,(O,x) 

< Z xZg.(O,x) =d-1 Z Ixl2g.(O,x) <d-1 Z IxlZh.(O,x) �9 
x x x 

8 The bound on 0. I1. (k) is obtained in much the same way. We first note that 

10~/~.(k)[___d-~ ~ [y,[2 ii.(O,y,)<=d-~ ~Po~ ]Y+v[Zh.(O,Y) �9 
y '  y , v  

By symmetry the cross term 2y �9 v gives no contribution to the sum on the right 
side, and hence 

10]̀  B,(k)[ _< d -1 ~ po~(ly[ 2 + Iv[ 2) h,(O,y). 
y,V 

The bounds on [0]`/~N(k)[ can be obtained in a similar fashion. 
Finally, again using symmetry, we find 

f l .(O)-ll .(k)=~[1-cosk.y']II.(O,y') <_~ ~ k.y' u ~pyy, h,(O,y) 
Y' ' # = 1  y 

1 =~ ~, kuk~ 2po~(y.+vu) (y~+v~) h.(O,y) 
II, V y , V  

1 d 
= 2 .~=t kzu ~' P~176 + ]/)#12) h.(O,y) 

y , V  

Lkl 2 
- 2d 2 Po,(IYl 2 + Ivl 2) h,(O,y). (2.23) 

y , v  

Note that for the nearest neighbour model this expression gives the upper bound 

7C 2 

fI .(O)-ll .(k)<~-(1-D(k))2dp ~(ly[Z+l) h.(O,y), (2.24) 
Y 

since 

1 d 
. ~  ( 1 - c o s k . ) > 2 r c  -z Ikl2 1 -D(k )=_~l  = 1  "~- d " 

The corresponding expression for the spread-out models will be given in Sect. 5. It 
follows immediately from the first equality in (2.23) that the left side is 
nonnegative. 

This completes the proof of Proposition 2.6. [] 
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3. Diagrammatic Estimates 

In the last section bounds were obtained for 0~,~.(k), a~/}.(k) and a~RN(k), 
s = 0, 1, 2, in terms of ~ h, (0, x) and ~ [ X l  2 h, (0, x), for any 2ga-invariant model. 

X X 

The definition of h, (0, x) is given in Eqs. (2.10) and (2.11). 
In this section we derive upper bounds (also valid in any 2U-invariant model) 

on ~ h, (0, x) and ~, [x[ 2 h, (0, x), in terms of quantities T, W and H which are 
x x 

introduced in the next definition. These quantities will figure in the precise version 
of (1.18) and for the nearest neighbour model should be thought of as being 
O (d- a) uniformly in p < p~. Indeed we will prove that such uniform bounds hold 
in Sect. 4. (Related estimates which show that T, W and H go to zero as L 
approaches infinity will be obtained in Sect. 5 for the spread-out models.) 

Definition 3.1. For a, a~, and a2 in Z ~ we define 

r. = ~ ~ (o, x) r (x, y) ~ (y, a) - ao, o, (3.1) 
X , y  

W~ = ~  Ixl 2 r(O,x) r ( x , a ) ,  (3.2) 
x 

z ~ a 2  
Ha . . . .  = ~ Ixl 2 = ~ Ixl z ~(O,x)~(x,y) 

Xgy, Z X , y , Z ,  

z 0 x y u,v 

�9 r(x,u) ~(0, u) ~(0,z) ~(u,v) r (v ,y+a2)  r(v,z+aO. (3.3) 

We write To and Wo simply as T and W. We also define 

5~=supT o, I ~ = s u p W  a , H =  sup H,~,a2. 
ae2g a ae2g a a 1, a2 ~2~d 

(3.4) 

Finally we define 

W - = 2  Ixl ~ 
x 

and 

" a ' ~  x - ~ Pot [xl 2 z ( O , x + a )  z ( y , x )  
O ~  x + a x,y 

W' = sup W~'. 
a 

We simply write W' for W~. 
In Sects. 3.1 and 3.2 the following lemma is proved. 

Lemma 3.2. T 
(a) o __< y~ ho (0, x) _-< ~-, 

and f o r  n > 1, 

O < ~ h , ( O , x ) < ( l + T )  2 P o v g +  2 P~v 7"/3 + 2 f  r "-1, 
x 
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where 

and 

.6 = sup P0v 

r=(l+ r+ T) [p +~ po. T 1. 

(b) 0__< Y~1x[ 2 ho(O,x)<= W, 
X 

and for n < 1, 

where ~x~ denotes the largest integer which does not exceed x. 

Remark. The exact form of the upper bounds in the lemma is not important unless 
a good value of  do is sought. Otherwise the relevant feature, for the nearest- 
neighbour model, of these bounds is that under the assumption that T, W, W', H 
are all O(d-a) and 2dp is O(1), the bounds imply 

(a) O<~h,,(O,x)< {O(d-1) n=O 
= x = (d- l ) "  n = l, 2, ... and 

~O(d -~) n=0,~ 
(b) O<=~]xl2h"(O'x)<=~n20(d-a)'-I ~ n = 2 , 3 , 4 ,  " ... 

(The n > 2 bound in (b) is believed not to be optimal, but it does suffice for our 
purposes.) An analogous remark applies for the spread-out models, as described in 
Sect. 5. 

The proof of Lemma 3.2 (a) is given in Sect. 3.1 and the proof of part (b) in 
Sect. 3.2. Finally in Sect. 3.3 we prove the following bounds on T~ and W~': 

Lemma 3.3. 
T. _<__ T +  (3 T/2d) ~/2 , 

W ' -  Wo' < ~ p o v W +  ~povlvl (WT/3)l/e § 

W, '<22povf f /+2~po~[Vlz~+ 4 P~v +4poa[a[ z. 
V V 

3.1. Bounds on ~ h, (0, x) 
X 

In this and the next section we make extensive use of the graphical notation 
introduced in Sect. 1.4 and the graphical representation for h, given in Eqs. 
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(2.11-14) and Fig. 5. This section is devoted to the proof  of  Lemma 3.2(a). The 
proof  uses translation invariance and repeated application of  the simple inequality 

f(x)  g(x) < sup Jf(x)[ Z [g(x)[. (3.5) 
x x x 

This inequality is used to reduce ~ h, (0, x) to a product of  basic units. 
x 

The case n = 0 is the simplest. We just  observe that 

and hence 

T= ~ z(O,x) 'c(x,y)z(y,O)-l  >-3 ~ z(O,x) z(x,O), 
x,y x*O 

~ h o ( O , x ) =  ~ T(0, x) 2 < T 
x x ~ O  ~ ~ - "  

For n > 1 we use translation invariance to rewrite (2.11) as 

Z h . ( 0 , x ) =  Z ~(a~) (I ~(~_~,a,)~(a~ 
x a l , . . . , a n  i = 2  

(3.6) 

where 

/7, (a) = ~ A, (x, 0, a) = 
x 0 

a x 

0 x + a '  

A3 (a) = ~ A 3 (0, a, x) = . (3.7) 
x 0 

Then we apply (3.5) repeatedly to obtain 

2hn(O,x)<= suap A1 (a) sup ,d2(a,a') A3(a) . (3.8) 
x 

The last factor on the right side of  (3.8) is 1 + T. To complete the proof  of  
Lemma 3.2(a) we use (3.8) and the following lemma. 

Lemma 3.4. The following inequalities hold for any a~TZ, d: 

(a) < ~ Po~ T/3 + 2 p2  T/3 + 2fi, 
0 " 

(b) _-< Y~ Po~ T + b,  
~ ' - " - " ' ~  0 v 
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(c) 

(d) 

< (1 + T) Po~ 7"/3 + 2 p2o. T/3 + 2fi , 
0 

_<_(1+73 p o . T +  , 

o 

(e) 

a 

<T T+ OV " 

0 

Proof. (a) Using the Schwarz inequality and the inequality used to 
ho (0, x) we obtain 

x 

bound 

1 =- ~ Pov "c(v,x) T(x,a)= POv "C(V,X) ~c(x,a)+ 2"c(v,a) 
0 x , v  x ,a  

< ~, Po. T/3 + 2 Z ~ Po~ ~ (v, a) + 2po . 
V v ~ a  

(~v \1/2 
<~po~T/3-t-2~ pZ~T/3) +2f t .  

(b) Using translation invariance the left side is equal to 

~Po~ ~ r(-v,x) r(x,y) r(y,a). 
V X , y  

By considering separately in the sum over v the term v -- - a, we obtain the upper 
bound 

po~T+poo(I + T)<-~po~T+~. 
u ~ a  v 

(c) By (3,5), 

= < sup 
0 a' 

x+a' a ] 

X.,.~,,N,,~ 0 

The first factor on the right side is equal to 1 4- T, and the second can be bounded 
using (a) and translation invariance. 
(d) and (e) are proved similarly. [] 

Now the desired bound on ~h,(O,x) follows immediately from (3.8) and 
3r 

(c-e), and the proof  of  Lemma 3.2 (a) is complete. 
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3.2. Bounds on ~ ]x[Z h,(O,x) 
x 

In this section we prove Lemma 3.2 (b). The proof is similar to the proof of 
Lemma 3.2 (a) given in the last section, although the situation here is more 
complicated due to the presence of the factor I xl 2. 

