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Abstract. Explicit lower bounds are given for the size of the imaginary parts 
of resonances for Schr6dinger operators with non-trapping or trapping 
potentials, and for the Dirichlet Laplacian in the exterior of a star-shaped 
obstacle, both acting in three dimensions. 

1. Introduction 

Resonances for perturbations of the Laplace operator A on R" are of interest in the 
theory of scattering for the Sehr6dinger equation 

,~,/,(x, t) 
- i ( - A +  V(x))~b(x,t) x ~ " , t e ~  (1.1) 

at 

and the wave equation outside an obstacle/2 

~2u(x, t) 
- Au(x,t) xe~"\O,  teR. (1.2) &2 

They are associated with abnormally long, but temporary trapping of quantum 
mechanical particles for (1.1), or waves for (1.2). Mathematically, a self adjoint 
perturbation H of - A is said to have a resonance k = x - i~/eC if its resolvent 
(H - z)- 1 has an analytic continuation in z with a pole at k 2. This gives a solution 

of the eigenvalue equation H~b = kz~ which also satisfies an outgoing radiation 
condition at oe. (This condition is incompatible with square integrability, so k 2 is 
not an eigenvalue.) 

Such a solution ~ gives a solution ~b(x,t)=exp(-ik2t)~(x) of (1.1) and a 
solution u(x,t)= e x p ( -  ikt)~b(x) of (1.2). The approximate lifetimes of these are 
respectively (2xr/) -1 and q-1. Suppose the perturbation is supported in 
NR = {Ix[ <R}.  The time spent by an unperturbed particle or wave in NR is 
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roughly 2R/velocity, which is 2R/2tr for (1.1) and 2R for (1.2). Thus for both 
equations, the lifetime is "long" if 2r/R << 1. If the perturbation is of a non-trapping 
type, we would expect to find no resonances obeying this inequality. 

Star-shaped obstacles do not trap light rays, and potentials satisfying 
E - V - rSV/~r  > 0 do not trap classical particles of energy E. In this paper we 
show that in dimension 3 such perturbations, if supported in ~g,  do not produce 
resonances with t/R very small and MR not too small. For x large the condition 
becomes approximately 4.72r/R < 1. 

If the non-trapping conditions fail, resonances with tlR << 1 are expected. For 
the potential case we give lower bounds which are exponentially small in a certain 
quantity which roughly measures the size of the trapping barrier. 

Resonance free regions of the complex plane are known to exist for the 
Laplacian in the exterior of an obstacle. An explicit lower bound q > const, was 
found in [M] for a class of obstacles including star-shaped ones, and lower bounds 
were shown to exist for non-trapping obstacles in [M-R-S] .  The sphere of radius 
R has a resonance at k = - i / R .  The strip t l R > l  has been shown to be 
resonance-free in [R], a reference we learned about after completing this work. 
Our explicit lower bound for r/is weaker than the result of [R], but the method is 
different, and should apply in even dimensions. It is shown in [ B- L- R]  that for 
convex obstacles the lower bound grows as ~t3. 

For the Schr6dinger equation, less seems to be known. In [B-C-D,  S, D - H I  
lower bounds on ~ are given for non-trapping V in the semiclassical limit, i.e. a 
given lower bound for t/is found to hold as Planck's constant h approaches zero. 

Our bounds cannot recover such results, since they are O(h) at best. However 
they yield explicit results for a given potential. Explicit bounds were found in [H] 
for general (possibly trapping) potentials in one dimension. In [LO] an explicit 
resonance-free strip below the real axis is given for a class of non-trapping potentials 
in three dimensions. In this paper we give explicit energy dependent lower bounds 
on t/, separately for the non-trapping and trapping cases, both for potentials of 
compact support in ~3. Our energy dependent non-trapping bounds apply to any 
reasonable potential, since there will be no trapping at high energy. 

Our proof is elementary, and similar in spirit to those of [HI and [LO]. The 
main ideas are demonstrated by the following results in one dimension. The basic 
estimate for the non-trapping case uses the method of [LA-1] first developed for 
resolvent estimates (and thus estimates on lifetimes). The modification for trapping 
potentials was used in [LA-2, LA-3]. If V has compact support a resonance in 
one dimension for - d2/dx 2 + V on [0, o0) is just a k such that there is a solution 
of -- q~" + Vq~ = k2(p with q~(r) = ce -ikr for r outside the support of V. 

Theorem 1.1. Suppose that v~X([0,00)), s u p p V c [ 0 ,  R], and the operator 
H = - d 2 / d x  2 + V on [0, ~ )  with Dirichlet boundary condition at 0 has a resonance 

at k = ~ - itl, with K, tl > O. Then 

2~/R > (1.3) 

sup {~c2 + ~ 2  + V : x ~ [ O , R ] }  
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Proof.  Suppose that  
Then, using integration by parts we find 

R 
0 = Re j x O ' [ -  q)"+ (V  - k2)q~]dx 

o 

1R R 1R 
= ~ !  I~o'lZdx - I~p'(R)12+~!Re(k2-V-xV')lq~lZdx 

R Re k 2 R 
2 [ q 3 ( R ) 1 2 + I m ( l c - i r l ) 2 J x I m O ' ~ g d x "  

0 

Now 

-- q)" + Vq) = kZcp, with q~(0) = 0, and qo(x) = e i~x for x > R. 

