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Abstract: Dynamical entropy invariants, based on a general approximation approach 
are introduced for C*- and W*-algebra automorphisms. This includes a noncommu- 
tative extension of topological entropy. 

The Connes-St6rmer entropy [4] and its generalization by Connes-Narnhofer- 
Thirring [3] (see [9] for a recent alternative approach) extend the entropy invariant 
of Kolmogorov to the context of W*-algebra automorphisms. These entropies may 
be viewed as "observable"-entropies, i.e. they are based on the physics point of 
view of observing the quantum dynamical system via abelian models. Here we ex- 
plore another route to entropy based on approximation (we also briefly discussed the 
approximation idea in [ 14]). One may think of approximation entropies as "growth"- 
entropies, reflecting the mathematical idea of the growth of the algebra produced 
by the automorphism. The invariants we obtain are > the usual ones and we show 
equality for non-commutative Bernoulli shifts and in the commutative cases. Note 
also that "observable" entropy is essential in getting lower bounds for approximation 
entropies, while approximation entropies give useful upper bounds for "observable" 
entropy. Let us also mention from the beginning that the natural framework for 
Connes-St6rmer. Connes-Narnhofer-Thirring and approximation entropies is that 
of algebras satisfying hyperfiniteness or nuclearity assumptions. 

There are several reasons for studying approximation entropies. One motiva- 
tion is the search for a non-commutative analogue to McMillan's theorem for the 
Connes-St6rmer entropy. Proving equality of the Connes-St6rmer entropy and of 
the approximation entropy for a given automorphism can be viewed as a kind of 
weak McMillan-type of theorem. 

For approximation entropies, the entropy of a tensor product of two automor- 
phisms is bounded by the sum of the entropies of the automorphisms. Powers' 
shifts, which are very far from asymptotically abelian have been shown recently by 
Narnhofer-St6rmer-Thirring [15] to provide a counterexample to this tensor prod- 
uct property for the Connes-St6rmer entropy. For these Powers' shifts the Connes- 
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St6rmer entropy and the approximation entropies are different. More generally, the 
lack of asymptotic abelianness appears to get in the way of observing the system via 
abelian models (a point of view held by H. Narnhofer for some time) and therefore 
one should also expect McMillan-type results for the Connes-St6rmer entropy only 
when asymptotic abelianness is satisfied. 

Another reason for the approximation approach is that it provides a suitable 
definition of topological entropy in the non-commutative context. The definitions 
previously proposed ([5, 13]), based on the covering idea, have the drawback of 
not being invariants of the C*-algebra automorphism, i.e. they require additional 
structure in order to function. To define topological entropy in the approximation 
approach, it suffices to replace the 2-norm defined by the invariant state by the 
uniform norm and one obtains a definition with adequate features. 

We also think approximation is consistent with the spirit of  [10] and [6]. 
We consider two kinds of approximation by finite-dimensional subalgebras and 

via completely positive maps. Multiplying these two possibilities by the two cases, 
that of an invariant state and the C*-case (i.e. "measurable" amd "topological"), we 
get four approximation entropies. For McMillan-type results the stronger statements 
correspond to approximation by subalgebras. Our topological entropy is based on 
completely positive approximation in the C*-case. 

For automorphisms of non-commutative tori we show that their topological en- 
tropy is of the same order as the entropy of the corresponding classical system. 

Another example where we compute the topological entropy is the inner au- 
tomorphism for the implementing unitary of a topological Bernoulli shift in the 
crossed product. This also solves in the affirmative in the case of Bernoulli shifts 
with equal weights a question of E. St6rmer in [11]. In an Appendix using the 
completely positive approximation entropy we solve the problem in [11] for gen- 
eral ergodic transformations. 

Note that the approximation idea used here can be applied as well for automor- 
phisms of other topological algebraic structures. As an example we briefly look at 
the Hilbert space case. The result is that the approximation entropy of a unitary op- 
erator coincides with the Connes-St6rmer entropy of the Bogoliubov automorphism 
it defines. 

Also more generally we define the entropy of a unitary representation for a 
certain class of amenable discrete groups. In the case of an i.c.c, group for a 
representation quasiequivalent with the regular representation we prove the entropy 
equals the yon Neumann dimension. 

The paper has nine sections (except the introduction). The first four sections deal 
with the four approximation entropies for operator algebras: first the two correspond- 
ing to subalgebra approximation (W*- and C*-case) and then the two cases (W* 
and C*) of completely positive approximation. Section 5 deals with the topological 
entropy of automorphisms of non-commutative tori. Section 6 is about the topologi- 
cal entropy of the inner automorphism implementing the topological Bernoulli shift 
in the crossed product. Section 7 and 8 deal with Hilbert space entropy, first the 
case of a unitary operator, then the case of a group representation. Section 9 com- 
putes the entropy of the inner automorphism implementing the topological Bernoulli 
shift in the crossed product. The last section entitled "Further Remarks" discusses 
variants of definitions and some of the open problems. There is also an Appendix 
about the solution to St6rmer's problem in general. 
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Let M be a separable hyperfinite, finite von Neumann algebra with a faithful normal 
trace state r and let Ix2] = (r(x*x)) 1/2 be the associated 2-norm. By N f ( M )  we 
denote the finite subsets of M. If co E N f ( M )  and W C M we shall write co c6 
if for every a E co there is x E 5f such that la - x[2 < 6. Let further Y ( M )  denote 
the unital finite-dimensional C*-subalgebras of M. If A E @(M) we denote by dim 
A its dimension and by rank A its rank, i.e. the dimension of a maximal abelian 
self-adjoint subalgebra of A. 

1.1. Definition. I f  co E ~ f ( M )  and 6 > 0 we define 

r~(co; 3) = inf {rank AIA E ~ (M) , co  C6 A} 

the g-rank o f  co. 

1.2. Definition. I f  a & an automorph&m of  M such that ~ o a = ~, 6 > 0 and 
co E ~ f ( M )  we define 

ha~(a, co; 3) = lim sup n- l log r~(co U a(co) U. . .  U an-l(co);6) ,  
n----+ OO 

hat(a, co) = sup haT(a, co; 6) ,  
6>0 

haT(a) = sup {ha~(a, co)[co E ~ f ( M ) } .  

haT(a) will be called the approximation entropy of  a. 

1.3. Proposition. I f  k E Z then 

ha~(a k) = [k[ha,(a). 

Proof We first show ha(a )=  ha(a-l) .  We have 

FZ(o<jU<n_laJ((D)'~ ) = rz(a--nWl(o<jU<=n_laJ((D));(~ ) 

\O<=j<n--I / 

and hence 
ha~(a, o9; 6) = haT(a -1, co; 3) ,  

ha~(a, co) = ha~(a-l ,co),  

haT(a) =- had(a- i ) .  

Thus we may assume k > 0. We have 

ha~(ak, co;6) = lim sup n-~log r~( U akJ(co);6~ 
n~oo \O <j <n--1 ,/ 

< sup n-I  l~  U ~J(CO); ~/  
n--+oo O <=j <=k(n_ l ) 

< kha~(c~, co; 3) ,  
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which implies ha~(~ k) < khan(co). 
For the reverse inequality, remark that if co E ~ f ( M )  and 

COl = U ~J(CO) ' 
O<=j<=k-1 

then 

Hence 

Fv( U o~J(CO); ~) ~-/"z( U ~ k J ( ( - O 1 ) ; ~  - 
0_ < n--I \0=<j=<[~] / 

kha~(c~,co; 6) < ha~(~k, col;s 

kha~(~, co) < ha~(~ k, COl ) ,  

kha~(c~) < har(ak). 

1.4. Proposition. Let coj E ~ f ( M ) , j  E N,  col C co2 C ... be such 
UnCTzan(COj) generates M as a yon Neumann algebra. Then 

ha~( c 0 = s u p  ha~( ~, coj ) . 
jcN 

D. Voiculescu 

[ ]  

that [JjEN 

Proof It suffices to show that given co E ~ f ( M )  and ~ > 0 there is 61 > 0 and 
coj such that 

ha~(~,co;~) < ha~(~,coj;61). 