The case n = 0 is the simplest, since by definition of W 

IxlZ ho(O,x) =~ Ixl z T(0 ,x )Z  = W .  
X X 

For higher order terms the basic idea is to use (3.5) together with the triangle 
inequality, as we now illustrate for the case n = 1. By definition of hi, 

z u 

~ z,.,x ~ Ix[2 0 @ x  (3.9) 

and by the triangle inequality 

I x l 2 ~ ( I x - u l  + l u - z l  + [zl)2~3 ( I x -u[  2 + [u-z l  2 + Izl2).(3.10) 

We insert (3.10) into (3.9) and consider separately the case where both of the 
shaded triangles in (3.9) are points. In this special case (3.9) contributes W', and 
hence z u 

Y, lxlZhl(O,x) < m ' + 3  ~ ( I x -u[  z +  fu - z [  2 + lzl z) o ~ ~ x  
x z , u , x  

where at least one of the shaded triangles on the right side is not a point. Each of 
the three terms in the summation on the right side is now treated separately, using 
(3.5), translation invariance and Lemma 3.4. For example, 

Z 11 

Y~ rzl 2 o ~ x  
z ~ u , x  

< g /  sup(  
a k,,,,,-,,,,-~ 0 

< sup Ivl 2 
" 0 0 

The term involving I x - u  [2 is handled similarly, and satisfies the same upper 
bound. The remaining term is 

Ixl 2 ~ _ . . . _  _._ < 2  sup Ixl 2 
x ~ 0 ,1 ,a2 a l ~ " " T +  a2 / 

<2(1  + T) TW', 
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where we have used the fact that one of the two triangles is not a point. As a result, 

~ 'x'2hl(O'x)<= W' +6T(l T) W ' + 6 f f ( I +  T) I~po~T+fil , 

which is the desired bound. 
The case n > 2 can be handled in a similar fashion, although the additional 

factors of  f l12  make the analysis more involved. It is at this stage that it becomes 
necessary to work with the quant i ty /J ,  as we are unable to bound the diagrams 
encountered solely in terms of  :F and if'. 

It is convenient to use the following expression for h, (0, x), which is equivalent 
to (2.11). To write the expression we recall the definition of A 3 (u,/), x) in (2.14) and 
define 

and 

t I~0-,,,-,,~ v 

B1 (s, t, u,/)) = (3.11) 

B2(u,/),s,t)= s 
u t 

Then (2.11) can be rewritten 

v ~ s  
6~,s + (3.12) 

u t 

h,(0, x ) =  ~ A3(O, sl,ta) f i  Bl(s,,ti, ui,vi) ~I B2(ui-l,vi-l,si, tOA3(u,,v,,x) 
sk , tk  i = 1  i = 2  

t~k,/)k 

= Eh,(o,~, ~ , ~ , x ) .  (3.13) 

To bound ~ [ x ]2 h. (0, x) we use the triangle inequality as for the case n -- 1: 
x 

Ix [2 < (2n + 1) (I t, [2 + l vl - t l  [ 2  . .~ i s  2 _ 1 ) 1 1 2  '~- �9 �9 �9 

+{[Is,-u, t2+lu,-xl =1 or [It,-/),12+lv,-xlZl}), (3.14) 

where in the term in brace brackets in (3.14) the first expression is used ifn is even 
and the second if n is odd. 

The effect of  each term on the right side of (3.14) is treated separately, and we 
proceed term by term. Beginning with the I ta [2 term, and using an unlabelled sum 
to denote summation over all vertices, a minor change in the organization gives 

(2n+  1 ) - l ~ l t a l  2 h,(O,~,~,ff, ff, x) 

< o)C0  t t l [  2 0 ]--I " 4 2 ( a i - l , a i )  ~z13 (an)  
. t l + a  k .aok . , , . . , , . . , ,~y+al]  i=2  

-_< ~/ sup sup .42(a,a') ~ A3(a). (3.15) a '  
a l  " " A ~ " X N ' ~  a 1 a 

Now Lemma 3.4 applies as before. 
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The [v~ - t l l  2 term is treated as follows: 

( 2 n +  1)-a ~.. Iv i - tl[ 2 h.(O, s if x) 

-<~  Ixl ~ 
ao / \ ao  ~ x + a~ 

_-< Y.X~(ao)w'  sup As(a,a')  
a0  

n 

I~ A2 (ai-1,  ai) -d3 (a.) 
i=2 

"43 (a), 
a 

(3.16) 

and again Lemma 3.4 can be applied. 
The term involving I s 2 -  vl ]2 can be organized as follows: 

( 2 n + 1 ) - '  ~ I s s - v l l  2 h.(0,~ i, ~, if x) 

\ao"VV""'~Yl- ( O ~ z  [ Z l 2 ~ ( O f ' ~ x  1 ~---~-~ i ~ O a o ) ( O l ~  y al)kal,,,,,,,~,,~z+b ,]k,b]tb..,,,..,,,,~x_l-a2 / 

n 
�9 I-[ -42 (ai- 1, ai) A3 (a.) 

_-<(~A3(a) )  ( s u p  ~,.4z(a,a'))  sup I~  up 
a o. \ , ,o kO2 a2 

Now Lemma 3.4 can be applied. 
To estimate the term involving [u2 - s s ]  z we define 

-d'2 (a, a') = 
x a ~ x + a '  

and write 

(2n4-1)- l  ~,luz--s21 z hn(O,s i fx)  

< ZX3(ao)  ~, ( 0 ~ x  
= Az (a~ al) \a ,  I~',-,,-,-a2 

o x) 
4- 

a ~ x + a '  

+x i = 3  

"dz (ai- 1, ai) A3 (an) 

)( )n2 
< ~ Z po~ 23(a) sup E - '  X~(a, a') = A~(a, a') sup . 

a a '  

Now Lemma 3.4 can be applied. 
Finally we treat the term [ u 2 - t 3 ]2, which is the most  complicated one, and in 

which we use/7. The contribution due to the term involving the second term on the 
right side of (3.12) is equal to 

0 _ _ ,  / 
E A3 (ao) -d; (ao, al)  y [z 

a 1 X q- a 2 a z ~ y  + b/k,b k,v,.,.,,,,~z + a3/ 

�9 f i  22 (ai- 1, a~) A3 (a.) ,  
i=4 
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which can be bounded above as was done for the Is2 - va [2 term�9 The contribution 
due to the first term on the right side of (3.12) is equal to 

~A3(a~ ( 0 ' ~  + s  ) 

\ao ~-.*"~."," x+a~ +a~ 
x u2 t3 y + a 3 '  

lU2--t312 I ~ ~  

x+al y 

< / t  ( ~  Pov)2 (~-d3 (a))2 ( sup 

and again Lemma 3.4 can be applied. 
This illustrates the method for 

�9 I~I A2 (ai-1, ai) A3 (a.) 
i=4 

, A~ (a, a') sups, ~, Az (a, a') 

bounding ~ [x[2hn(O,x). By applying 
X 

Lemma 3.4 and carefully counting the number of terms of each type which occurs, 
the upper bound in the statement of the lemma can be obtained. We omit the 
straightforward but tedious details�9 [] 

3.3. Proof of Lemma 3.3 

In this section we prove Lemma 3.3. We begin with the inequality for T,. Fix a + 0. 
Using the fact that f (k) > 0 [6], 

T, = (2)z)-~ fddk [f(k) 3 - 1] eik.a 

fddk ['~ (k) - 1] 2 [f(k) + 2] eik'" + 3r(0, a) (2~) -d 

-5_ (2~) -a Idak [~(k) - 112 If(k) + 2] + 3r(0,  a) = T +  3r(0,  a) .  