(1.4) 

i x l m O , ~ o d x = i x O ' C a - O ~ O ' d x = i X  2 R 2 ~, - 1, 2Kr/l~ol2dx, 
o o 2i 0 2 

so the last term in (1.4) is non-negative. Since eft(x)= ce ik'r for x > R we have 
qr - ik~o(R) = 0. Therefore 

R 
j I~o'l 2 + (Re k 2 - V -xV')l~ol2dx 
0 

~< R[l~o'(R)l 2 + (~2 + ~2)i~o(R)l ~) 

= R I ~ ' ( R )  - ikq3(R) l 2 + 2~cR Im ~o'(R)~o(R) + 2rlR Re ~o'(R)~(R) 

= 2xR Im ~o'(R)~o(R) + 2r/R Re ~o'(R)~o(R) 

R d  
= R J 7(2~c Im ~o'0 + 2r/Re ~o'• 

0 a x  

R 
= R J [4/r ~o [ 2 + 2r/I ~o'l 2 + 2r/(V - ~r + r/2)[ ~ol2]dx 

0 

R 

= 2//RJ [(/r + F +/ ' ]2 ) [ (p12  q'-I~o'12"ldx. (1.5) 
0 

Suppose that  (1.3) is violated, then 2r/R < 1 (since V and V' vanish at R) and 
therefore r/2 < 1/(2R) 2, so (1.5) implies (1.3). �9 

Remark .  If~c 2 > V(x) for xe [0 ,  R], then by solving an ordinary differential equat ion 
we can find g(x) such that  g'(x) > 1 and g'(x)(x 2 - V) - g(x)V'  > x2. Replacing x 
by g(x) in the proof  of Theorem 1.1 yields a more  general lower bound for t/: 

/c 2 _ 1/(2g(R)) 2 
2~g(R) _>_ 

sup {~c 2 + V(x) + 1/(2g(R))2:xe[0, R]}~" 

(In general g(R) will be larger, and thus the bound smaller, the more Voscillates.) 
Notice that  (1.3) is trivial unless x 2 _  V - rV'  > O. This condit ion is sufficient 

to rule out  classical t rapped orbits at energy x 2. If this condit ion is violated, there 
may  be t rapped orbits, and resonances near  the real axis. It is possible to bound 
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the imaginary part of such a resonance from below by the following trick. Suppose 
that for some R 1 > R, 

u ( R p  = 1, u ' ( R p  = O, u'(r) < O, (r < g l ) .  

If - ~ o " +  Vq~ = k2q~, then q~/u satisfies 

__ /.12 _~U 2 - - - - k  2 ~ - 0 .  
u 

So, writing q = u"/u, we have, as in Theorem 1.1 

Re o ~ u2kuJ  L- u2 u + u 2 ( V -  q - k  2) dx 

I R  I (/9 , 2  2 
! {  ( u )  ( 1 - 4 ~ ) + ( R e k 2 - V + q - x ( V - q )  ' ) ~  }dx  

+ ~[[~o'(R)J 2 + (K 2 - F/2) I (p(R) [ 2 ] 

= ~ ~ I m ~  . Im 
o u \ u /  u 

= I m  k z dy u 2 Im dx 
X 

R, ~, dY uz ~ 2dx = (Imk2)Z ! ! ~  _>--0. 
u tY) u 

Now 

 i1( )2 u 1 dx=  ~ Iqr  lop] 2 dx 
0 0 U 

1 R1 12 > ]l u~-~ ! (Iqr + ql[q~[2)dx' 

so we obtain, as in Theorem 1.1 

RI 
{[qr + [ (N2 _ / 1 2  --(x(V- q))']lq~12}dx 

0 

Rl 
< ]lu[122~/Rx ff {l~0'l 2 + ( x  z + rl z + V)l~olZ}dx, 

0 

which is impossible if r/is too small. A bound II u [I ~o is obtained in Lemma 2.7. 
(With the simpler argument of [H] we must estimate ~p. Here we must estimate 
u, a function which may be chosen to improve the estimate on r/. We do not pursue 
this here.) 

In the rest of the paper, we will extend these ideas to 3 dimensions. The 
integration by parts argument which we give in Sect. 2 is quite similar, but to be 
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effective a certain change of variables from q, to r0 is necessary. Most of the 
difficulties, however, arise from the more complicated behavior of outgoing 
solutions of (A + k2)O = 0. We cannot expect that rO = exp ikr, but (~/Or - ik)(rO) 
is small. The proof treats separately the cases of small and large angular 
momentum. In Sect. 3, it is shown that for components with small angular 
momentum l this quantity is small relative to r-~llrOl, while in Sect. 4 we show 
that the components with large angular momentum are small in size. A better 
argument for this part of the proof would be welcome. In Sect. 5 the resulting 
lower bounds are derived. 

2. Interior Estimates 

In this section we consider a solution 0 of 

v.~,(x)Vr + ;~(x)q,(x) = o, x e B , , \ ~  ~ ~", 

~,(x) = 0, x~QY/, (2.1) 

where O is a star-shaped obstacle, for real y and complex )~ in Cs ). We 
shall essentially estimate the ~'~a-norm of q~ over ~p\~2 and the L 2 norm of its 
normal derivative on ~Q, in terms of its Cauchy data on { I x [ = p }. Here we allow 
arbitrary dimension n, but for simplicity we eventually restrict to n = 3. 