In view of  the assumptions there is N E N so that 

(( coC6/2Nco  ]F {1}U U ak(cojUco]) , 
[k I <N 

where co] = {a*la E coj},qr = {z ~ •1 Izl = l} and co denotes the convex hull. I f  
C = max {llall ]a E coj} we easily see that if for some unital B E Y ( M )  we have 

U ~(cos) c~ B, 
Ikl =<N 

then 

(( N~o lr {1}u U ~(~ju~) %8 ,  
I,tl<N 

where 62 = N2(2c)N-161. Thus choosing 61 = 2-1N-2(2c) l -Nb2 we see that 

U ~(coJ) c~ 
Ikt__<N 

implies co C6 B, In particular 

so that 
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ha~(~,og;3) < haz( ~, ~-U ( ogj ); 31) = ha~( ~, o9j ; 31) . 

[] 

The notations H(A1 . . . . .  A , ) ,H(A]B) ,H(A,~) ,H(~)  are those of  [4] for the en- 
tropy quantities defined by A. Connes and E. St6rmer. 

1.5. Proposition. I f  A E ~ ( M )  and o9 E ~ f ( M )  generates A as a C*-algebra, 
then 

H(A,~)  < ha,(~,og) 

and 
H(c 0 < ha~(ct). 

Proof  It is clearly sufficient to prove the first assertion. 
For the given A E @ ( M )  and a given ~ > 0 by [4] there is 6 > 0 such that i f  

B E Y ( M )  and if  for every a E A, ]lai[ < 1 there is b r B such that [a - bi2 < b, 
then H(A]B) < e. It is easily seen that in view of  our assumptions there is 61 > 0 
such that 

(1) C~I B ~ H(AIB) < ~. 

This also implies 

Thus, if  

~'(o9) c~, B ~ H(a"(A)I B) < ~. 

r.c(o9U... U~"-1(o9);~1) = r (n) ,  

there is B, E ~ ( M ) ,  rank B, = r(n) so that cd(og) C~I B?I for 0 < j < n -- 1. This 
implies 

H(A, e(A) . . . . .  e ' - l ( A ) )  =< H(Bn) + H(AIB,) + . . .  + H(a ' - I (A) IB , )  

< log r(n) + n e ,  

so that 
H(A,~)  <= ha~(c~,o9;61) + a ,  

and hence the desired conclusion. [] 

1.6 Remark. It is obvious that the preceding proposition can be refined by replac- 
ing the lim sup in the definition of  ha~(c~, 09; 6) by a lim inf. This defines lower 
approximation entropy quantities: 

lha~(~,o9; 6) = lim inf n - l l o g  r~(o9 U . - -  U ~-a(~o); b) , 
n-- -+  o<3 

lha~(~, 09) = sup lha~(~, o9; 3 ) ,  
6 > 0  

lha,(c 0 -- sup { lha,(c~,o9)[o9 E ~ f ( M ) )  . 

We have 
H(A, ~) <= Iha~(~, o9) 

when o9 generates A and 
H(~) < lha~(~). 

We don' t  know whether Iha~(~,og), lha~(~) are not actually equal to ha~(~,og), 
ha~(~). 
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1.7. Proposition. Assume M = L~ is separable and a is induced by an 
ergodic measure-preserving automorphism T of  the probability measure space 
(X, ~ ,  p) and z is the trace defined by p. Then 

h(T) = ha~(~),  

where h(T) is the Kolmooorov entropy of  T. 

Proof Since h(T) = H ( ~ )  we have h(T) < ha~(~) by 1.5. In view of  1.4 to prove 
the converse it suffiices to show that if  I 2 - -  (O1, . . . ,  Ore) is a measurable partition 
of  X and o9 = {Z@[ < J < m}, where Z~j is the indicator function of  f2j, then 
ha~(~,og) < h(T). In view of  McMillan 's  theorem, given e > 0 there is N such 
that, i f  n > N, then in 

(2 (n) = ~2 V TO V �9 �9 �9 V Tn-l(2 

except for the atoms contained in the set Z with # (Z)  < e, the other atoms have 
measure in the internal [exp(-n(h(T) + 8)), exp( -n(h(T)  - e))). We then define An 
to be the linear span of  the ZA, where A ranges over the atoms of  (2 (n) which do 
not intersect Z, plus the set Z itself. Thus An E ~,~(M) and 

dim An < 1 § exp(n(h(T) § ~)). 

Since [xzl2 < eV2 we easily infer 

~J(og) Cgl/2 An 

for 0 _-< j =< n -  1. This gives 

r~(~  U . . .  U c~n-l(og);~ v2) __< 1 + exp(n(h(T) + ~)),  

and hence 
ha~(c~,og;e V2) < h(T) + ~. 

Since e > 0 is arbitrary, this gives the desired conclusion. [] 

1.8. Proposition. Let Mk be the algebra of  k • k matrices with its unique trace- 
state, M = M ~  z, z = z| and let ~ be the non-commutative Bernoulli shift on M. 
Then 

ha~(~) = H ( 7 )  = log k .  

Proof Since ha~(~) > H(~) by 1.5 we need only prove ha~(a) < H(~). Let A E 
~ - ( M )  be one of  the copies of  J//k in the tensor-product defining M, and let co be 
a system of  matrix units for A. By 1.4 ha~(~, o9) = ha~(~). On the other hand 

u < k ' ,  

so that ha~(c~, o9) <= log k = H(~) .  

1.9. Proposition. Let M = M1 | M2, �9 = zl | ~2, ~ = ~1 | ~2. Then 

[] 

ha~| | ~2) <-_ ha~l(~l) + ha,2(~2).  
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Proof Remark that if  a E M,B,E ~ ( M ) , b  E B are such that la - b[2 < 8, then b 
may be chosen so that Ilbll _-< llall (take b = Esa, E~ the conditional expectation). 
I f  (0j E Y ( M j )  are such that x E (0j ~ Ilxll < 1, it is easily seen that 

rz (0<jU=<n_l~((01)@~((02);81 q-82) =<-<rrl(0<j=U<n_l(kfli((01);81 ) 

-~-rZ2(O<jFn_14((02);82 ) " 

It follows that 

ha~(~l | 0~2, (01 @ (02; 81 + 82) ~ ha~l (~1, (01; 81 ) dr- har2(~2, (02; 82), 

and to get the desired conclusion it suffices to use 1.4. [] 

2. Subalgebra Approximation the C*-Case 

This section runs parallel to the preceding, with hyperfinite W*-algebras replaced by 
AF C*-algebras (no state specified). Notations used here do not always have the 
same meaning as in Sect. 1, being adapted to the AF-case. Thus, M will denote 
an AF C*-algebra with unity. ~ f ( M )  and o~(M) have the same meaning as in 
Sect. 1. I f  o9 E ~ f ( M )  and X C M we write (0 Co X if  for every a E (0 there is 
x E X such that I[a - xll < 8. The definition of  the 8-rank r((0; 8) is a repetition 
word for word of  Definition 1.1, the difference being that M and C0 no longer have 
the same meaning as in Sect. 1. 

2.1. Definition. I f  ~ is an automorphism of  M,(0 E ~ f ( M )  and 8 > O, we define 

hat(~,(0; b) = lim sup n-l log U cf l ( (0 ) ;8 ) ,  
n---+cxD O<=j <=n-- I 

hat(c~, (0) = sup hat(s, (0; 8) , 
0>0 

hat(s) -- sup {hat(s, (0)l~ E ~ f ( M ) ) .  

hat(s) will be called the topological approximation entropy of  ~. 

Clearly the difference between Definition 1.2 and Definition 2.1 is that now M 
is an AF-algebra and C0 is with respect  to the uniform norm. 

Propositions 1.3 and 1.4 and their proofs immediately adapt to the context of  
this section to yield the next two propositions, the proofs of  which will be omitted. 

2.2 Proposition. I f  k E Z then hat(~ k) = Iklhat(c O. 

2.3. Proposition. Let (0j E ~ f ( M ) ,  (01 C ~o2 c ...  
7n((0j) generates M as a C*-algebra. Then 

be such that Ujc~U,,cz 

hat(s) = sup hat(c~,(0j). 
jCN 
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2.4. Proposition. Let z be a trace-state of  the AF-algebra M such that z o ~ = ~. 
Let M be the yon Neumann algebra completion of  M with respect to ~, ~ the 
automorphism and ~ the trace obtained from ~ and ~. Then 

hae((O < hat(a).  