Now for a ~= 0 it follows by symmetry that there are at least 2dterms which give the 
same contributions as r (0, a) 2 in 

-- E ~(0, x) 2 __< y /3 .  
x~0 

This leads to the desired inequality for T~. 
To obtain the inequality for W' we argue using the Schwarz inequality as 

follows: 

W' ~ E Poy [xl 2 "C (0, X) r(x,y) <= ~ Poy ~', r(O, X) r(x,y)[IXl IX --Yl + IX[ lYl] 
x,y y x 

=~PoyW+ Epoy[Y[ Z v(O,x)lx[v(x,y)+ Zpoy[y I lylr(O,y) 
Y y x4:y y 
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Finally, the bound on W" is obtained similarly: 

Wa ' '= 2 PoyIX[ 2 z(y,x) z(O,x+a) 
X, y 

< 2 ~ Poy z(y, x) z(O,x+a) [Ix _y[2 q_ [y[2] 
X , y  

= 2 2 po, r(0,x) ~(O,x+a+y) [Ixl 2 + ly4 2] 
X, y 

= 2 ~ p o y  y' ~(0,x) ~(O,x+a+y)lxl 2 
y x 

< 2 ~ p o y f f ' + 2 ~ p o r [ y [ Z B + 4  ~, poy[y[ 2 r (a ,y )+4po" la{  2 
y y y:t:a 

=<2~po, I~+2B~po , [Y I2+4(B  ~ P~,ly[4) t/z +4po,,la[ 2. 
y y y~a 

The desired bound now follows from the inequality B <_ T/3. [] 

4. Proof of the Main Results (Theorem 1.1) for the Nearest-Neighbour Model 

In this section we use the results of Sect. 2 and 3 to prove Theorem 1.1. The general 
structure of the proof follows the outline given in Sect. 1.3 and is described in 
Sect. 4.1. Throughout this section we consider primarily the nearest-neighbour 
model, for which Pov=P if ] v l = l  and pov=0 otherwise. In particular, 
~Pov = 2@. We use this and similar facts in the bounds given in Lemma3.2, 

without further mention. However since Lemmas 4.1 and 4.2 hold quite generally, 
we state and prove these lemmas for both the nearest-neighbour and the spread- 
out models introduced in Sect. 1.1. 

We use the notation 

O L (k) = 2 POx eik'x 
x 

for the spread-out models at the gaussian critical value Pc, i.e., the value ofp for 
which DL (0) ---- 1. For the nearest neighbour model at its critical value Pc = 1/2 d 
we write simply 

D (k) = d-  1 ~ cos k. 

in place of D E (k), and we use D o to represent either D or D E . 

4.1. General Structure 

The fact that the triangle diagram V (p) is bounded uniformly in p < Pc is proved 
using the following three results. Lemmas 4.1 and 4.2 are valid for both the nearest 
neighbour model and the spread-out models introduced in Sect. 1.1. Proposi- 
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tion 4.3 is valid as stated only for the nearest-neighbour model; a variation valid 
for the spread-out models is proved in Sect. 5.1. 

Lemma4.1. For both the models (i) and (ii) of Sect. 1.1, if 0 < p < PG then 
Zv(X, y) < Ca(x, y), where Ca(x, y) denotes the gaussian propagator at p = PG: 

f elk. (y- x) 
CG(x,y) = (2~) -a dak 1 - D a ( k  ) " 

Lemma4.2. For both models (i) and (ii) of Sect. 1.1, T, W,, and H,~,, 2 are 
continuous in p, for p <Pc and for all a, al, a2e7Z a. 

Proposition 4.3. For the nearest-neighbour model (i), there is a universal constant 
d o > 6 such that for d > do and for anyfixedp ~ [1/2 d, p~), P4 ~ P3, where P~ is the 
statement that the following set of  inequalities holds. 

T ~ K r d  -1, W<=~Kwd-t,  2dp<=c~, 

W~<~K;vd -1 for HalL~ <2Z(p){(d+2)ln[5z@)]+21nd},  

H~,~<lOo~Kw d-a for max ]la~iLs <2Z(p){(5d+2)ln[5x(p)]+ 21nd}. 
i = 1 , 2  

In Proposition 4.3 Kr and Kw are universal constants such that for d > 7, 

r ~ -  ~ C(O,x) C(x,y) C (y ,O) -  C(0,0) 3 < 1  Krd_~, 
X, y 

wa - Y Ixl 2 c (0 ,  x) 2 =< Kwd-1.  
x 

and 

The existence of such constants follows from Appendix B of [20] or Lemma 3.1 of 

[31]. (In the notation of [31], C(0, x ) =  ~ No(x,T).)  The constant K~v is a 
T = 0  

(large) universal constant which depends only on Kr and Kw and is determined in 
the proof of the proposition. The statement P,, for fixed p < Pc, involves only 
finitely many inequalities, since Z(P) < oo. For II a I11 or LI ai Ill violating the 
inequalities in P~, it follows from the exponential decay of Vv (x, y) that W, __< d-  1 
and H,I,,  2 < d- l ;  see the proof of Lemma4.4. 

It follows immediately from Lemma4.1 that for p ~ [0, 1/2d] the first three 
inequalities in the definition of P~ hold with e = 1. The other inequalities in the 
definition of Pt can be proved for p ~ [0, 1/2 d] by using Lemma 4.1 to bound all 
propagators by the gaussian propagator, and then analyzing the resulting 
gaussian quantities. This can be done using the method of Sect. 4.3.3 (d-e), by 
putting d = 1 a n d / )  -- 0 there. It follows from the fact that P1 holds forp < 1/2d, 
together with Lemma 4.2 and Proposition 4.3 that there are forbidden regions in 
the graphs of T, IV, Wa and H,1 ' a2 as a function of p, for p < Pc, as illustrated in 
Fig. 1. Therefore P3 holds and so in particular V(p)= T(p)+  1 is bounded 
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uniformly inp < pr Since Tp (x, y) is an increasing and continuous function ofp [5], 
it then follows from the monotone convergence theorem that 

V(pc) = lim V(p)<=3KTd-I+ 1, 
P ~ P e  

and hence the triangle condition is satisfied. 
In the course of  the proof of Proposition 4.3 it is shown that if P, holds, then 

the infrared bound stated in Theorem 1.1 follows. But as we have noted it follows 
from Lemmas 4.1 and 4.2 and Proposition 4.3 that in fact P~ holds, and hence the 
weaker statement P4 holds, and the infrared bound follows. Also, it follows almost 
automatically from the proof that the relation ~2(p) z ~Z(P) holds, and hence 
v2 = 1/2. 

The proof of Theorem 1.1 has now been reduced to proving Lemmas 4.1 and 
4.2 and Proposition 4.3, and showing that the infrared bound follows f r o m / 4 .  
This is done in the remaining subsections. The two lemmas are elementary and do 
not use the expansion. The proof of Proposition 4.3 is the significant part of the 
analysis. 

4.2. Proof of Lemrnas 4.1 and 4.2 

In this section we prove Lemmas 4.1 and 4.2. 

Proof of Lemma 4.1. Fix anyp ~ [0,pG]. Any bond configuration in which x and y 
are connected contains an occupied path co from x to y. We denote the sum over all 
paths from x to y by ~ '  , and the sum over all simple (not necessarily self- 

avoiding) walks from x to y, consisting of bonds for whichpb + 0, by 

zp (x, y) < ~ '  Probp (co is occupied) = ~ '  [ I  Pb 
0~; x ~ y  O ) ; X ~ y  bEr 

<= Z I-[ Pb <= C~ (x, y), 
oo: X--+ y b ~ o) 

. Then 
(D: X--->fl 

where in the last inequality we used p < Po. [] 

Proof of Lemma 4.2. In [18] it was proved that for quite general finite range 
models, if Z(P) < co then zp(x, y) decays exponentially. Moreover in [6] it was 
shown that 

vp(O,x)<=exp[-Ilxlll/x(p)] for model (i). 

For model (ii) a similar exponential decay holds ifg has compact support, and for 
general exponentially decaying g exponential decay of rp (x, y) (for p < Pc) can be 
shown using the same argument as that used for the Ising model in [7]. The 
exponential decay of the two-point function implies that T, Wo, and Ha,,2 are 
finite for p < Pc. 

Continuity of these quantities forp < Pc then follows from the fact that zp (x, y) 
is monotonic and continuous in pc[0,1]  [5], together with the monotone 
convergence theorem. [] 
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4.3. Proof of Proposition4.3. In this section we restrict our attention to the 
nearest-neighbour model. We prove Proposition 4.3 and show that the infrared 
bound follows from P4, thereby completing the proof of Theorem 1.1. We begin 
with a preliminary lemma in which bounds on T, W a n d / t  are obtained from the 
assumption P4. 

4.3.1. Bounds on T, W, and H. In this section we prove the following lemma. 

Lemma 4.4. I f  p < Pc and we assume P4, then 

T< 4d-  1 [K r + (3Kr/8)1/2] = ca d- 1, 

W1 <- d-  1 [4Kw + 4 (Kw Kr/3) 1/2 + (2Kr/3) 1/2] =- c2 d- 1, 

W<4K;v d - l ,  EI<=4OKw d-1 , 

W' < [16K w + 16 (K w Kr/3) 1/2 + 4 (2Kw) 1/2] d- 1 =_ c3 d- 1, 

W ' <  8d- t  [4K;v + 4Kr/3 + 2 (2Kr/3) ~/2 + 1] < c4[K~v + 1] d -1 . 