Proposition 2.1. Let ~ be a bounded domain in ~" with ~1 boundary, 7ecgt(~) and 
GE~2(~) both real and 2Cd1(~) and ~oeCg2(:~) complex. Then 

Re j VG.VqS( - V'TVq~ - 2~o)dx 

= 5 { ~ Hess G(Wp, V~o) - -12V'(yVG) IV(~012 "4- 1 Re [V'(~VG)]] ~Pl 2 } dx 

where 

- j" Im 2 Im (VG'V~o(o)dx, (2.2) 

g2 G 
Hess G(v, v) = - - ~ i V j ,  

i,j = 1 ~xit~xj 

Proof. Integration by parts yields 

f.) ~ (Vl~. . .  ~ ~)n)EC n. 

VG" V(~( -- V-yV~p)dx 

- ~ {y Hess G(V~p,V~o) 
i=, \ & J & i )  

- J" ?(VG-VO)(Vrp.v)dS, (2.3) 
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and for arbitrary real f and 0 

VG'VOfOdx = - ~ V'(fVG)lO[2dx - ~ VG.VOfOdx 

+ ~ VG'vflOI2dS, 
e~ 

which implies 

1 1 
Re eIVG'Vgf0dx = - ~ ; V . ( f V G ) l O l 2 d x  +~ ~ VG.vflO[2dS. 

ON 

Applying this with f = 7, 0 = Oqo/~?xi to the second term on the right side of (2.3) 
and also to the remaining term on the left side of (2.2) with 0 = ~0 and f = Re 2 
gives (2.2). �9 

In our applications, Im 2 will always be a constant multiple of 7. 

Proposilion 2.2. I f  O < gecgl(N) is real and ~o satisfies (2.1), and Im 2/7 is constant, 
then 

~! \e{7(g ' (r) -g(r) ' ]  ,],OF[ 

+~Re[Xg' t r )+~-12gtr )+~rg(r)] '~ol2}  dx 

1 [. vg(r)~.vlVq~lZdS 
+2oa 

1 Oq) 2__ ~0 2 }dS, 
where v denotes the outword normal to ~g2 here. 

Proof. Take G(x)= - I g(s)ds so that 
Ixl 

VG(x) = g(r).r AG = g'(r) + n - lg(r ) 
r 

(2.4) 

and 

Then (2.4) follows from (2.2) and the observations that on OD, I V~ol = I~?q)/Ov], and 

Im 2 Im (VG-VqoCo)dx 
~p\  .q 

lm). GIm Vq~q5 - q~Vq3]d x 
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= j" G!_Im'~)Zl~0rZdx__<0, 

269 

because G(r) < 0 for r < p and G(r) = 0 for r = p. �9 

If.O is star-shaped, then 2-v > 0 on c~X2 so the boundary  integral on the left-hand 
side of (2.4) is non-negative. But to get a useful estimate we need the integral over 
~p\~Q positive. The choice g = r requires 

(2 - n)7 - r ~  >_ O, (2.5) 
O r -  

R e ( n 2  +ra2~ ~ j  _>_ O. (2.6) 

For  the important  case ? = 1, (2.5) fails if n > 2. 

However,  we can make use of the fact, well known in certain circles, that  one 
can trade off between ? and 2. In fact, for u > 0 and smooth,  

] 

so that  qffu satisfies an equat ion of the form (2.1). For  example, if 0 satisfies (2.1) 
with 7 = 1, and u = r -c"- ~)/2 then 

V'~/Vu - (n - 1)(n - 3) 

u 4r 2 ' 

and r = ?"-1)/20 satisfies 

1 ,~ (n-  1)(n- 3)] 
0= r " - 1 -  4r-  ; 0 -  

N o w  the quantities in (2.5) and (2.6) become r -c"- 1) and 

Re (2 + rO2/c?r + (n - 1)(n - 3)/4rZ)r -~"- 1). 

Thus  we obtain 

Theorem 2.3. Let [2 be a domain in ~" (possibly empty) with <gl-boundary. Suppose 
that t) satisfies the Sehrfdinger equation 

- A~J + Vt) = k26, xe~o\[~  , (2.8) 

tp(x) = O, xeO[l, (2.9) 
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where VeCgl(N"), supp V c ~dp, and k = K - it 1. Then q) = r (n-1)/2 ~ satisfies 

4r z Jl~~ ; r ~ -  1 + I x'vlVplZ--r"- t 
1"2 Og2 

1 ,f 0~o 2 _ (iv~ol 2 0~o 2,~ (n - l ) ( , -  3) 

(2.10) 

In the next two sections it is shown that in dimension 3, if ~o = r G where ~, is 
a resonance eigenfunction, then Oqff& - ikc# cannot be too large at suitable values 
of p. The following result shows that this quantity cannot be too small if ~ satisfies 
(2.8). (A similar result holds for n > 3.) 