Proof Let zr : M  + A4 be the canonical homomorphism. Clearly if co E ~ f ( M ) , A  E 
~-(M), m Ca A, then ~z(co) Ca 7r(A) which also implies the a-inclusion of 7r((o) into 
z~(A) with respect to the 2-norm defined by "~. It follows that if o~ E ~ f ( M ) ,  

r(r U . - .  U a~-l(oo); ~) > rg(~(co) U . . .  U ~(~n-1(r 6) 

= re(re(co) U . . .  U ~n--1(7~(O9)); 6 ) .  

Hence hat(e, co; 6) > hae(~(o)); 6) and so hat(a, oo) >= hae(~, =(co)). Using 1.4 and 
2.1 we infer hat(a) > hae(a). [] 

2.5. Proposition. Let T : X ~ X be a homeomorphism of  a totally disconnected 
metric space. Let M = C(X)  be the AF C*-algebra o f  continuous functions on X 
and let ~ be the automorphism induced by T. Then we have 

htop(T) =hat(oO,  

where htop(T) is the topological entropy of  T. 

Proof The topological entropy of T is the supremum of the entropies of T with 
respect to all ergodic invariant Borel probability measures # on X (see [8], p. 273). 
By 1.7, the entropy of T acting on (X, ff) coincides with ha~ for the automorphism 
of L~(X,  t~) induced by T. Since by 2.4 hat(a) majorizes ha~ of the automorphism 
of L~ we infer hat(a) > htop(T). 

Let (2 = (~1,...,~2m) be the partition of X into closed open sets and let co = 
{Zaj[1 _-< j < m}, where )~aj is the indicator function of g2j. In view of 2.3 it will 
suffice to prove that 

hat(~,co) < htop(T) . 

With N( �9 ) denoting the least number of elements of an open subcover of a given 
open cover of X, we have 

r(coU-- .  U ~n-1(o0);6) < N(~2V-. .  V T"-lg2).  

Hence 
hat(~,co;6) < h(F2, T) < htop(T) 

(for the definition of h(co, T) see [8], p. 264). This implies h(~, co) < htop(T). [] 

2.6. Proposition. Let /gk be the C*-algebra of  k • k matrices, let M = j//~Tz be 
the AF-algebra and let ~ be the non-commutative topological Bernoulli shift. Then 

hat(a) = log k .  

Proof Applying 2.4 and 1.8 to the von Neumann algebra completion of M with 
respect to the unique trace state of M we get hat(e) > log k. 
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On the other hand let A E ~ ( M )  be one of  the copies o f  ~ k  in the tensor 
product defining M. Then if  co is a set o f  matrix units for A, by 2.3 we have 
hat(7, co) = hat(o:). On the other hand, since the C*-algebra generated by co U �9 .. U 
o:~-l(co) has rank k ", we infer 

and hence 

r(co u - - .  u o:"-~(co); a) < /d ,  

hat(o:,co) <= log k .  

[] 

The proof o f  the next proposition is entirely analogous to the proof o f  Proposi- 
tion 1.9 and wilt be omitted. 

2.7. Proposition. Let M1,M2 be AF-alyebras, M = M1 | M2, o: = 7l | ~2. Then 

hat(o:l | O:2) ~ hat(oil) + hat(o:2). 

3. Completely Positive Approximation the W*-Case 

In this section we will work with a weaker type of  approximation based on com- 
pletely positive maps instead o f  subalgebras. We shall examine only the W*-ease 
here and leave the C*-case for the next section. 

Throughout this section (M, a )  is a hyperfinite von Neumann algebra M with a 
normal faithful state a. We assume o: : M --4 M is a automorphism so that a o o: = a. 
Also we shall use the notation [lall~ = (a(a*a)) 1/2, where a E M. 

By CPA(M,a) we denote the set o f  triples (~o,~B), where B is a finite- 
dimensional C*-algebra, (p : M ~ B and ~ : B --+ M are unital completely positive 
maps so that a o ~ o (p = a. I f  ((p.~9,B) E CPA(M,a), then (~0 o o:-~,o:n o ~t,B) E 
CPA ( M, cr ). 

3.1. Definition. I f  co E N f ( M )  and 6 > 0 the completely positive 6-rank is defined 
by 

rcp~(co;6) = inf{rank BI(q~,O,B) E CPA(M,a), [l(~b o (p)(a) - alia < 6 for a E co}. 

Remark that rep~(o:n(co); 6) = rcp~(co; 6). 

3.2. Definition. We define for co E .~ f ( M )  and 6 > O, 

hcpaG(o:, co; 6) = lim sup n - l l o g  rcpa(co U o:(co) U . . .  U o : n - I ( c o ) ;  5 )  , 
n ----+ oQ 

hcpao( o:, co) = sup hcpa~( o:, co; 6) ,  
6 > 0  

and 
hcpa~( o: ) = sup hcpa~( o:, co). 

o)E~f(M) 

hcpa~(e) will be called the completely positive approximation entropy. 
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3.3.  Proposi t ion.  
hcpa~(~ ~) = Iklhcpa~(~). 

The proof  is along the same lines as the proof  of  1.3. 

3.4. Proposition. Let ooj E ~ f ( M ) , w l  C o32 C ... be such that the linear span of 
UJc~ ~k(~oj) is ultrastrongly dense in M. Then 

kETl 

sup hcpa~(~,ooj) = hcpa~(~). 
jEN 

Proof Let co E ~ f ( M ) , c o  = {al . . . . .  am}. In view of  the assumptions there is ~ON 
and p E N so that i f  U - p < k < p  ~ = {Xl . . . .  ,Xn} , then 

l<k<n 

for some scalars 2jk. With C = maxj,kI2jkl it is easily seen that 

rcpo(mU.. .Ucd(e));26)  <= rcp~( U e ' ( ~ O N ) ; C - ' 6 )  
\-p<=s<=d+p 

= repG(o)N U . . .  U o~d+2P(O.)N); C - 1 6 )  . 

This in tum implies 

and hence 

hcpa,(~,~o;23) ~ hcpa,(c~,CON; C-13) 

_<__ sup hcpa~(o~,~N), 
N 

hcpa~(~) < sup hcpa~(a, ON). 
N 

The opposite inequality is obvious. [] 

3.5. Proposition. Let N C M, 1 E N be a yon Neumann subalgebra. Assume et(N) 
= N and the existence of a projection of  norm one E " M --+ N such that (atN) o 
E = a. Then 

hcpa,(c~IN) <__ hcpa,(~). 

Proof The proposition follows immediately from the fact that rcp~(o); 6) for a 
subset co C ~ f ( N )  is the same w.r.t. (M, a )  or (N, a[N). This in turn follows from 
the fact that if  ((p, 0 , B ) E  CPA(M,a), then (q~[N, E o O , B ) E  CPA(N, aIN) and if 
a E N, then 

II(q, o ~o)(a)  - all~ _>- I[E((~'  o ~o)(a) - a) l l~  

= II(g o ~ , ) ( q ) l N ) ( a )  - al[~. 
Here we used for x E M 

a(x*x)-----a(E(x*x)) >= a(E(x*)E(x)).  
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The next proposition related hcpa~(e) with the Connes-Narnhofer-Thirring en- 
tropy h~(c 0 [3]. In the proof  we will frequently use results and notations from 
[3]. 

3.6. Proposition. I f7  : A ~ M is a completely positive map, A a finite-dimensional 
C*-algebra and co c ~ f ( M ) ,  so that ?(A) is contained in the linear span of  co. 
Then 

ho,~(7) _-< hcpa~(Gco) 

and h~(ct) <_ hcpa~(~). 

Proof Let C > 0 be such that 

c - l y ( { a E A [  ][a[I _-< 1 } ) C  ~.c~x~o/~(x)xlc~x~ 12(x)] =< 1 } .  