Here WI denotes IV, where a is any nearest neighbour of the origin. Note that the 
constants el, c2, c 3 and c 4 depend only on K T and Kw, and not on K~v. 

Proof. By Lemma3.3, for any aeTZ, d we have 

T~ < T+ [3 T/2d] 1/2 , 

and the bound on T then follows if we assume P4. 
To obtain the inequality for W1 we proceed as follows: Denoting a nearest 

neighbour of the origin by e, 

W 1 = ~ Ixl 2 "c(0, x) r (x, e) 
X 

=<~[x[ r ( O , x ) l x - e  I r (e ,x)+ ~ Ix[ r(0, x ) [ e l r ( e , x  ) 
x x ~ : e  

+ [eLv(0, e) lel r (e,e). 

Applying the Schwarz inequality to the first two terms on the right side, and using 
the fact that 

r(O,e) 2 <(2d) -~ ~ r(0,x) 2 < (2d)-~T/3, 

gives ~, o 
F -11/2 

W, <= W+LW'x~,er(e,x)2 J + (T/6d)1/2G W+[WT/3]*/2 +(T/6d)l/z. 

The assumption P4 then gives the bound W1 < c2 d- 1. 
We next give the proof that P4 implies the bound 1~__< 4K~v d- 1. Although P4 

only involves Wa for II a II1 < 2x(p) {(d+ 2) ln[5y(p)] + 21nd}, it is possible to 
estimate I,V-- sup IV, by using the exponential decay of the two-point function to 

a 

bound W~ for large values of II a ]11. In fact, we shall show that 

W,<=d -1 for lialia >2Z(p) { (d+2) ln[5z(p) ]+21nd }. (4.2) 
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Given (4.2), it follows that  

W < m a x  {4Kw d- l ,  4K~vd-~,d -~} = 4K~v d-a 

To prove (4.2) we use the fact [6] that v (0, x) < exp [-II  x [I 1Ix(P)] to obtain 

W, __<~ ]x[ 2 exp [ -  (l[ x II1 + II x - a  I[ 1)/Z(P)] 
x 

< ~, Ix 12 exp [ -  II x I[ 1/2Z (P)] exp [ -  II a[I a/Rz (P)] 
x 

< d[5z (p)]d+ 2 exp [ -  II a II a/2Z (p)]. 

The inequality for His  proved similarly, and we omit  the proof. The bounds on 
W' and W' follow from P4 and Lemma 3.3. [] 

4.3.2. Bounds on r In Proposit ion2.3 an expansion was given for the two- 
point function T (0, X). Since z (0, x) decays exponentially for p < Pc, the Fourier 
transform "~ (k) exists. Taking the Fourier t ransform of both sides of the expansion 
and solving for i (k) yields 

d IN) (k) (4.3) 
(k) = 1 - 2 dpD (k) - [ i  (m (k) '  

for any p e [0, Pc) and for any nonnegative integer N, where 
N 

Gim(k) = 1 + ~ ( - 1 ) "  g,(k)-+- ( -  1)N+aRu(k ),  
n = 0  

and 
N 

(-1)"B.(k). 
n = 0  

In this section we prove the following lemma. 

Lemma 4.5. Fix p~[1/2d, pc) and N >  O, and assume P4. There exists a d o > 6, 
independent of  p, such that for d> do, 

I/~(m(k)l =< cd -I ,  [0~/)(m(k)l _< c'd -2, s = 1, 2. (4.4) 

I f  in addition N is sufficiently large (depending on d and p),  then 

F(k) =- 1 - 2 d p D ( k ) - l l ( m ( k )  >= (1 - c " d  -1) (1 - D ( k ) ) ,  (4.5) 

I d ( m ( k ) - l l N c d  -1, IO~,d(m(k)[<c'd -2, s -= l ,  2, (4.6) 

and 
0 < ~ (k)  __< ( 1 + c " d - 1) ( 1 - D (k))  - ' .  ( 4 .7 )  

The constants c, c', c" and c" depend only on K r and Kw (and not on K~v , p, or d). 

Remark. For  pc[0 ,  i/2d], "g(k) =< "g(0) =Z (P )  <=Z(1/2d) < 09. (It is known that  
(k) is nonnegative [6].) Together with (4.7) this shows that  for large d the  infrared 

bound  stated in Theorem 1.1 is a consequence of P4. 
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Proof o f  Lemma 4.5. The bounds (4.4)-(4.6) are simply a combination of  the 
results in Proposition 2.6, Lemma 3.2, and Lemma 4.4 with the assumption P4. In 
the course of  the proof, we use c and c' to denote universal constants which may 
depend on KT and Kw,  but not on K~v' p, or d. These constants may take on 
different values in different occurrences. First, by Lemma 3.2, Lemma 4.4 and/ '4 ,  

5cd -1 n = 0 ,  1 (4.8) 
O < ~ hn(O'x) < [ (c 'd-1) n > 2 

and 
cd- 1 n = 0, 1 (4.9) O<= lxl2h"(O'x)< n>_2 

Now using Proposition 2.6 and (4.8-9) we immediately obtain 
N 

IfI(m(k) l < 2dp ~ Z h,(O, x) < cd- 1. 
n = 0  g 

The bound on 3;,/7(U)(k) is obtained similarly. 
To bound 10(m(k) -1 ]  we use Proposition 2.6 to obtain 

N 

[G(U)(k)-ll-<- Z ~ h , ( O , x ) +  2dpz(P)  Z h u ( O , x ) ,  
n ~ O  x x 

and then note that the first term on the right side is bounded above by cd-  1, while 
the second is bounded above by 2 dpz (p)(e'  d-1)u. For N sufficiently large, this 
last quantity is bounded above by cd- 1, and the desired bound on [ G(m(k) - 1 I 
follows. 

The bounds on ]O~(U)(k)] are obtained in a similar fashion. To estimate 
s [0, R N (k) l we use the bound from Proposition 2.6 and the inequality 

I x 12 z (0, x) < ~ [ x ] 2 exp [ -  I1 x II 1/Z (P)] < d (3 Z (P))d + 2. 
X X 

To obtain (4.5) we first observe that by (4.6), 

1 - 2dp - / l ( m  (0) = G(N)(0) Z (P)- 1 ~. 0 .  

Therefore 2dp <= 1 + cd-  1, and also 

1 - 2dp D (k) - 1~ (N) (k) = 1 - 2dpD (k) - II(N)(k) -- [1 -- 2dp - ffl (N) (0)] 

+ [1 - 2dp -/I{N)(0)] 

> 2 dp [1 -- D (k)] +/~(N) (0) - / 1  ~N) (k). 

By Proposition 2.6 and (2.24), 

N 

�9 0 ( N ) ( 0 )  - ___ - y ,  - 

n = l  
n : o d d  

= > ~ - ( 1 - D ( k ) ) . 2 d p  - ~ ( ]x l2+l )h , (O ,x )  . 

n : o d d  

Now, using (4.8-9) gives (4.5). 
Finally the infrared bound (4.7) follows from (4.3) and (4.5-6). [] 
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4.3.3. Proof  that P,~ =~ P3. In this section we use the consequences of P4 given in 
Lemma 4.5 to derive P3- This completes the proof  of Proposition 4.3 and thus of 
Theorem 1.1. We fix an N large enough (depending on p) that (4.5-7) hold, and 
omit the superscript (N) to simplify the notation. As usual we use c, c' and c" to 
denote universal constants which depend only on K r and Kw,  but not on K~v,p, or 
d. These constants may represent different values in different occurrences. 
Throughout this section we fix p e[1/2d, pc). 

The statement P3 consists of  five inequalities (given in Proposition 4.3). We 
obtain these one by one, beginning with 2dp ~ 3 

(a) 2dp < 3: In the proof  of Lemma4.5 it was shown that forpE[1/2d,  pc), 

1 - 2 d p - / ~ ( 0 )  > 0, 

and hence by (4.4) 
2dp < 1 - 11(0) < 1 + cd -1 (4.10) 

The right side of (4.10) is less than 3 for d >  c/2. 