Lemma 2.4. Suppose that n = 3, and ~o and ~ are as in Theorem 2.3. Then 

- ike aS = p ,~,I f, ~ 1 7 6  2 pl~l=p Or =ol l~ r l  + lkl2l~~ 

Proof. We have 

-2rcp S {JV~Pf2 +(x2 + V +q2)l~~ (2.11) 
,~p \ .clt 

and 

O~r r ikqo 2 0q ~ 2K im ~ r  ~ _ 2r/Re ~ r  q3, _ = ~ + [k124q, I 2 -  

1 f. &Ogods=ilv~,.vf, dS 
p 2 r = p  ~r 

~p\  g2 

2 dx 
_- j" {(V-k2)]q~12+lgq~l }rZ-. 

~p\n 

Taking real and imaginary parts, we obtain 

1 ~ 21clmO~(pdS=axZ~p ~ Icp[Zdx, 
p lxl =, or e,~ \ a 

2" d x  
1_ I 2rlReOT -~dS=2qp  f { (V-K'2"I-~12)I(~012"]'[V(/01 } 7 '  
P Ixl = p o r  ~p\  ~'1 

from which the conclusion follows. �9 

Combining this with Theorem 2.3 gives the following. 
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Corollary 2.5. In dimension 3, with ~ and t~ as in Theorem 2.3, we have 

OV 
~! \~{(1-2~P)]V~~176 r 2 

~_<_p,=o( [~r  r - - I V g l  2 -  dS. (2.12) 

This result gives the desired estimate for small t / i f  lc 2 - V - r8 V/Or > 0. This 
condition is sufficient to rule out classical bound orbits at energy ~2. When it fails, 
resonances near the real axis may exist. In [LA-2, 3] an upper bound was obtained 
for sojourn times near the scatterer. Here we use the same technique to get an 
inequality like (2.t2), whose left-hand side is positive if t/is (very) small. The idea 
is that if H is a Schr6dinger operator whose potential V supports a classical bound 
orbit at energy E, it may be equivalent at energy E, via (2.7) to another differential 
operator whose symbol represents a classical Hamiltonian that does not trap. 

In (2.7), take 7 = r - (" - l )  and u = u(r). Then 

V 1 , .  1 (~ ,  u z ~ o  u " ( r ) u ( r ) ~  
' r -~ - lvq~  r" -1 u,] '  

so if ~ satisfies (2.8), we have, writing q = u"/u, 

\ r " -  1 u j  + r ~ _ l ( k 2 -  V +q(r))~=O. (2.13) 

Thus the inequalities (2.5) and (2.6) required for an estimate become 

r,_X 1 - 2 r  >0 ,  

N 2 - -  112 - -  V - -  r - -  + q(r) + rq'(r) >= O. 
ar 

In fact it is possible to choose u so that u'/u < 0 and the new potential V - q does 
not trap at energy ~2. 

Theorem2.6. Suppose that VeCgl(N 3) and s u p p V c ~  R and that h~( [0 ,  oo)) 
satisfies 

~V 
V(x) + r- i-(x) ~ h(Jxl) 

o r  - -  

(2.14) 

with h decreasing and h(r) = 0 for r > R. Set 

Rl:max{R ih's'   } 
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Let u(r) satisfy 

u"(r) = q(r)u(r), 0 < r < r o, 

u(ro) = 1, u'(ro) = O. 

Then for 0 <_ r < ro, u'(r) < O, and 
rO 

1 < u(r) < cosh ~ q(s)l/2ds. (2.17) 
r 

Proof. The function v = u'/u satisfies 

v'(r) = q(r) - v(r) 2, 0 < r < to; v(ro) = O, 

while the functions 

v_(r) = 0 and v+(r) = q(r)!/2 tanh (q(s))llZds 

satisfy the same initial condit ion at r o, and 

v'_ (r) = 0 < q - v2_, 

v+(r) =�89 1/z tanh q(s))l/2ds + q(r) sech / q(s))l/2ds >= q ( r ) -  v+. 

I1 r 1 i 
- ~ h ( s ) d s - - -  h(s)ds r < R1 

q(r )=  I~o  R i o  

r > R  1 

if k = ~c - #l and ~ satisfies (2.8) then ~o = rt~ satisfies, for p > R 1 

fxj=p ( l~rr  j IVq~l 2 - + (to2 - r/z)]~ol/ , (2.15) 

and if 2~lpB < 1 

[q~[ ~<B,x l~=p{  ~rr- ik~~ - (  IVy~ 3r J J p  

(2.16) 
where 

RI  

B = cosh 2 ~ q(s)l/Zds. 
0 

First we require a result on ordinary differential equations. 

Lemma 2.7. Suppose that, for 0 < r < r o, 

q(r)>O, q'(r)<O, and q(ro)=O. 
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So by comparison, v_(r) > v(r) > v +(r), i.e. 

- u'(r).  
u~r) ~ q(r)t/2 tanh j q(s)l/2ds. 

rO 

Then (2.17) follows by integration and exponentiation. �9 

Proof  o f  Theorem 2.6. Define u(r) by 

u"(r) = q(r)u(r), r < p, 

u(p) = 1, u'(p) = O. 

Note that q is decreasing and non-negative, and vanishes at R~, so Lemma 2.7 
applies to u. We have seen that q~(x)/u(r) satisfies (2.13). 

We may apply Proposition 2,2 to ~o/u, (with O = ~ )  since 

--  2Krlu2 /r  " -  J. 

1A2/rn- 1 
- 2~cr/. 