Let ((o, 6 , B ) E  CPA(M,a) be such that 

H(0 o (p)(a) - alia < c5 

for a E co U ct(co) U . . .  U e~-l(co). Then 

I I @  o o o 7)(a) - (c~ j o < 

if  a E A, Ilall -5_ 1 and 0 __< j =< n - 1. Given e > 0 by theorem VI.3 in [3] there 
is a corresponding 6 > 0 such that this implies (for all n): 

IH~(7 . . . .  , ~n- -1  ov)-H (0o oo? . . . . .  n-1 o )1 < n e .  

Using Proposition III.6 and the observation following Definition III.4 in [3] we have 

H~((O o q~ o c~ j o "~)0<j<n-1) = Ha(0 )  __--< S(r  o ~)  < log rank B .  

Since we may choose 

rank B = rcp~(co U . . - U  cd- l ( co ) ;6 ) ,  

we infer 
h~,~(7 ) < hcpa~(c~, co; 6) + e 

< hcpa~(~, co) + e. 

Since e > 0 is arbitrary we:ge t  h~ ,~(7)<  hcpa~(e, co). The inequality ho(c 0 < 
hcpao(~) is an obvious consequence. [] 

3.7. Proposition. Assume a = r is a faithful normal trace-state. Then 

hcpa ( ) < had(cO. 

Proof The proposition follows easily from the following remark. If B E @(M)  is 
unital, let iB : B ~ M be the inclusion and EB : M ~ B the conditional expectation 
given by the projection in L2(M, r). Then 

(EB, iB,B) E CPA(M, ~) . 
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Combining 1.7, 3.6 and 3.7 we obtain the following corollary. 

3.8. Corollary.  I f  M is commutative and separable and ct is ergodic then 

h( c 0 = hcpa~( c 0 . 

3.9. Proposition. Let  ~rk be a fa i th ful  state on J/tk. Let  a = a ~  ~ 
and let ct be the non-commutative Bernoulli shift. Then 

ho(~) -- hcpa~(~) . 

on M = JCJ~g 

Proo f  Let Dk C -~k be a m.a.s.a, such that ak = Tr( �9 X )  for some X E D~ and 
let D = D ~  ~ C M. By the results of  [3] we have 

h ~ ( ~ )  = h~ID(~ID ) . 

Let further M (n) ////| C M and D (n) = M (n) DID. By McMillan 's  theorem z ~ e ~  k 

there are self-adjoint projections Pn E D (n) such that a(Pn)--+ 1 as n--+ oc and 
n 1log rank (P~D (n)) - h~(c 0 ---+ O. Let Bn = (I - Pn) +PnM(n)P~. Choose finite 
subsets oa~ c M (n) which span M (n) such that j < k ~ ~oj Ccok. By 3.4 hcpao(ct) = 

(:.~| 
sup,hcpa~(e, con). Let En be the conditional expectation onto M (") given by ~u/u k 

@o-k | and let 

q~,,(a) = PnEn(a)Pn + a((I  - Pn)a(I  - Pn)) " (a(] - P n ) ) - l ( I  - Pn) . 

It is easily seen that a o ~on = a and 

limoo ( sup  {]](Pn+p(a)-a]]e]a E U eft(COp)}) 
O<j<=n 

= 0  

(note that Pn+p(Pn+p(a) = Pn+paPn+p, for a as in the last formula). This implies 

hepa~(o:,Op) <= lira sup n - l l o g  rank Bn = he (~) ,  
n---+ O o  

which gives 
hcpae(e) < he ( e ) .  

The opposite inequality was already obtained in general in 3.6. [] 

3.10. Proposition. L e t  M = M1 @ M2, t7 = ff l @ 62, o~ = ~1 @ 0~2. T h e n  

hcpael| | c~2) =< hcpaal(Oq ) + hcpaa2(~2) , 

hcpa~l | ( ~l | ~2) > max( hcpaal ( Oq ), hcpae2( ~2 ) ) . 

Proo f  I f  a} E Mj,(qoj, Oj.;Bj) E CPA(Mj,  erj), then 

11((~1 | @2) o (~01 | (p2))(al | A2) - al @ a2 I]a ==- I1 (~1  o ~ol )(al ) - -  al lie, liar II 

+ Ila11111(4'2 o ~o2)(a2) - a 2 l l e .  

Thus if coj E ~ f ( M / )  are such that x E coj ~ ]]xl] < 1, we have 
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FcPo'l@O-2(0=<jU=<n_l (~1 @(Z2y(0)1@0)2);61-~-62) ~rcPo-1 (0~j.U<_n_l~(0)l ); 61) 

This in turn gives 

hcpa~l| @ e2, 0)1 @ o)2; 61 + 62) < hcpaal (~1, COl; 61 ) Jr- hcpao2(c~2, e)2; 62),  

and using 3.4 we get the desired conclusion. 
The second inequality follows immediately from Proposition 3.5. [] 

3.11. Let ~ be a Power 's  shift, i.e. assume M is generated by ej (j  E ;g),ej = 
* 2 ej,e) = 1,epeq =(-1)7(IP-ql)eqep for some function y" N- -+  {0,1} and a = ~ is 

a faithful trace-state so that z(e/) = 0 and g(ej) = ej+l. 

Proposition. I f  ~ is a Power's shift on (M, ~), then 

2 llog 2 __< hcpr(~) <= ha~(cQ < log 2 .  

Proof Since the algebra generated by e0, e l , . . . ,  e, 1 has dimension 2 n we easily 
get ha~(e) < log 2. 

On the other hand let N C M be the subalgebra generated by ej | ej. 
Then (~ | ~)IN is a classical Bernoulli shift and h((c~ | c01N ) = log 2. Thus 

hcp~(c 0 > 2-1hcp~(o~ | cQ >= 2-1hcp~((c~ | c0IN) = 2-11og 2. [] 

In [15] the existence of  Power 's  shifts for which h(~) = 0 is proved and there- 
fore h(c 0 #hcp~(e). 

4. Topological Entropy (Completely Positive Approximation the C*.Case) 

This section is the C*-parallel to Sect. 3. The dynamical invariant we obtain will 
be the topological entropy. 

Here M will be a nuclear C*-algebra with unity and ~ an automorphism. By 
CPA(M) we denote triples (q) ,0 ,B) ,  where B is a finite-dimensional C*-algebra 
and (p : M ---+ B, 0 : B ---+ M are unital completely positive maps. The completely 
positive 6-rank is then defined by 

rcp(0); 6) - i n f{ rank  Bl(~o , 0 , B )  E CPA(M), I[(~ o qo)(a) - all 

< 6 for a ~ c ) } .  

4.1. Definition. 

ht(c~,0); 6) = limsup n - l l o g  rcp(0) U ~(0)) U . . .  U ~n-l(0)); 6 ) ,  
n - - +  o o  

ht(c~, 0)) = sup ht(c~, 0); 6),  
~>0 

ht( c 0 = sup ht( e, 0)). 
oJG~f(M) 

ht(c 0 is called the topological entropy of  ~. 
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The following two propositions and their proofs are the obvious analogues o f  
Propositions 3.3 and 3.4, the proofs are left to the reader. 

4.2. Proposition. 
h t (u  ~) = N h t ( u ) .  

4.3. Proposition. Let ogj E ~ f ( M ) ,  o91 C o92 C ... be such that the linear span of  
UjcN uk(ogj) is dense on M. Then 

kEUZ 

sup ht(u, o9j) : h t ( u ) .  
jEN 

We also have the analogue o f  Proposition 3.5. 

4.4 Proposition. Let 1 E N C M be a C*-subalgebra and assume there is a pro- 
jection of  norm one E of  M onto N. Then 

ht(u[N) < ht(u) .  

The proof is along the same lines as that o f  3.5 and will be omitted. As a 
biproduct one has that for co E ~f(N) ,rcp(og;6)  is the same w.r.t. N or M. 

4.5. Proposition. Assume M is an AF-algebra. Then 

ht(u) < hat(a).  