(b) The bound on T: By definition 

T =  (27c)-a.[ddk [f (k) 3 - ~(0, 0) 3] 

(2 [(2 + e (k)) (e (k) - 1)2 _ (2 + (0, 0)) (0, 0) - 1)2],  (4.11) 

and To is obtained by replacing f (k) by [1 - D  (k)]-l .  (In fact, for percolation 
z (0, 0) = 1 and the second term on the right side of (4.11) is zero.) By (4.7), for 
d >  4c'", 

O < 2 + f ( k ) < 2 + ( l + c ' " d - 1 ) [ 1 - D ( k ) ] - 1 < 2 + 5 [ 1 - D ( k ) ]  -a. (4.12) 

Also, 

We define 

-~ (k ) - I  2 d p D ( k ) + C J ( k ) - l  + Fl(k) 
= 1 - 2dpD (k) -/~r 

_P(k) = 1 - 2dpD (k) - / I ( k ) .  (4.13) 

Then by (4.4-6), 

[r - 1] 2 < F(k) -2 2 {(2dpO(k))  2 + (I G(k) - 11 + I/7(k)/) 2} 

=< 20 [1 - D (k)] - 2 (D (k) 2 + c' d -  2), (4.14) 

for d sufficiently large. Using the fact that the integral of [1 - D  (k)]-m is bounded 
uniformly in d=> 7 for m = 1, 2, 3 (see Appendix B of [20] or Eq. (3.12) of[31] for a 
proof), it follows from (4.11), (4.12) and (4.14) that 

20 (2rc)-d fdak (2 +�88 -- D (k)]- 1) D(k)2[1 _ D(k)]-  2 + c,,d-2 T <  

~ 25 Ta q- c"d -2 < KT d-1 + c"d -2 < 3KT d - l ,  
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w =  y,[i 
x 

Differentiation of  (4.3) 

for d sufficiently large, where we used the fact that C (0, 0) - 1 < cd- 1 (which 
follows from Appendix B of [20] or Lemma 3.1 of  [31]) together with the form of 
TG described below (4.11). 

(c) The bound on W: By definition and the Parseval relation, 

Xl T(O'x)]2 ~--- 2 (27"s d d k  [9# ~(k)12" (4.15) 
#=1 

gives 

9 s ~ (k) = / : ( k ) -  2 0 (k) 2 dp 9 s D (k) + P (k) - i  0s ~ (k) 

+ _F(k) -2 G(k) 8 sH(k  ) . (4.16) 

By (4.15-16) 

W __< y, 3 (2 Jr) - e dek {p  (k) -* 9 [G (k) 9 s D (k)] 2 + F(k) - 2 (9 s d (k)) 2 
S=I 

+ P(k) -  4 (~ (k) 9 s ~ (k) )  2 }. (4.17) 

We use (4.5) to estimate the powers o fF(k )  occurring in the three terms on the 
right-hand side. By (4.6), the first term (including the sum over/x) is bounded by 
30 W e for d sufficiently large, and by (4.6) the second is bounded above by cd-  3 
To bound the third term, we first note that by symmetry 8s_O (k) is equal to zero for 
any k for which k s = 0. Denoting by Ethe result of  replacing the/2 th component  of  
k by zero, it follows from Taylor's theorem that 

9fl~I(k) 8 f l f I ( k ) - S u f l ( ~  ) 2 ~ , = = k u 9 u  H(k  ), 

where k* is a point on the line segment joining k and/~. By (4.4) and (4.6), the third 
term in (4.17) is bounded above by 

cd -4 (270-e.tddk [1 - D (k)]-4k2. 

Since k2d -1 < re2 [ 1 - D ( k ) ] ,  this is bounded above by c'd -3. This gives the 
= 2  

desired bound on W, for d sufficiently large. 

(d) The bound on Wa: For lal = 1, it was shown in Lemma4.4 that IV, <= c2 d-1 
and hence W, <-_ 3Kr 1 if we take K~v >= c2/3. 

For the case ]a I> 1 we again use Fourier transforms and write 

W o = ~ l x l Z r ( O , x ) ' r ( x , a ) = - ( 2 7 0  -e deke (k )  ~ i ss(k)e  ik'~, (4.18) 
x S=I 

where we have used subscripts to denote partial derivatives with respect to k s . 
Now 

fur(k) = p - a  d,u - 2 F -  2 4u_Fu - P -  2 4P ,  u + 2 F -  3 4/~uz , (4.19) 
with 

Ps= - 2 d p D u -  l-*ls= 2p s i n k s -  I~s 
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and 

f'##= - 2 d p D # , -  l~lu,,= 2p eosk~,-  Ov#. 

Therefore 

d 

W ~ = -  ~ (2~r) -a ddk e ik'a 
#=1 

�9 [.~21~-1~##_ 2 f 3 0 - 2 ( ~ v p # _  ~3~-  1/~iz/_1 - 2.g4(~-2 *F~I. (4.20) 

We estimate the terms on the right side using (4.4), (4.6) and (4.7), together with 
the fact that the integral of[1 - D(k)] - "  is uniformly bounded for m _< 3 and d_> 7. 
The first term (including the sum over /0  is less than cd-  1, and since P# < c 'd-  1 the 
second term is less than cd-2. The estimate on the third term is more involved. 

The contribution to Wa arising from the gaussian part 2p cos k# of  F## in the 
third term on the right side of (4.20) is 

f d A.  =- 2dp (2~r)-d dak f (k)3 [1 + 0 (k)- * - 1] d -  ~ y '  cos k# e i~'a. 
#=1 

To estimate the contribution A', to A a due to the 1 in the square brackets we write 

to get 

d 
d-1 Z c~ = ( 2 d ) - I  2 

#=1 v, lv[= 1 
eik.v 

[A',,I ~ 2dp(2d) -1 ~ "c(k) 3 e ik'(a+~) 

v, lvl=l 

= 2 d p ( 2 d )  -~ ~ T ~ + ~ < 3 T < 3 q d  -~ 
v, lvl=l 

(Note that a + v + 0 here since l al + 1.) Then by (4.6-7) and the fact that 2dp < 3 
we have 

JA~I < IA'~I + [A~-- A'~] <= 3c ld -  * + cd-  ~ < c'd -1 

Using (4.4) and (4.6-7) it is not difficult to see that the contribution to Wa due to 
the Hu# term in F#, in the third term on the right side of  (4.20) is also bounded by 
c a -  1. 

Finally the last term on the right hand side of  (4.20) can be bounded above by 
cd-  1 using an argument involving Taylor's Theorem which is similar to that used 
in the last paragraph of  (c). (Note that it is necessary to exploit the fact that 
F, (0) = 0 if we are to avoid quantities which diverge in more than six dimensions.) 
All the constants c and c' encountered here depend only on Kr  and Kw, so it is 
possible to choose K~v (depending on K r and Kw) sufficiently large that the desired 
bound Wa < 3 K~v d-1 holds, and that the corresponding gaussian quantity is less 
than K~vd -1 (as claimed in Sect. 4.1). 
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(e) The bound on H: Using the Fourier transform, and then integrating by parts, 
we can rewrite Eq. (3.3) as 

fA H.~,.~= ddkj " 

# = 1  

= zd f ~I ~ ddkj ei(kl'at-k2"a2)"C(kl) 2 T(k2) 2 ~ ' ( k l - k 2 )  
g = l  j = t  

�9 {~ (k~ - k3)  (a.-g (k3))  (aur (k3 - k2))  - f (k3 - k2)  ( a u f  (k3))  ( a u i  (kx - k3) ) }  �9 

Taking absolute values of the integrand on the right side and using the symmetry 
between k 1 and k2 leads to 

dfA Hal a2 ~ 2 ddkj , .:~ ~ ~ (k,) ~ ~ (k9 ~ ~ (k~- k~) 

�9 f (k~ - k3) {(Ou~ (k3)) 2 + (Oui (k 3 - k2))2}. 

Rewriting this upper bound in x-space gives 

d 

Ho~.~ <_ Z Z Lx, I 
/~=1 x , a  

x . - a . l  

o 

(4.21) 

Now we use the basic inequality (3.5) to bound the right side. First, 

d 

Y. Y Ix~l Ix , -a , I  x 
# = 1  x , a  

o 

< sup 2 Ix~l Ix . -a . I  x 
a ~ = 1  0 

< w  (4.22) 
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where in the second inequality the sum over x was estimated using the Schwarz 
inequality. The second term on the right side of (4.21) can be bounded similarly: 

d 

,u=l x , a  

a> 
~ sup ~lx~l  Ixu--a.I 

#=1 a x 
o 

< @ W. (4.23) 

Now we use (4.7) to bound the diagram on the right side of (4.23) in terms of its 
gaussian value: 

~ ~ (1 + c'"d- 1)6 
gaussian ' 

(4.24) 

The gaussian diagram on the right side is finite for d > 6 and we have verified 
numerically that it is bounded by 3 uniformly in d > 9. 

For d sufficiently large, depending on K r and Kw, it follows from (4.21 24) 
that 

gal,a2~ ~ 1 + W<3OKw d-1 . (4.25) 
gaussian 

This is the desired bound. Also, this calculation shows that the gaussian 
counterpart of Hal,a2 is bounded above by lOKwd -1 for d sufficiently large, as 
claimed in Sect. 4.1. [] 

4.4. Proof that v 2 = 1/2 

By definition [Eq. (1.6)], 
d . (0) 

~ 2 ( p ) 2 = -  ~, Tu" (4.26) 
~=1 f (0 ) "  

Since p -1  = ~-1~, F,(0) = 0, and "~(0) =Z(P), it follows from (4.19) and (4.26) 
that 

d 
~2(t9) 2 ~" - -  Z [ G ( 0 ) - I G # / t ( 0 ) - X ( P )  8 ( 0 ) - l P / z / ~ ( 0 ) ]  

/ t= l  

d 
= - -  2 a ( 0 ) - i  [ a # # ( 0 )  - - Z ( P )  (2p- /1 ,u(0))] .  