Im 2 

Y 

Taking 9(r) = r/u(r) 2, we get 

. ~{  V ~ 2 - - 4 u ' d q f f u 2 + [ K 2 - - r l 2 - -  O-~(rl /-rq(r))]~21d~x ~ 
u u dr or dlU ) r -  

= pr=o(]dr l  - ]Vq~12- ~-r / q--(g2-t/2)lq)j2 dS. 

By definition of q and R1, we have, for r < R~, 

1 R  
(rq(r)) = h(r) - 7 -  ~ h(s)ds 

N10 

dV ~c 2 
> V + r - - - - -  

dr 2' 

Therefore the coefficient of l q~/ul 2 on the left side of (2.18) exceeds K2/2 - q2. Also 

vq~ 2dx  

R' 
= ~ { I g g 0 [ 2 _  2 u  Re X_r.Vq~0 + U'(q92"~dx 

u j 7  

(2.18) 

i l u 1 1 2  + rEV'(U X~l~~ _ 
> 

= ~ \ u  r 3 }  Ix = 

_ 1 .[ E lV~L2+q(r ) l~ l~ ]~ .  

We have used u ' (R1)= 0 in the last step. Using this again, and the fact that, by 
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Lemma 2.7, u'(r)/u(r) < 0 for r < R 1, we obtain from (2.18) and (2.17), 

~_~ Of- (/~2 - -  /~2) [ (49 12 , 

p ) P  

which implies (2.15). Also (2.16) follows from (2.15) and (2.11). �9 

(2.19) 

3. Estimates for Outgoing Solutions of the Helmholtz Equation 

A resonance for the operator H = - A + V(x) on L2(N3\I2) with supp V c ~'R is 
a pole k in the lower half-plane for Green's function, analytically continued in k 
from the upper half-plane, or equivalently, a value of k for which the integral 
equation 

1 ~ e iklx-yl  

~k(x) : ' ~n~ , \a lx -  yl V ( y ) O ( y ) d y - I ~ a l x  ~ ~-,'i_ Y} OO (3.1) 

has a solution. The expression f(k,  x) on the right-hand side of (3.1) makes sense 
for any keC, and satisfies the Helmholtz equation A f  + k2f  = 0 for lxl > R. It 
follows that f(k, ") is smooth in this region, so its expansion in spherical harmonics 

f ( k , x )=  ~ E Ixko;,,(k, lxl)Y;m(2) (3.2) 
/ = 0  Im[<=l 

is rapidly convergent. Here ~0~,, satisfies 

02%.(k, r) /(/r+ 1) &2 + q0zm(k, r) = k2~o~r,(k, r) (3.3) 

and is analytic in k and r. 
For k in the upper half-plane e~kfx-Yl/ix- yf decays exponentially as Jxl-+ 0% 

so each ~o~,.(k, r) must be a decaying solution of (3.3); in fact 

where 
r r)  = Cwt(kr), (3 .4 )  

( l + j ) . . . ( l - - j +  1) iz 
Wt(Z) (3.5) ~ e . 

j=o j!( -- 2iz) j 

By analyticity, (3.4) and (3.5) hold for all k. 
We seek to estimate (O/Or- ik)(r~). Because of its exponential growth, ~ is 

difficult to handle directly. Instead, we make a complex change of variables, which 
is the basic idea of complex scaling [R-S]. Consider 

hl(s ) = wl(k(p + ei~ 

where k = I k l exp ( -  iO). Then h; satisfies 

1 ( l +  1) , , ,  
- h'[(s) + (pe_~-+s)~nM) = IklEhz(s), (s > 0) (3.6) 
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and 
h',(s)-ilklh,(s)--+O as s--+oo (3.7) 

by (3.5). Thus we have traded a real potential and complex eigenvalue for a complex 
potential and positive eigenvalue. The following result on ordinary differential 
equations provides the necessary estimate on (o~. 

Proposition3.1. Suppose that K > 0  and q is an integrable complex-valued 
continuously differentiable function on [0, or) satisfying 

I f  h satisfies 

then 

Req' + ~ - ~ ( R e  q + K 2) < 0, 

Imq >___ 0, Req > O. 

(3.8) 

(3.9) 

> -- I m q A  
K 

by (3.8) and (3.9). Thus 

A(s):= [ h'(s) - iKh(s)[ 2 - Re q(s) l h(s)[ z 

: [h'(s)[ 2 + (K 2 - Req(s))[h(s)[ 2 - 2K Im h'(s)h(s) <= O. (3.12) 

Proof. The equality in (3.12) is an algebraic identity. To prove the inequality we 
calculate 

- - -  h " - -  hh" 
A ' = h " h '  +h 'h"  + ( K 2 - R e  q ) ( h ' h + h h ' ) - R e q ' l h l  z - 2 K  h 

2i 
= 2 I m q . I m  h'h = Req'[h12 - 2K  Imq[h[  2 

IKq[2K Imh'h - Ih ' l  2 - (K 2 - Re q)[hl 2] 

, 2 Imq z 
+ K ]Imq hi - ~ - ( K  +Req)lh]  2 - R e q ' l h l  2 

A(s) exp i Imq(t) dt 
o K 

increases with s, and by (3.11) and (3.9), it must approach a nonpositive value as 
s ~ ~ .  Therefore A(s) <_<_ 0 for s ~ 0. �9 