Proof Let co E ~ f ( M )  and let Bn E o~(M) be such that 

co U . . .  U un-l(og) Ca Bn 

and lim supn__,oon-llog rank Bn < hat u. 
Since Bn is a finite-dimensional C*-subalgebra, there is a projection o f  norm 

one En : M --+ B,. Denoting by in : B, ~ M the inclusion, we have 

[[(in oEn)(a) - all < 26 ,  

i f a  E ogu . - - u  u"-l(og) and hence ht(u, og;26) < hat u. 
Since 6 > 0 is arbitrary we get 

ht(u, og) < hat(a) ,  

and hence ht(u) < hat(a). [] 

4.6. Proposition. Let a be an u-invariant state on M. Then 

h~(u) < ht(u) .  

Proof The proof is similar to that o f  Proposition 3.6. Let 7 : A ~ M be a unital 
completely positive map and let o9 E ~ f ( m )  be such that 7({a E A[ ]]al[ < 1}) is 
contained in the convex hull o f  09. Let (q) ,~,B) E CPA(M) be such that 

ll(q' o ~o)(a) - all < 
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for a E o U  e(~o) U . - .  U~ ' - t (~o) .  Then i f a  EA,[laII < 1 and 0 < j _< n -  1, 

I]((~ o go) o ~J o 7)(a)  - (eft o ?)(a)ll < 3 .  

By Proposition IV.3 in [3], given ~ > 0, there is a corresponding 6 > 0, such that 
the previous inequality implies (for all n) 

IHo((~ j o " ~ ) 0 < j < n - - 1  - -  Ho((~b o go o ~J o 7)0<j<n--1)l < he .  

Using Proposition III.6 a) and c) and the observation after Definition III.4 in [3], 
we have 

Ha((~b o go o ~J o 7)0<j=<,-I < HG(~) 

__< S (a  o ~b) < log rank B .  

Like in the proof  of  Proposition 3.6 this then leads to 

h~,~(7) < ht(~,o3) 

and ho(~) < ht(~). [] 

4.7. Proposition. Let M = ~ |  and let ~ be the non-commutative topological k 
Bernoulli shift. Then 

ht(a) = log k .  

Proof By 4.5 and 2.6 
ht(e) <= hat(a) = tog k .  

On the other hand let z be the unique trace-state on M,  then by 4.6, 

ht(e) > hr(e)  = log k .  

[] 

4.8. Proposition. Let T : X ~ X be a homeomorphism of  a compact metric space. 
Let M = C(X) be the C*-algebra of  continuous functions on X and let ~ be the 
automorphism induced by T. Then 

htop(T) = ht(~). 

Proof By 4.6 ht(~) is > the supremum of  ho(~), where a runs over the ~-invariant 
states of  C(X) and thus ht(e) >= htop(T). For the converse we shall use the notations 
and definitions on 264 and 265 of  [8]. Let co E N f ( C ( X ) )  and ~ = {U1, . . . ,  Urn} 
be an open cover of  X such thatx, y E Uj ~ ] f (x )  - f ( y ) [  < 6 for all f E o ,  1 < 

j < n. Let ~ be a subcover of  ~ - 1  = V0__<j__<,-1 TJ~ with minimal number 

N(d//~ -1 )  o f  elements. Then if  f E U0__<j=<,-a ~J(co) and V E ~ we have x ,y  E 

V ~ [ f (x )  -U(Y) I  < 3. Let ~/" = { V j l l <  j < N(q /~- l )}  and let xj E Vj,Xn = 
{xj]l __= < j _-- < X(~ t~- l )}  and Zj E C(X), 1 = < j = < N ( q / ~ - l ) , 0  = < • j  = < 1,supp Zj C 
Vj, ~ j  Zj = 1 a partition of  unity subordinate to ~U. We define 

Bn = C(Xn ), (,On : M -~ B, 
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by 

and ~ ' B . ~ M b y  

C(Xn) ~ g 

I f  f E Uo__<j__<n 1 cd(e)), then 

Thus 

and hence 

C(X)  ~ f ~ f[Xn E C(X~) 

E g(xj)zj ~ c ( x ) .  
1 < j  = < U ( ~  -1  ) 

If(x) - ( (~  o ~ o , , ) ( f ) ) ( x ) l  < Exj (x ) l f ( x )  - f(xy)] 
J 

= ~ Zj(x) l f (x  ) - f ( x j )  I < 3. 
{jlxcVj} 

r c p (  U cfl(~o);3) < rank B n = N ( U # ~ - l ) ,  
O<j n-1 
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ht(~,o; 6) <__ h(~, T) __< h~op(T). 

This in turn implies ht(c 0 < htop(T). [] 

The proof  of  the next proposition is similar to the proof  of  Proposition 3.10 and 
will be omitted. 

4.9. Proposition. Let M = M1 | M2, c~ = ~1 | 0~2. Then 

ht(el @ c~2) _-< ht(~l) + ht(~2) 

and 
ht(cq | c~2) > max(ht(cq),ht(c~2)). 

5. Automorphisms of Non-commutative Tori 

This section deals with automorphisms of  non-commutative tori, the main result be- 
ing that the topological entropy is < the entropy of  the corresponding automorphism 
of  the commutative toms. 

Let Ap, p = ( P i j ) l < i , j < n  be a n-dimensional non-commutative toms, i.e. Ap is a 
C*-algebra generated by unitaries Ul , . . . ,  un such that uiuj = PijUjUi, where ]Pijl = 1 
and there is an action fl " ~n ___+ Aut(Ap) such that fl(e i~ . . . . .  ei~ = ei~ Let 
T E GL(n,Z)  be an integral matrix with det T = 4-1 and assume there is an auto- 
morphism c~ of  A such that c~(uj) = Ul~J . . .  u m'j. Let further ~ denote the fi-invariant 

trace-state on A given by ~ ( @ . . . u ~  ") -- 30,kl .--30,k,,- The representation ~ asso- 
ciated by the GNS construction with ~ is realized in 12(7/n), where we identify 
e(k) ,k  ( k b . . , k n )  E 7Z ~ with the vector ~z(uk)~ ~z(u~ 1 . k,,,~ . . . . . .  u~ )~ (~ the cyclic vec- 
tor). Let J be the canonical antiunitary involution jTz(x)~ = ~z(x*)~. 

Given linearly independent vectors vl . . . . .  v~ in IR ~, consider the parallelipiped 
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and 
Q(R) = P(R)  A 2g ~ . 

5.1. Lemma.  Given ~ > 0 there is 2 > O, such that i f  

P(R)  D A = {h E [hjl "< 1, 1 < j < n} , 

then there are unital completely positive maps 

0 "  B(12(Q()~R))) --+ Ap , 

so that 

i f  k C Q(R). 

I1(0o ~o)(u ~) - u~ll < 

Proof  Let F be the orthogonal projection of  12(7Z n) onto 12(Q(AR)). We define 
q~(a) = FTz(a)F[lZ(Q(2R)). We identify B(12(Q(i~R))) with FB(lZ(~."))F and we 
define 

~ " B(lZ(Q(2R)))  ~ B(12(~n))  

by 

~ (X)  = w - lira IQ(AR)I -~ ~ j ~ ( u k ) j X ( J ~ ( . k ) J )  * , 
p---+o) kCQ(p) 

where co is a non-trivial ultrafilter on N.  Clearly ~o and ~ are completely positive. 
Let Ekj(k, l E 71, n) be the system o f  matrix units in B(f i ( ;g ' ) )  and consider also 
Vkl = ~(uk- t )Eu so that Vkl = 7klEkl, ]Tkll = 1. I f  a,b ,k  E ;g", then 

J ;  TC ( U k )~ff Vab ( f f;  7~ ( U k ) j ) * e q = 6 b _ k, q Va - k,b - k e q . 

Hence, i f  a, b E Q(2R), we have 

~(U~)jVab(J~Z(Uk)J)*eq = I{b - q} N Q(p)lrc(ua-b)eq. 
kEQ(p) 

We infer 
~(Vab ) = ]Q( )~R)l-]~r(ua-b) . 

Since the Vab with a, b E Q(.b~) span B(tZ(Q(AR))),  it follows that ~ = ~z o ~b, where 
~ : B(lZ(Q(2R)))  ---+ Ap is a completely positive map and ~(Vab) = ]Q(2R)[-lu a-b. 
This gives 

~k(q~(uC)) = ~(FTz(uC)F) 

= ~ ~'(vc+b,~) 
b E Q( )~R )fq( Q( 2R )--c ) 

= [Q(2R)[ I IQ(2R) N (Q(2R) - c)[u c . 