#=1 
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By Lemma4.5 (since we have proved P3, P4 does hold), it follows that for 
l / 2 d < p < p c ,  

~2 (p)2 = o (d-  1) + [1 + O (d-  1)1 z (P), 

and hence for some constant C > 0, 

C-IX. (p)<~2(p)  2 < C ) ( p )  for p~[1/2d, p~). (4.27) 

Since Z (P) ~" (Pc-P) -  1 follows from the triangle condition, ~2 (P) ~ (Pc--P)- 1/2 
i.e., v2 = 1/2. 

5. Proof of the Main Results (Theorem 1.2) for the Spread-out Models 

In this section we prove Theorem 1.2 by adapting the proof of Theorem 1.1 to the 
spread-out models introduced in Sect. 1.1. These models are defined by 

Pox = P" L-rig (x/L) ,  

where g is a nonnegative function on IR d such that 0ig (0Xg _ IF] ~?,g, I c  {1, 2, . . . ,  d}) 
is piecewise continuous, which satisfies: ,~x 

Sg (x )dx= l ,  g.e611~ll~eL~(lR d) for some 6 > 0 ,  

[a*g (x)] dx < o0, where the derivative is interpreted as a distribution, (5.1) 
g is invariant under rotations by ~/2 and reflections 

in the coordinate hyperplanes. 

To simplify the technicalities we have required that g be exponentially 
decaying, although some weaker decay can also be handled. The fact that 
Theorem 1.2 holds independently of the exact form of g is an illustration of 
universality. 

Just as for the nearest-neighbour model, Pc = sup {p [Z (P) < oe } ~ (0, 1). The 
only significant difference between the analysis of the model (ii) and the nearest- 
neighbour model is due to the change in gaussian propagator. (The situation is 
similar for the long-range weakly self-avoiding walk studied in [40], although in 
that work the 1/r 2 decay considered was sufficiently slow to change the upper 
critical dimension, unlike the models under study here.) 

The hypotheses on g are used indirectly, via certain of their consequences, to 
prove Theorem 1.2. To state these consequences we introduce the following 
notation. We consider simple random walks with transition probabilities 

P{oL2 ~- PL " L-a g (x/L) . (5.2) 

Here Pr. is defined so that DL(0 ) = 1, where 

DL(k) - PL ~, L-dg (x/L) e ik'x. (5.3) 
X 

The gaussian propagator (in k-space) for the model is then 

CL(k ) = [1 - DL(k)]- 1, (5.4) 
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and we define TL and W L the same way that T~ and W~ were defined (under 
Proposition 4.3), using this propagator. We also define 

s = Z fxl2p~o~ . (5.5) 
x 

(As will be seen in Sect. 5.2, S = O (L2); clearly S > 1 .) 
To prove Theorem 1.2 we will use the following lemma. 

Lemma 5.1. The hypotheses (5.1) on g imply that given d >  6 a n d e >  O, there is an 
Lo, depending on e and g, such that for  L >= L o the following conditions are satisfied." 

sup p~oL], • (ptoL2)2 < e/S, (5.6) 
x x 

sup p~oL2 [X[ 2 < e, (5.7) 
x 

(p~o'2) 2 Ix j4 <__ s e ,  (5.8) 
x 

1 - DE(k) >= IklZ/3~2d, (5.9) 

Q(o ,  o) - 1 < e/s ,  (5.1o) 

TL <= e/S, (5.11) 
wL<e ,  (5.12) 

(2~) -a ddk Z I~DL(N)I [a-DL(k)J-3 <=eoe, (5.13) 
# = 1  

@~au =< 10. (5.14) 

ssian 

The values of  the constants appearing in these conditions are not sharp and 
can be adjusted. 

This section is organized as follows. In Sect. 5.1 Theorem1.2 is proved, 
assuming Lemma 5.1. In Sect. 5.2 the proof of Lemma 5.1 is given. 

5.1. Proof  o f  Theorem 1.2 Assuming Lemma 5.1 

In this section we prove that the triangle condition and the infrared bound follow 
if conditions (5.6-14) are satisfied, for c sufficiently small. Theorem 1.2 then 
follows from Lemma 5.1. The basic structure of the proof is exactly as in 
Theorem1.1: the result follows from Lemmas4.1 and 4.2 and the following 
analogue of Proposition 4.3, together with a proof that the infrared bound follows 
from the analogue of P4- The proof that v 2 = 1/2 proceeds the same way as for the 
nearest-neighbour model in Sect. 4.4. 

The analogue of  Proposition 4.3 is the following. 

Proposition 5.2. There is an eo > 0 such that i f  an independent bond percolation 
model on 7Za (d > 6) satisfies conditions (5.6-14)for some e <_ Co, then for  any f ixed  
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p e [PL,Pc), P4 implies P3, where P~ is the statement that the following set of 
inequalities holds: 

T < ~ .  25~/S, W < ~ .  30~, P < c ~ ,  
Pc 

W,<eK'e  for Ila[ll <_Ml(p), 

H~l,a=<C~ . 5OOe for max[ la i l ] l<mz(p) .  
i = 1 , 2  

The universal constant K' is determined in the proof of the proposition. The 
quantities M~ (p) are finite for p < Pc and are defined such that 

W,<__e for ] [a l l l>Ml(p) ,  H~,, <_e for maxl la i l l l>Mz(p) .  
i = 1 , 2  

The existence of such constants follows from the exponential decay of zp (x, y) 
(discussed in the proof of Lemma4,2), as for the nearest-neighbour model. 

Proof of Proposition 5.2. The remainder of this section is devoted to the proof of 
Proposition 5.2. In the course of the proof it will be shown that the infrared bound 
is a consequence of P4. The first step is the following lemma. 

Lemma 5.3. I f  p < Pc and we assume P4, with e sufficiently small, then there are 
constants c~, independent of p and K', such that 

T~<~C1 el/2 , lYV<4K'e, H__< 2000e, W'<=e2e, W~<=c3K'e. 

Proof. The bounds on if/and/~ follow immediately from P4 and the definition of 
Mi(p). The bound on T follows from P4 and the fact that by Lemma 3.3, 

T~ _< T +  (3 T/2d) 1/z . 

The bounds on W' and W" also follow directly from Lemma 3.3, conditions (5.6- 
14) and P4- To bound ~povlVl we use the Schwarz inequality: 

z, = 

In conditions (5.6-14) the powers of S-are chosen in such a way as to cancel the 
powers of S which arise from the bounds on W; and W~' of Lemma 3.3. [] 

Lemma 5.3 combined with Lemma 3.2 yields the following bounds, in which c 
and c' are constants independent of p and K', and e is taken sufficiently small 
depending on K', 

ce/S 

e (c,e)(._w2 

0 < ~ Ixl2 h"(O'x) cenZ(c'e) ("- 2~/2 

for n - 0 , 1  

for n > 2  

for n = 0 , 1  
for n > 2  

(5.15) 

(5.16) 

These bounds can be used in conjunction with Proposition 2.6 to control -g (k), 
just as in Sect. 4.3.2. 
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Indeed, using the notation under (4.3), (2.2) becomes 

?(k) = G (m (k)/ [1--  P~PL D L ( k ) - / l ( m ( k ) ]  " 

Proceeding exactly as in the proof of Lemma 4.5 the following inequalities, in 
which the constants c, c', and c" are independent of d and K', are obtained. 

[/~N)(k)l < ce/S,  l O;/l~m(k)[ < c'e/d, s =  1,2. (5.17) 

If in addition N is sufficiently large, depending on p, then for p e [PL, Pc), 

F(k)  - 1 - p DE(k) - f l (m(k )  >= (t - c"e) (1 - DE(k)),  (5.18) 
PL 

[ O~tq)(k) - 1 [ < ee /S ,  [ ~ 0~m(k) l < c'e/d,  s = 1, 2 ,  (5.19) 

and 
~? (k) _< (1 + c"a) (1 - DE(k))-  1. (5.20) 

The proof of (5.18) uses (5.9), and the fact that (5.19) holds for sufficiently large N 
uses the exponential decay of rv (x, y). 

We now turn to the proof that P4 implies/~ and proceed step by step through 
the five inequalities in the statement of P4. Most of the analysis is identical to that 
of Sect. 4.3.3, using (5.17-20), and we refer the reader to that section. Now a plays 
the role of l/d. To simplify the notation we omit the superscript (N). 