Corollary 3,2. Let  k --- ~ - i~ 1. I f  

2 1(1 + 1)'~ _ ~/2 
i + ~/-x + ~ )~tp + 3~5 =< 1, (3.13) 

-- h" + qh = K2h, (3.10) 

h ' ( s ) - iKh(s ) -+O as s-+oo, (3.11) 
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then 
K 2 

[q~'L,,(P)- ikqh"(P)[2 =1 < k]2p 21(l+ l)lq~ (3.14) 

Proof.  First note that Proposi t ion 3.1 applies to h l with K = Ik[. For  (3.11) holds 
by (3.7), and we have, writing x = p cos 0 = p~c/Jk[ and y = p sin 0 = prl/lk], 

t(I + 1) l(l + 1)[(x + s) 2 -- y2 + 2i(x + s)y] 
q(s) = 

(x -- iy + s) 2 ((x + s) 2 + y2)2 ' 

so that  (3.9) holds, since (3.13) implies x 2 > y2, and 

Req  Im q 
Req '  + K l m q +  - -  

K 

= ( ( x + s ) 2 + y Z )  2 2(x + s) ~x ~ s s ) 5 + y  ~ + 2 1 k l ( x + s ) y  

2(x + s)yl(l + 1)((x + s) z - yZ)'~ 

=(x+s.2+yZ_3~Jy( ) ) ( - ( x + s ) Z + l k [ y ( ( x + s ) Z + y 2 ) +  l ( l + l )  

< 2l(t+ 1)(x+s) { ~ } 
= ( ( x + s ) 2 + y 2 )  3 ( 3 + [ k l y ) y 2 - ( 1 - l k l y ) ( x + s ) 2 +  t ( / + l )  . 

This does not  exceed 0 if 

(1 - I k [ y ) x  2 > (3 + IkJy)y e + i~l ( l  + 1), 

since y = prl/[kl and x = px/ Ik l ,  this condit ion is 

1(l + 1) 
(1 - ~p)~:2 > (3 + ~p)~2 + ~ p _ _ ,  p2 

which is equivalent to (3.13). 
Therefore 

0 > I h ' -  irchl 2 - Reqlhl  2 

= I tklw~(kp) - i l ktw,(kp)l 2 - l(l + 1)(k2p 2 - q2p2) I wt(k,p)[ 2 
[kL2p * 

I(1 + 1)~c 2 ) 
=> C I(P;m(P)- ikq)tm(P)] 2 ~(2-p2 q~lm(p)[2 " �9 

4. Estimates Based on the Integral Equation 

The results of Sect. 3 do not  hold for arbitrarily large I and fixed k. In this case 
we must  turn to the integral equat ion (3.1). If r = rO(x) and qo is expanded in 
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spherical harmonics Ylm, 

~o(x) = ~ ~ <p,.~(Ixl) Y..(:t), 
t = l  Iml <~l 

then (3.1) becomes 

~ol,.(r) = wz(kr){ ;e~\ a ut(k lxl) Yt=(2)V(x)O(x)dx 
�9 ilk[x[ 

where 

and 

+ ~ u,(klxl)Yz..(2)V~,vdS;. 
J 

( -  1)~zt+ 2J+121(l + j)! (2z)lzl! 
u,(z) = ;:o (27-+ 2j-+ i ~  - (21+1) !  

(4.1) 

(4.2) 

(4.3) 

~-~ (l + j ) . . .  (l -- j + 1) 
WI(2) e iz" 

i= o/-" j!(_ 2iz) y 
(4.4) 

Proposition 4.1. Suppose that f2c ~Ro is star-shaped, and R o < R < p. If ~ satisfies 
(3.1), and q~ = re satisfies (4.1), then 

] qCz,,(P) - i k ~ p , m ( p ) l  = 
iml_<l 

eTP ( e l k l P l 2 ' - 2 f ( R )  2 ' + 2  

< 1 + 2 i - )  L \ p )  R ff I V~j2dx - -  

(4.5) 

Proof. We need to estimate the kernel in (4.2). Since 

v,(z):= u,(z)/z' +1 

satisfies 

we have 

SO 

1+1 v, v " + - -  +v=-O 
2 

d2v 1 + 1 dv 
} + e2iargzv -= O, 

dlzl 2 Izl d[zl 

d~z[\ld~[Id ( dv 2+1v12 ) =  2I+1 dv 2+2Re((l_e2iargz)vdT, ~ 
- alzlj 
II-e2'a"zl(d 2 ) 

\jdlzl I +Iv[ 2 

< 2 Im z ( dv 2 
= --z k ~ +lvl~j" 
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Since 

vl(O) = 2q!/(21+ 1)! and v~(z) = O(z2), 

it follows that I v;(z)l 2 < exp (21Ira z l)(2qr/(21 + 1)!) 2 and 

lu;(z)l < ([zl[2zltl!/(21 + 1)!)exp Jim zl. 