~o is clearly unital and the last formula (for c = 0) inplies ~ is unital. We also get 
that if  e E Q(R): 

IQ((,~- 1)R)[ H ~ ( e ( , c ) ) -  .ell _-< 1 
]Q(;~)I 
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It is easy to see that if A C P(R) and 2 > 3 then 

]Q(2R)[ < vol(P((2 + 1)R)) 

and 
IQ((2 - 1)R)I > vo l (P( (2  - 2)R)) .  

Then choosing 2 large enough, we will have 

I Q ( ( 2 -  1)R)[ < 1 - ( 2 -  2~ n 
1 ~ ( ~ / ~ ) ]  = \ 2 - 1 / < ~:" 

[] 

5.2. Lemma. Let T E GL(n,R) and let 21,...,2,, be its eigenvalues and #j = 
max(l, ]2/). Then there is a basis v~ . . . . .  v~ o f lR  ~ such that ire > 0 and a c ]R n 
is a finite subset, then there is no E N,  so that i f  N >-_ no, then 

{ ~ sj(1 + I3)N#yuj][Sj[ ~-<~- 1,1 =<j =< n )  D {Tmhih E a, O <= m <= N}  . 
1 <j<n 

Proof For each real eignevalue 2 of T choose a basis in the spectral subspace for 
{2} of A and for each pair of conjugate complex eigenvalues 2,). of  A choose a 
basis for the spectral subspace of A corresponding to {2,).} (in IR"). Putting these 
together we get the basis vl . . . . .  v, with the required property. The factor (1 + e) is 
necessary because Jordan cells may be present. [] 

5.3. Proposition. Let cr be an automorphism o f  the non-commutative torus Ap 
corresponding to a matrix T E GL(n, TI). Then ht(~) < log(/q#2.. .#n), where 
#j = max(l, ]2jl ) and 21 . . . . .  2~ are the eigenvalues o f  T (each repeated according 
to its spectral multiplicity). 

Proof  Given 6 > 0 and e > 0 it will sufice to show that for co = {uk]k E a}a a 
finite subset of Z n, we have 

rcp(o9 U a(m) U . . - U  0~N-I(fD); (~) ----- C(I + ~)Nn(#1 . . .#n) N 

for N > no (some no E N).  Indeed choose vectors vl . . . . .  v, as provided by 5.2. 
Let PN(1) be the parallelipiped 

{ ~'~ sj(l+e)N#Nvjl]sj] <= 1,1 <=j <=n} 
l_<l_<n 

spanned by the vectors (1 + e)N#Nvj, 1 < j < n. Enlarging the set o- so that it 
contains {k E 2~"1 ]kjl < 1, 1 < j <= n} we have that PN(1) satisfies the condition 
PN(1) D A in Lemma 5.1. Hence there is 2 > 0 and there are unital completely 
positive maps 

q)U : Ap --+ B N 

~JN : B N ---~ A R 

with rank BN = ]QN(2)] satisfying 

II(~N o q)N)(U k )  --  u~ll < 6 
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N - 1  T m i fk  E QN(1). (Here QN(R ) = PN(R) fl 7Z n and BN = B(12(QN( 2 ) ) ).) Since (-Jm=0 
a C QN(R), we get 

II(ON o ( p N ) ( X )  - -  X N < 

if x E co [J . . .  U c~N-I(O). We have 

rank BN = IQN(~)I ~ vol(PN(~ + 1)) = C(1 - [ - /3 )Nn(#  1 . . . # n )  N 

for some constant C > 0. [] 

5.4. Corollary. Let c~ be an automorphism of  the non-commutative torus Ap cor- 
responding to a matrix T E GL(n,Z). I f  v is an ~-invariant state on Ap and 
#j = max(1,12jl),21 . . . . .  2n being the eigenvalues o fT ,  then 

hv(a) ~ log(~1#2. . .# ,) .  

Proof This follows from 4.6 and 5.3. [] 

5.5. Remark. For the particular case of the irrational rotation algebra (i.e. n = 2) 
endowed with the trace state z, a proof of H(~) < log #l#2 is given in [7]. If 
valid, that proof would imply ha~(~) < log #1#2. Unfortunately important details 
are missing, which we were unable to fill in (perhaps it may be necessary to assume 
the irrational number has special diophantine properties). 

6. The Crossed Product of the Bernoulli Shift 

With essentially the same argument used for automorphisms of non-commutative tori 
we compute here the topological entropy of the inner automorphism implementing 
the topological Bernoulli shift in its covariance algebra. In particular, this answers 
in the affirmative for measurable Bemoulli shifts of entropy log n a question of  
St6rmer [ 11 ]. 

Let X = {1 . . . . .  n} z and consider the crossed product C ( X ) > ~  Z, where /~ is 
the Bemoulli-shift action. We will show ht(Ad u), u the implementing unitary 
of fl(1), coincides with the topological entropy of the Bemoulli shift, i.e. log n. 
This is equivalent to computing the topological entropy of a certain inner group 
automorphiism. 

We begin with a construction similar to the one in Lemma 5.1. 

6.1. Lemma. Let G be a discrete group, C*(G) its reduced C*-algebra, Q c G a 
finite subset. For g E G let 2(g) be the left regular representation and let F be the 
orthogonal projection o f  12(G) onto lZ(Q) c 12(G) and Eab(a,b E G) the matrix 
units in B ( f (G) ) .  Then there are unital completely positive maps q~ : C;(G) ---+ 
B(lZ(Q)) and ~ : B(lZ(Q)) ---+ C ( G )  so that ~p(T) = FTFIlZ(Q) and ~(Eab) = 
IQ[-12(ab -1 ). Moreover 

O(cp(X(g))) = 10/-l]o n gQI2(g). 
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Proof We only sketch the proof since this is the same argument as in Lemma 5.1. 
By P(9) let us denote the right regular representation. Let Ks C/s C . . . .  Up Kp -- 
G be finite sets (there is no loss of  generality if  we assume G countable). Then we 
define 

r  = IQ[-lw - lim ~ p(g)Tp(g -1) E B(12(G)) 
P-~C~ gCKp 

for T E B(12(Q))= FB(12(G))F. We then find (J(Eab)= [Ql-12(ab -1) and r 

(9))) = [Q1-11Q n 9Q]2(9) which show in particular ~ is unital and takes values 
actually in C~(G) C B(lZ(G)). [] 

Let F -- (Z/nZ) (z) and G = F x ~  Z, where ~ is the shift action on F. Let 9 E G 
be the generator of 7 / c  G, i.e. the inner automorphism of 9 implements the shift au- 
tomorphism of F. There are obvious isomorphisms C(X)~_ C;(F),  C ( X ) x ~  7/~_ 
C;(G) under which u corresponds to 2(9) and our problem will be to compute 
ht(Ad 2(9)). We identify Fm~,m2 = (7 / /n7 / )  [m2'ml] in the obvious way with a sub- 
group of F C G. 

6.2. Proposition. We have ht(Ad u) = log n for the unitary u implementin9 the 
topological Benoulli shift in C(X)  x ~  7/. 

Proof It suffices to show ht(Ad u) < log n the opposite inequality being a con- 
sequence of 4.4 and 4.8 applied to the restriction of Ad u to C(X). For the 
rest of the proof we pass to the group G, where the problem becomes to show 
ht(Ad 2(9)) < log n. Let ~m, q)rn,Bm be the maps and the finite-dimensiional C*- 
algebra provided by Lemma 6.1 in case 

Q = Q(m,k) = {gJl IJl < k}Fm,-2k. 