(a) p _-< 3: This is identical to the nearest neighbour case in Sect. 4.4.3(a). 
PL 

(b) The bound on T: This bound can also be obtained by the same argument as in 
the nearest neighbour case, by faithfully following Sect. 4.3.3(b). Note that the 
integral of (1 - DL)-" (m = 1, 2, 3) is bounded, in fact close to one, by conditions 
(5.10-11) and the H61der inequality. In the last step (5.10) is used, 

(c) The bound on W: This ease follows 4.3.3(c). 

(d) The bound on W~: The treatment of this case is the only one which differs 
significantly from the nearest neighbour case. Direct calculation as in (4.20) gives 

f Wo = - F~ ( 2 ~ )  - e  d e k  e ik '~  
p = l  

�9 [~2d-~d. - 2~3d-2d .P . -  ~d -~P . .+  2~4d-~P~l, (5.21) 

with 

and 

IP u (k) = - p OuDL(k) - Ouf l (k) ,  
PL 

(5.22) 

P~.(k) = p 2 ~q(k) .  (5.23) - - -  ~ D L  ( k )  - 
PL 

In (5.21) the first term and the contributions to the second and third terms 
from the derivatives of ~ can be bounded just as in Sect. 4.3.3 (d), using (5.17-20). 
Their sum is bounded by O (e). 
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The fourth term is treated as follows. First we use 

~e~ ____ 2 p ~.DL + 2 (O./ir)2, 

and for the second term use the mean value theorem and (5.17) to bound I ~,/I[ by 
O (e) [ku[, and then argue as in Sect. 4,3.3 (d) to bound this contribution to (5.21) 
by O (e) 2. The contribution from the first term is bounded by 

f const y '  (2n) -a dak (~3.DL) 2 (1 -- DL) -4 = const WL < conste, 
/ t = l  

using (5.12). 
Now we are left with two terms: the contributions from derivatives of DL in 

the second and third terms of (5.21). We first consider the second term and use 
(5.19-20) and the Schwarz inequality to obtain 

[~ (2n)-afdak2f3d-2G.OuD L <const  ~ fdak[Gu~uDL[(l-Dc) -3 
#=1 /~=1 

< c o n s t  I ~  f dak (a~'Dz)2 (1--DL) -4 ~ Ida[ ~2 (1--DL)-21 1/2 

_< O (~) WL 1/2 __< O (~3/2). 

Finally we consider the term 

.__~(2zc)-a dak.g3d-1 2 c3. DL < const dak 
1 / t= l  

2 [~  DL I (1 -- DL)- 3 (5.24) 

The integral on the right side of (5.24) is bounded above by O (e), by condition 
(5.13). 

As a result of the above estimates, we have 

W.<<_ce, 

where c is independent of e and K'. Choosing K ' =  c/3 gives the desired result. 

(e) The bound on H: The argument of Sect. 4.3.3(e) can be used here. The 
condition (5.14) is used. [] 

5.2. Proof of Lemma 5.1 
In this section we prove Lemma 5.1, which together with Sect. 5.1 completes the 
proof of Theorem 1.2. 

5.2.1. 
by 

Verification of Conditions (5.6-8). The gaussian critical value PL is given 
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The sum over x in this expression is a Riemann sum approximation to IP g [I 1 = 1, 
and hence 

lim PL = 1. (5.25) 
L~oo 

By definition, 

S =pL L2 ~ L-a(x/L) 2 g(x/L) "~ L 2 IP x2g H1, (5.26) 
x 

and hence S = O (L2). Since g E Loo, it follows from (5.2) that sup p~oL2 = O (L-a). 
Since g e L2, x 

Z /n(L)~2 ,fox J = p2 L -  a ~ L -  ag (x/L) 2 ~ L-a l) g Ii ~ = 0 (L-a). 
x x 

This gives the condition (5.6), if L is taken sufficiently large. 
Similarly, it follows from the fact that x2g~ Loo that 

sup p(o~ lxl 2 = O(L-a+2), 
x 

which yields (5.7). Finally, the fact that x2ge L2 implies 

F, Ix I = o 
x 

yielding (5.8). The big O notation is used to represent an upper bound involving 
constants which are independent of L, but may depend on d and g. 

5.2.2. Basic Properties of the Gaussian Propagator and (5.9). In this section we 
show that the condition (5.9) is satisfied, and obtain some further results which 
will be used to estimate T L, etc., in the following sections. 

Recall the definitions: 

Dr(k) =PL ~ L-~g (x/L) e ik'x 
x 

and 
(~L (k) = [1 - DE(k)] - 1 

For a function n defined on JR a, we define a transformation 

t~L(k) =PL Z L-an(x~ L) eik'x 
x 

In this notation, DL(k)=~L(k). We also use the notation II[ to represent the 

cardinality of  a set I ~ {1 , . . . ,  d}, and write 01 = iV[ ~ 7 "  The expressions (?1h and 

]18Ih I] 1 are to be interpreted in terms of distributions. 

c~ah 
Lemma 5.4. Suppose that h vanishes at infinity, that ~x 1 Ox 2 ...  OXd is piecewise 

continuous, and that hc exists for all L. Then for L sufficiently large, 

[ ]~L(k) [ ~ 2 It h lit. (5.27) 
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Also, for any I c {1, . . . ,  d} and for any k, 

I h"L(k)I < 2 II c~'h II1 l v., 2Lsin(k'12)l - 1  

(5.28) 

Proof. The bound (5.27) follows from (5.25) and the fact that ~L-dlh(x/L)l  
x 

I[ h I[1 as L ~  oo. The bound (5.28) is proved using summation by parts, as 
follows. To simplify the notation, we assume that 1 E L Then 

~L(k) =PL ~ L-eh(x/L) e-i<12[e~k'(xl+l)--elk'~q [2isin(kt /2)]  -1  exp ikvx~ 
X "r 

= --pLe-ik'12[2isin(k,/2)1-1 ~ L-e[h(x/L) -h(x /L-~I /L)]  e ~k~, (5.29) 
x 

where ~1 = (I, 0 , . . .  0). To avoid nonilluminating complications, we consider 
henceforth only the case of continuously differentiable h; the general case can be 
treated similarly. By the mean value theorem (5.29) is equal to 

_pLe_ik,12[2isin(kl/2)]_ 1 ~ L_ d 1 -~ 01h (x* /L) e ik'~, 
x 

where x* is a point on the line joining x/L to (x - ~I)/L. Iteration of this procedure 
gives 

/TL(k) = (-- 1) I'1PL I] [e-ik'12/2Lisin(k,/2)] ~ L-d ~Sh (x**/L) e ik~, 
v ~ I  x 

where ]I (x** - x)/L Ii ~o < L- 1. Therefore 

[h~L(k)l < PL I]12Lsin(k,/2)l - ~ Y'. L-alath(x**/L)[ ~ I ]  ]2Lsin(k~/2)1-1 II~'hll~. 
v e l  x w I  

This gives the desired bound. [] 

The following lemma is proved using Lemma 5.4. Fix M > 0 such that the 
integral of g over the region IlXlll ____M is strictly positive. We write 
~ = 3 n  II~,gl]i/2L and ~1 =n/LM, and use c to denote a constant which is 
independent of L and whose value may change from one occurrence to another. 
We also fix a small ~ > 0 (e.g., ~ = 1/5). It seems likely that the bounds in which e 
appears, in the remainder of this section, can be strengthened to the corresponding 
e = 0 bounds; however the bounds we obtain are sufficient for our needs. 

Lemma 5.5. 
lira DL(k ) = O, for all k ~= O. (5.30) 

L--+ ct3 

For L sufficiently large, the following inequalities hold: 

IOL(k)l<-~, for likll~>=6, (5.31) 

1 - OL(k ) > ck2L z, for IIk II ~ < a , ,  (5.32) 

1 - O L ( k ) > c k 2 L  2-~, for 6 1 < l l k l l ~ < 6 ( i f c ~ < ~ ) ,  (5.33) 
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I~DL(k)l <- 2L~ ll O' (x~g) [l l 1-[12Lsin(k~/2)l- ', for s = O ,  1, 2 and all k, I, 
"eel 

(5.34) 

]~?.DL(k)l <=2L21kul II 2 xug II1, for all k. (5.35) 

Proof. Equa t ion  (5.30) follows f rom (5.28) with h = g and I =  {/l},/1 - I, . . . ,  d. 
To  prove  (5.31), suppose that  Ik~l > 6, and let I =  {v}. Then  by (5.28) and the 
defini t ion o f  d, 

]DL(k)I < r c L  -~ [k~l -~ II O, gll~ < 2 / 3 .  