Therefore, if 0 < e < 1, 

IZI~I+I  @~ ( I ~ L I R z [  
e211mzlle-iZ(w;- ieh(z))ut(~ < 2~+1 j~=o \j,][zl 21 

Now 

(; ) 1 1 < , ~ logxdx  
/ _ j l o g  l + j +  l = t - j~+j  

SO 

Thus we have 

c. Fernandez and R. Lavine 

12zL 
l + j + l  

1 2/ 
< - ~ logxdx  = 1 - 2 1 o g 2 - 1 o g / ,  

12z[ 
21 / + j + l = \  21 / 

e 2 [Imzl[e - iZ(W'l(Z) -- i~ot(z))ut(~Z)] 

cd+llzl(etzl~; d (1  21 ); 
<= \ST/ zt\ 

- 2 ~ i \  + < - -  1 +  
= 2 

Using the fact that, by Bessel's inequality, 

Y,m(2)f(2)dS(2) 2 ~ <= I [f(2)12dS(2), 
[m[</ S 2 S 2 

we have, taking a = R/p and Ro/p 

[ (P'(P)- ik~p(p)l 2 
[ml<-_l 

ut(k l x l) Ylm(2) V(x)~(X) dx = ]w'l(kp)- i(ot(kp)l z ~_, l 
I,.l_-<t ~ R \ a  Ixl 

+ ~ ut(k[xl)Ytm(2)~O(x)/OvdS 2 
o,~ Ixr 
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- 2 I ( R ' ~  2/+2 2 

\ p /  I s2 J'l"tx)~Tv 277. v ; 

< l +  2l } t i p ~  R ~ IV(x)~(x)l~,tx 

(Ro~2/+ 2 f ai~2dS 
+ \ p )  o~lNI 7--7.vJ' �9 

Proposition 4.2. Suppose that ~ol,, is as in Proposition 4.1, let 6 > 0 and 

/ 7=1+  6 l x R / J  

and suppose flRIp < 1. Denote by 1o the smallest positive integer such 
lo(l o + 1)6 >__ Iklap 2. Set 

I = R  I lVOl2dx, So=f ~'~'~'adS. 
oaR\o os~ •v 2"v 

Then 

[ - \  P~ 2 + '~~176 i i -~ (~  1-(~)  2 

Proof. By (4.5) the quantity on the left-hand side of (4.6) does not exceed 

( 
1=lo 

1 e 4"v & [- f f l R \  zl+2 +21 <=5-Ts-_L_,oLlC~) + ,o(~y'  
F f flR"~2l~ 2 i1 

We have used [kip~1 <= V / ~  + (�94 _< x / ~  for 1 > to, which implies 

2lo + 2> 2 + (2/~)l121klp 

> 2 + (2/6)112xp 

that 

4.6) 
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and 

elk tp  
1+  

21 
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__<1+ 5̀ 1+  

< 1 +  5̀ 1 +  Iklp / )  

~{ ( (2`5)1/2 ~ ~ 1/2 
< 1 +  ,5 1 +  ~R / )  =fl  

5. Lower Bounds for Resonance Widths 

Now the results of Sects. 2, 3, 4 can be combined to bound t /= - Im k below. The 
first theorem deals with a Schr6dinger operator at energies where classical trapping 
does not happen. The second obtains (exponentially small) lower bounds in 
trapping situations where we do expect resonances near the real axis. The third 
treats the Laplacian in the exterior of a star-shaped obstacle. 

Theorem 5.1. Suppose that V~C~l(~ 3) with V ( x ) =  O f  or Ixl >= R. The  Schr6dinger 
operator H = - A + V on Lz(~ 3) has no resonance at k = K - itl, ~:, tl > 0 if  

v = in f{x  2 _ V ( x ) - r 3 - ~ ( r X ) : [ x l < R } > O  , (5.1) 

and for  some ~ ( 0 ,  1) 

qR < 

where 

o~ 1 - - -  
1 \ 2 f l ~ R J  

2Aft 
(5.2) 

/ 3 = 1 +  1 + ~-~j , 

e2R2 V(x)2 :Ix] < R[, 

J \ Or/ 
o~ 2 

Remark. As ~ ~ o% v/~c a ~ 1, fl ~ 1 + e/2, b ~ O, and A ~ 1, so for any c~ < 1 the 
limiting width of the resonance-free region given by (5.2) is 

~R < 2 ( I  + e/2) -1 ~ (4.718) - l e .  

A resonance for - h 2 A  + V at k is equivalent to one for - A  + V[h e at k/h. As 
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h ~ 0, we get asymptotically for the resonance-free region 

c&v/~: 2 
17R < 

2 ]ll + V/~czH~(1 + e/Z)" 

Proof of Theorem 5.1. Suppose that ~ is a resonance eigenfunction and the 
resonance k satisfies (5.1) and (5.2). Then ~0 = r@ satisfies (2.12) with 12 = ~ .  In 
(2.12) set p = fiR~co Then by (5.2), 217p = 217flR/c~ < 1, and we have 

{~c2(1- 2170) - (V +172)(1 + 2170)-r~?V~]~~ 
4,1_ c~rJ r 2 

=< P, ~rr -- ikcp - -  IV(~0l 2 -  ~ -  //~ 

= P  '=0 ~ ' 'l S'E {[@" -ikqhmlz ----I(l+l)lcP'mlz}pa , (5.4) 

where ~oz, . are defined by (3.2). By Corollary 3.2, the terms with l(l + 1)< Ik[2p 2 = 
(x2 + 172)p2 in this series are all less than or equal to zero if 

( 172 217eR 172 
1 + ~a/  ~ + 3~__< 1. (5.5) 