Remark that if 0 < k < m, then Fm_k_~Q(m,k) C Q(m,k) and hence 

2 k + 1  - p  
IQ[ -~lQ N hQ[ > 

2 k +  1 

if h E Q(m - k, p)  with 0 < p < k/2. It follows that 

[~(~pm(2(h))) - 2(h)] < P 
= 2 k + l  

if h 6 Q ( m ,  k, p). Note also that 9Q(m - k, p)9 -1 c Q(m + 1 - k, p). Thus if 
O~m = {2(h)ih E Q(m - k, p)}, we have (Ad 2(9))(~om) C COm+l. Using ~ ,  ~pm,Bm 
we have 

rcp(cOm; p(2k + 1) -1)  < IQ(m,k)l = (2k + l )n m+zk . 

Hence 

ht (Ad  2(g), (Din; p(2k + 1) - I )  < lim supN -1 log((2k + 1)n m+N+2k) : log n .  
N--+ (x~ 

Increasing k and p the conclusion can now be obtained from 4.3. [] 

6.3. Corollary. Let #~ be the equal weights probability measure on { 1 . . . . .  n} and 
let I~ = #n ~ Let u be the implementin9 unitary for the Bernoulli shift action in 
M = L ~ ( X , # ) x I ~  Z. Then 

H(Ad u) = log n .  
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Proof Since H(Ad u) > H(Ad ulL~(x, #)) = log n it suffices to prove the oppo- 
site inequality 

The inequality H(Ad u) < log n follows from 4.6 which gives HAd u) < 
ht(Ad u) (the second Ad u begin in C(X)>~ 77) and Proposition 6.2. [] 

7. Unitary Operators, the Hilbert Space Case 

We take a look at the approximation entropy of a unitary operator in this section. 
By .Yf we shall denote a complex separable Hilbert space of infinite dimension, 

by ~ f ( Y f )  the finite subsets of Yf and by Y(~/f)  the finite-dimensional subspaces 
of ~vf. If ~o ~ ~ f ( J / f )  and A c .Jr we shall write co c6 A if for every h E o) we 
can find h' E A such that [[h - h'[[ < 6. U will denote a unitary operator acting on 
Yr. 

7.1. Definition. I f  c~ E ~ f ( W )  and 6 > O, we define 

d(o); 6) = inf{dim ZIZ E ~ ( J f ) ,  co C~ Z}. 

7.2. Definition. I f  6 > 0 and ~o E ~ f ( ~f  ), we define 

h(U'~176 sup n - l d (  ~ uJc~ ' 
n ~ o o  O < j _ n - 1  

h(U, cn) = sup h(U, cn; 6) , 
6>0 

h(U) = sup{h(U, co)]~o E ~ f ( ~ ) ) .  

The reader who is by now familiar with the operator-algebra case, will easily 
find the proofs of the next two propositions. 

7.3. Proposition. I f  k E 77 then 

h(~/k)  = I k l h ( ~ ) .  

7.4. Proposition. Let coy E ~ f ( J f ) , j  E N, col C (J)2 C . . .  be such that U j c s  U~g. 
u"(~j)  spans a dense subspace of  ovf. Then 

h ( U )  = s u p h ( U , ~ o j ) .  
jEN 

7.5. Proposition. Let • C ~ be a closed subspace such that UJ~ff = ~ .  Then 

h ( U l X )  __< h(U). 

Proof If o9 c ~ f ( S )  and P is the orthogonal projection of Jog onto A ~', then if 
Z E ~-(Jf)  and 

o) C6 Z, 

it follows that 
~o c6  P z  . 
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Using this remark we easily infer 

h(UlOff ,0); 8 ) < h(U,0);8),  

which then yields the desired conclusion. 

7.6. Proposition. I f  J f  = J/f1 | ~ 2  and U = U1 | U2, then 

h(U) < h(U~)+h(U2) .  

D. Voiculescu 

[] 

Proof If 0)j E ~ f ( ~ j )  and 

0)1 O 0)2 = {hl  G h2]hj C 0 ) j , j  = 1,2) ,  

it is easily seen that 

d(0)l | +32)  < d(0)1,81) + d(0)2,62) �9 

This easily yields then 

h(U,0)l O0)2;61 +62)  < h(Ul,O)l;81)+h(U2;o.)2;82), 

and then the desired conclusion. [] 

With these preparations we begin proving the formula for h(U) via a sequence 
of lemmas. We will extensively use facts from [12]. 

7.7. Lemma. I f  the spectral measure o f  U is singular with respect to Lebesgue 
measure then 

h ( U )  = O. 

Proof Lemma 5.1 of [12] says precisely that given ~ > 0 and oJ E ~ f ( ~ f )  there 
is ko E IN so that if k > ko, then 

d ( 0 ) U . . .  U Uk-10);e) =< k~. 

This clearly gives the desired conclusion. [] 

7.8. Lemma. I f  0 )=  {e l , . . . , e ,}  is an orthonormal system of  vectors and e > 0, 
then 

d(~o;e) > n(1 - ~ 2 ) .  

Proof Assume 0) C~ ~ 1 ,  Jr1 E ~ ( ~ ) .  Replacing Jr1 by P ~ I ,  where P is the 
orthogonal projection onto Cel + . . .  + ~en we clearly have 0)C~ PYg~ and dim 
P~Cfl < dim afro. Thus, we may assume ~/fl C ~el  + ' "  + Cen. Denoting by Q 
the orthogonal projection onto ~~162 we have 

n - T r  Q = T r ( P - Q )  

= ~ ( ( P - Q ) e j ,  ej) 
1 <j<n 

= ~ H( P -  Q)ej[] 2 < ne 2 " 
] <=j<n 

Hence dim J~q~t = Tr Q > n(1 - ~2). [] 
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7.9. Lemma. I f  U is a bilateral shift o f  multiplicity n then 

h(U) = n . 
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Proof Let ~o be an orthonormal basis for a wandering subspace o f  U. By 7.8 we 
have 

h(U,~;6)  >= n(1 - 62),  

and on the other hand it is obvious that h(U,~o;6) < n. This clearly yields the 
desired conclusion. [] 

7.10. Lemma. Let Y l  c J{ '2  C . . .  be closed subspaces o f  d f  such that U Y j  = 
~,Uj and U j ~  J~ff j is dense in ~ .  Then 

h(UISj) T h(U) 

Proof Let ~oj E ~ f ( f j ) , ~ o l  C ~o2 C ... be such that UjEN(Dj spans a dense sub- 
space in W.  By 7.4 and 7.5 

sup h(U,~oj) ---- h(U) , 
j C N  

h(UlYgs) is increasing and 

h(e, ogs) <= h ( e l ~ ) )  _-< h(U), 

which yields the desired conclusion. [] 

7.11 .  Propos i t ion .  Let  ~ = {z  C ~E I Iz[ = 1} and m : IF --+ N U { 0 }  be the multi- 
plicity function of  the Lebesgue absolutely continuous part of  U. Then 

h(U) = fm(z )d2 ( z ) ,  

where d2 is normalized Haar measure. 

Proof We will use the machinery from the case o f  Bogoliubov automorphisms in 
[12]. 

Remark that if U = Ua | Us is the decomposition o f  U into absolutely contin- 
uous and singular parts, then by 7.5, 7.6 and 7.7 and we have 

h(Ua) < h(U) <-_ h(Ua) + h(Us) = h(Ua) , 

so that h(U) = h(Ua). So it will suffice to prove the proposition in case U = Ua. 
Clearly h(U) is then a function o f m  and defines a map p : cg ~ IR +, where cg is the 
additive semigroup of  functions f : ~ -+ {0) U N which are Lebesgue measurable. 
Let 11 be the constant function equal to 1 on ~ and Tn : cg ~ cg the map 

(Tnf) (p)  = ~ f ( z ) .  
X n - - p  

We shall use Theorem 2.1 in [12] to prove our assertion. For this we check the 
following conditions: 
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(i) #(n~) = n. This follows from Lemma 7.9. 
(ii) f < g ~ # ( f )  < #(9). This follows from Proposition 7.5. 

(iii) f j  T f ~ #( f j )  T # ( f ) .  This follows from Lemma 7.10. 
(iv) #(T , f )  = n#(f) .  This follows from Proposition 7.3. 
(v) # ( f )  = #(9) if f and g are equal a.e.w.r.t. Lebesgue measure. This is obvious. 