To  prove  (5.32) we suppose IIk II| _-< c~1, and use symmetry  to write 

1 -- DL(k ) =PL ~ L-dg(x/L) (1 -- cosk" x) >pL27C - 2 ~ L-dg (x/L) (k" x) 2 
x x:]k.xf<=~ 

>pL2rC -2 ~ L-dg(x/L) (k" x) 2 
x: Ilxl] I < L M  

=pL2~-2k2L 2 ~ L-dg(x/L) (xl/L) 2 
x: Flxlrl <-LM 

"- 2rc-Zk2L2 ~ g(x)x~ddx>ckZL 2 , 
H x l l l _ - < M  

for  L sufficiently large. 
The  inequal i ty  (5.33) is p roved  as follows. Fix k such that  Ol --< Pl k FI, -< ~, and 

let X k = {x: 1 - cosk . x>L-*} .  Then  

1--DL(k)>pLL-" ~, L-ag(x/L)>k2d-lc~-2L-~pL Z L-dg(x/L) 
x~Xk x~Xk  

xCXk 

It  suffices to show that  the sum on the right side goes to zero as L goes to infinity. 
The domain  o f  summat ion  consists o f  those x for which 1 - c o s k . x  < L -~. 
Since for  any x we can find an integer n (depending on k .  x) such that  
1 - cos k-  x => 2 zc- 2 (k .  x - -  2n n) 2, this domain  is conta ined in the set of  all x such 
that  x/L e Yk, where 

Yk = yeZd: [l~. y--2nrcl2 <-j- L -~, f o r s o m e n ~ 2 g  . 

Here  we have wri t ten/~  - kL, with II [c tl | e [re~M, 3~ II 81 g II 1/2]. F o r  R > 0, let 
BR = {Y: II y tl | < R}. Since g decays exponential ly,  given Q > 0 we can choose an R 
such that  

Z L-ag (x/L) < e. 
~ r  

But then we can choose L sufficiently large that  

L- ag (x/L) < Q, 
~ Yk c~ BR 
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since the sum on the left side converges to zero as L goes to infinity, because g is 
bounded and the measure of  Yk n BR goes to zero as L goes to infinity. This proves 
(5.33). 

The inequality (5.34) follows from (5.27) and (5.28). To prove (5.35) we use 
symmetry to write 

Ir = PL ~x L-eg(x/L) xu sin(kuxu) v~.ueik~xvl 

<PL Y, L-ag(x/L)[xul Ikuxul ~LZLk.I Ilxa. glll. [] 
x 

We now use the bounds given in Lemma 5.5 to estimate CL (k). These estimates 
will in turn be used to estimate T a and WG. The condition (5.9) is an immediate 
consequence of (5.37) below, if we take L sufficiently large. 

Lemina 5.6. For 

k4=O, C'L(k)--+I as L-+oo. (5.36) 
In addition 

3 ~fll 
O < C L ( k ) <  O(L_Z+~)lk[_ 2 /fll 

[ CL (k) - 11 < { 3 ] DL (k) l /f [I 
= O(L-2+')ik1-2 ifll 

{ 9]~uDL(k) I /f II 
[O.dL(k)l= O(L_2+2~)lk,,i [k[ -4 /f[I 

_< , (5.37) 

kll| 6 
k II ~ -- ~ '  (5.38) 

kll~ >c~ 
k [I co -< 6" (5.39) 

Here the big 0 denotes upper bounds involving constants which are independent of L, 
but may depend on d or g. Also [k] denotes the euclidean length of k. 

Proof The limit (5.36) follows immediately from (5.4) and (5.30). For (5.37), we 
use (5.31-33). Since CL(k)-1  =DL(k)/[I-DL(k)], the first bound in (5.38) 
follows from (5.31), and the second from (5.32-33) and the fact that [DE(k)] < 1. 
Similarly (5.39) follows from calculation of  the derivative, (5.31-33) and (5.35). [] 

5.2.3. Conditions (5.10), (5.11), (5.14). The following lemma will be used to 
estimate T~ for this model. 

Lemma 5.7. For d > 2, 

(2~)-afddk,CL(k)--l]<=O(L-d+~)I(lnL)d+dC~d21. 

For d> 2N, N >  2, 

C' 

The constants c a and c'a depend only on d and remain bounded as d $ 2 in the first 
bound and d$ 2N in the second. 
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Proof We divide the domain of  integration into two parts: Ijk I1~ ~ fi and 
IIk II ~ > & and use (5.38) to bound the integrand. This gives 

(2rC)-df#kldL(k)--llN<3N(2~) -~ ~ ddkIDL(k)[ N 
Irkll~_->0 

+O(L -(2-")N)(2~)-d ~ ddk [k[ -2N 

__<3N(2~) -~ j" d~klDL(k) l  ~ 
I I k 0 ~ 0  

+ O (L-(2 -~)~r ~d (2re) -d -'=-(I/dO) d- 
2N 

d - 2 N  ' 

where 12d is the volume of  the unit sphere in 1R a. The first term on the right side is 
estimated using (5.34), as follows. 

The region [[ k [l~o > fi is the disjoint union, over I c  {1, 2, . . .  d}, I#= r of  

Re :- {keiRdl fi < Ik~l < rc for v~I, Ik~l _-< ~ f o r / z r  

By (5.34), 

(2~) -a ~ ddklDL(k)l N --<-- 2N [{ OZg l[ N (2=) -a ~ ddk 1-[ [~(2Zlk~[)-*l N 
RI  R1 v e l  

<<_cUL_Ulrl 3a_lZ I {] lndl  Izl i f N = l  
- -  ~ [ / [ ( 1 - m  if  N >  1 " 

This gives the bounds in the statement of  the lemma. [] 

Corollary 5.8. For d > 2, 

(5.40) 

For d > 6 ,  

TL <O(L-d+3~) (l + dC@6). (5.41) 

Proof The first inequality is an immediate consequence of  the first statement in 
Lemma 5.7. The second follows from the second statement in the lemma and the 
fact that by definition 

TL= Y~ CL(O,x) CL(x,y) CL(y,O)- c~(0 ,0)  3 
X, y 

-afddk (CE(k) + 2) (CE(k) - 1) 2 - (CL(O, 0) + 2) (CL(0, 0) -- 1) z. [] (2~) 

In view of (5.26), Corollary 5.8 ensures that the conditions (5.10) and (5.11) are 
satisfied for sufficiently large L. The condition (5.14) follows immediately from 
the following lemma. 
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Lemma 5.9. For d > 6, 

1am@ 
g--* oo 

= 1 ,  (5.42) 

where the lines in the diagram denote the gaussian propagator CL (k). 

Proof. Fix d >  6. By (5.36) and (5.37), I (~L(k)l is bounded above by Ik[ -2 for k 
near zero, and CL(k) approaches one pointwise as L goes to infinity. Since the 
replacement of CL (k) by [kl-z in the diagram in (5.42) yields a finite result for 
d > 6, the conclusion follows by the dominated convergence theorem. [] 

A similar argument can be employed to prove that as L ~ o% TL converges to 
zero and CL(O,O) converges to one. However this is not sufficient for the 
conditions (5.10-11), and thus we presented the more detailed bounds of 
Corollary 5.8. 

5.2.4. Bounds on Quantities with Derivatives: Conditions (5.12) and (5.13). The 
condition (5.12) on WL is an immediate consequence of the following lemma. 

Lemma 5.10. For d> 6, 

WL <--O(L2+~-d) 1+ 9 . 

Proof. By definition, 

f WL= ~ (2~r) -a dek (duCt(k)) 2. 
# = 1  

(5.43) 

We divide the domain of integration as in Lemma 5.7 and use (5.39) to obtain 

wL~gl(2~r)  -a 5 daklauDL(k)[z q-O(L-4+4~) , ~ daklk1-6. 
/Ikll~_->a IIkll o~__<a 

The second term on the right side gives the second term on the right side of (5.43). 
The integral in the first term on the right side can be estimated by writing the 
integral as a sum over integrals o v e r  Re, exactly as was done in the proof of 
Lemma 5.7, and using (5.34) with s = 1. The only difference here is the extra factor 
of L 2 which arises from s = 1 in (5.34). [] 

Finally we prove the following bound, which gives the condition (5.13). 

Lemma 5.11. For d> 6, 

~,DLI(1--DL) -3__<O(L z+3~-d) ( lnL)e+)--Z~ . (5.44) 



390 T. Hara and G. Slade 

Proof. Using  (5.37) and (5.33) gives 

(2 zc)- d~ddk [a2u D E [ (1 -- DE)-3 = 27 (2~r)- d ~ d ak [#zu DL I 
.J Ilkrl~_>a 

f d k[k[ - 6  
Ilk[Ion<=6 

The second term on the r ight side gives the second term on the r ight side o f  (5.44). 
F o r  the integral over  [Ik IJ | _>- ~ we use (5.34) with s -- 2, as in Lemmas  5.7 and 5.10, 
to obtain  the desired result. D 
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