The remaining terms in the series in (5.4) may be estimated by Proposit ion 4.2, 
taking 5 = 1, since flR/p = ~ < 1, giving 

I IK2( l -217P)- (V+-172) ( lq -217p) - r77]~dx  
~pk 

< e'"P (fiR~P)1 +'/21~IPR2 ~ - ~ d x .  (5.6) 
= 2fl 3 1 - (fiR~p) 2 4,, 

But this inequality is impossible, and (5.5) holds if for [xl < p, 

3 + ~ + ( c~ "12'12f117R eE(RV(x))20~,/'s~R ~ 
\ 2 ~ R /  J ~  -'1 2fl3~;2 1 - ~2 

~c 2 - V ( x ) -  ~ V  r~r(X) 
~2 (5.7) 

We have used exp (4170)< e 2 and 

17< ct 
x = 2flxR' 

which follows from 2r/p < 1. But (5.7) follows from (5.2), giving a contradiction. �9 

Theorem 5.2. Suppose that VEc~I(~ 3) and supp V ~ ~R, and let RI, q(r) and B be 
defined as in Theorem 2.6. The Schr6dinger operator H = - A + V on L2(• 3) has 
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no resonance at k = tc - it l if tcR > 1 and 

8tlRzB _< 1, (5.9) 

where 

R 2 = max {rJ V]I~R/2~cZ, R~,eflR} 

and fl is defined by (5.3). 

Proof. Suppose that k is a resonance satisfying (5.9) and let ~ be the corresponding 
resonance eigenfunction. Then rp =r tp  satisfies (2.16) with p = R2, and since 
4rlR2B < 1 we have 

-<BRAE 0,.Z I~,~(R~)-;k~,~(R~)r ~ ~ . (5.1o) 
I t R 2 

The terms in this series with l(l + 1)< B]k]2R~ are negative by Corol lary 3.2 since 
(3.13) holds: 

1 + ~  ( I + B ) q R  2+ ~ - - <  1+(8~c/~2B)2 ( l + B ) r I R  2+(8•R2B)2 

<=(l +~)(1 + B)~R2 + ~  <__ 1, 

by (5.9). 
Because R2 > e/3R > fiR, the remaining terms in the series can be estimated by 

Proposi t ion 4.2 with 6 = B-1 ,  giving 

(K~ \.4~ta~l/2gtCD/o'~l+,/~BlklR2 ~22 2 ~ J  ,9 W.A. ~ .ot~ ~ p J t x / l x 2 )  R 2  

S _ q 2 _  ) r 2 - 2/3 3 1 - (/3R/R2) 2 J" I Vrpl2 " ZrlR2BK itPl - - _ ~  . . . .  (5.11) 
~R 2 ~ t  

Now since the max imum value of the funct ion x2e -:' is 4/e 2 so that  e-X < 4/(ex)2, 

we have 

2 B(flR/R 2) (2B}'/2tklR2 ~. < 
[ekr 2 12 log 2 (R2//3R) 

8tr z < 
e 21IV 2 2' -- II ~R 

by the definition of R 2. Since fiR~R2 < I/e, we have 

f lR/R 2 < _  1 < 1 

i - (fiR~R2) 2 = e(1 - e -2) = 2" 

These estimates with (5.11) give 

x2 2x 2 
--2 - q 2  _ 2qRzBK2 < eS12fl s" (5.12) 
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But (5.9) implies 

/'12 2 1 1 2 1 
2~tR2B + ~ + e3/2fl ~ < a + ~ + ~ < 2 '  

which contradicts (5.12). �9 

Theorem 5.3. Let f2 ~ ~R ~ ~ 3  be a domain with of 1 boundary, which is star-shaped. 
Then the Laptacian with Dirichlet boundary condition on Of 2 has no resonance at 
k = ~c- it/, K, r />  0 / f  

1 
1 - - 3 - -  

(2flKR) 2 
r/R < (5.13) 

2/3 1 ' 
l + - -  

(2fl~:R) 2 
where ~ is defined by 

~I +,/-~aR 2fl3 inf { (x.v)Z:x~Ol2} 
1 - ~2 (eR)2 (5.14) 

and fl is defined by (5.3). 

Remark. As ~ : ~ ,  it follows from (5.14) that ~---, 1, so the lower bound on r/R 
given by (5.13) approaches  (2 + e)-1. 

Proof. If ~, is a resonance eigenfunction with resonance k satisfying (5.13) then 
q~ = r e  satisfies (2.12), and if p > Rfl and 

1 +  2 r / p + 3  < 1 ,  (5.15) x - /  ~- 

the integrals over ~o\ .O in (2.12) are nonnegat ive and we obtain,  using Corol lary  
3.2 and Proposi t ion 4.2, 

2dS eZn~ "/-iKo+ l [V~I2dS S xvlV t-y<  R f 
Or2 &t2 rx.~ 

< e2 (flR/P)g~rR+I R2 2 dS 

=2f l  3 l _ ( f l R / p )  2 inf(x.v)2jn[Vq~[ X'Vr2. (5.16) 
at2 

The function on the left side of (5.14) increases from 0 to m as a runs from 0 to 
1, so (5.14) has a unique solution in (0, 1), and taking p = f l R / ~  makes (5.16) 
impossible, and (5.15) follows from (5.13), which gives a contradict ion.  �9 
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