Having checked these conditions, Theorem 2.1 of [12] says precisely that # ( f )  = 
f~c f(z)d2(z). [] 

7.12. Remark. The preceding proposition shows that up to a proportionality constant 
(depending on the choice of basis of logarithms) h(U) coincides with the entropy 
hr(eu) of the induced Bogoliubov automorphism eu with respect to the unique 
trace state on the CAR-algebra (see [12]). 

7.13. Proposition. I f  ~ > 0 and ~ c ~ f ( ~ ) ,  then 

h(U,o);6)= lim n - l d (  U uJc~ �9 
n---+c~ \ O  <=j <=n_ l 

Proof We have 

d U <d(o<__]U<__~-luJ~~ \~<=j<=~+m-1 

which implies that n-ld(Uo__<j=<n_l UJco; 6) is convergent. [] 

8. Representations of Amenable Discrete Groups 

Here we generalize the context of the preceding section from representations of 7/ 
to representations of certain amenable discrete groups. In the case of representations 
quasiequivalent to the regular representation of an i.c.c, group, the entropy equals 
the yon Neumann dimension (Proposition 8.8). 

By G we denote an infinite discrete group with a system of generators S and 
Ilgll will denote the minimal length of  a word in the generators S representing 9. 
Let Kn = {g C G I [Igll < n}, we shall assume G satisfies l imn~[KnllK,+l1-1 = 1 
(clearly this implies G is amenable). 

By ~ we shall denote a separable complex Hilbert space of infinite dimension, 
U(~f)  the unitary operators on g/t ~ and ~ : G ~ U(J(f) a representation. 
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8.1. Definition. I f  b > 0 and 09 ~ ~ f ( W )  we define 

h(n, cn; 6) = lim sup IK.l-~d(n(g.)co;6), 
/'/---+ OQ 

lh(n,~o; 6) = lim inf Ig.l-~d(~(g.)~o; ~), 
n----+ o ~  

h(n, cn) = sup h(n,~o; 6) , 
6>0 

lh(n, 09) = sup lh(n, 09; 6),  
6>0 

h(~)  = sup{h(~,  c~)[~ c .~f(~)}, 
lh(n) = sup{lh(n, cn)l~o C ~f (~f~)} .  

273 

h(n) will be called the entropy of  n and lh(n) the lower entropy of n. 

The proofs of the next three propositions are quite standard and will be omitted. 

8.2. Proposition. Let ooj c ~ f ( 9 ~ ) , j  c N,  coi C o92 c ... be such that (-JjcN 
U ~ 6  n(g)c~ spans a dense subspace o f  ~'~. Then 

h(n) = sup h(n, % ) ,  
jcN 

lh(n) = sup lh(n, ooj). 
j6N 

(Note that here our assumption on the growth of G is essential.) 

8.3. Proposition. I f n  = rq @ n2 , J f  = W~ @ W2,coj E ~ f ( J g j ) ,  then 

h(nl | n2,(ml | 0) U(0@ ~02);~) < h(Trl,~1;5)+h(n2,m2;6), 

h(nl | rt2,(091 @0) U ( 0 |  on2)) =< h(nl,~01) + h(n2,a~2), 

h(nl |  < h(zq)+h(n2) .  

8.4. Proposition. Let ~ C ~ ,  ~ j  C ~ be n(G) invariant closed subspaces and 
assume ~U~ C ~ 2  C . . . .  Uj6N J~f J = ~ "  Then 

h ( ~ l f )  _-< h(~), 
lh(nlz() < lh(n), 

h(n) = sup h (n l~ j ) ,  
jcN 

lh(n) -- sup lh(~lXj).  
j6N 

8.5. Lemma. Let ovf = ~ 1  | "~~ E ~f(-gffj)  be such that ~ C oJj ~ 0 < C~ 
5 I1~11 --< c 2  Let further 0 < 6 < C1. Then 

d(((D 1 @ 0) (.I (0 O (O2); 6C21 ) ~ d(O-)l ; C i  1 x / ~ )  -q- d((D2; e l  1V/~) .  

Proof Replacing ~oj by 
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it is easily seen that the lemma trader the more restrictive conditions C1 = Cz = 1 
implies the lemma in the general case. 

Thus we shall assume ~ E coj ~ I1~11 = 1 and 0 < 6 < 1. 
Let Z E ~ ( ~ t  | )fie) be such that 

(~ol | 0) U (0 @ ~2) C~ Z. 

Let Q be the projection onto Z, and PI,P2 the projections onto ~ 1 ;  g4~2. Let further 

~o' 1 = O(~ol | 0),co~ = O(0 | ~o2), 

and A = QP1QIz. If ~ E o91 | 0, then 

I1(I - 0)311 < 6 .  

Denoting Qr = r/, we have 
II~li 2 __> l - 6 2  , 

and 
(Ar/,q) = ]lP1Or 2 

--> ([1~11 - I l P l ( I  - Q)~II) 2 
( 1  - -  6 )  2 . 

Hence denoting by E(A; �9 ) the spectral measure of A, we have 

so that 

E(A;  [0, ~ ] ) t l  2 < 2 ( 1 - ( 1 - 6 ) 2 ) = 4 6 - 2 6 2 .  

This means 

q - E ( A ; ( ~ , l ] ) q  2 < 4 6 - 2 6 2 ,  

so that 

Similarly, since QP2QIz = I -  A we find 

/ 1 
c ~  

This in turn gives 
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and hence 

so that 

d i m E ( A ; ( ~ , l ] ) z  > d(col; v / ~ ) ,  

d i m E ( A ; [ O , ~ ) ) Z  _> d(co2; v / ~ )  , 

dim X > d(col; V /~)  q- d(co2; x/4--r �9 

] 

8.6. Proposition. Let ~ = ~ 1  | J~'~2, COj E ~f( .J t~  be such that ~ E coy ~ 0 < 
q --< IIq[ --< c 2  Let further 0 < 6 < C> I f  ~j are unitary representations of  G 
on ~ j, then 

lhOzl | 7~2, (col | O) U (0 | co2); 6C2 1 ) > lhOzl, col; Cl -~ v / ~ )  

§ co2; C21V/~) , 

lh(gl @ 7~2, (COl @ 0) U (0 (~) 0)2)) ~ lh(gl, col ) + lh(~2, co2), 

Ih(~l | ~z2) => lhOzl ) +/h0z2 ) . 

Proof The first inequality follows immediately from 8.5. For the second it suffices 
to notice that lh(~, co; 3) is a decreasing function of  6. For the last inequality one 
uses 8.2 and the fact that lh(~, co) is an increasing function of  co. [] 

8.7. Proposition. Let ~ be a unitary representation of  G on ~ and co E ~ f ( J g ) ,  

so that [1~]] = 1 for all ~ E co. I f 6  > 0 and 6~ = 2"6 2-", then denotin9 ~ | . . . | 
= ~ |  copies of  ~) and by con the union of  the O|174174 

where co appears in the fh position (1 < j < n). Then 

nlh(7~, co; 6n) <= lh(~ | In, con; 6) 

<= nlh(~, co; 6) , 

nh(~,co;6n) < h(~@ In, con;6) 

=< nh0z, co; 6 ) ,  

nlhOz, co) = lh(~ @ ln,con) , 

nh(~,co) = h0z | 1,,co~), 

nlh(TQ = lh(~ | 1 , ) ,  

nhOz) = hOz | ln ) .  

Proof All this follows easily from nd(co;fin) < d(con;3) < nd(co, 6) which is a 
consequence of  8.5. [] 

8.8. Proposition. Let 2c be the left regular representation of G on 12(G). Then 

/h(2G) = h(2c)  = 1. 
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I f  G is an i.c.c. 9roup and ~ is quasiequivalent to 2g let m be the yon Neumann 
dimension of ~. Then 

lh(rc) = h(zt) = m.  

Proof In 12(G) let ~ be the vector so that 4(9) = 6g,,. Then Lemma 7.8 gives 

(1 -62)]K,l  < d(rc(K,)~; c~) < IK, I, 

which easily gives lh(2~)= h()@ = 1 using 8.2. 
If m is an integer the second assertion follows from 8.7. Since a rational number 

has an integral multiple applying again 8.7 we infer the second assertion if m is 
rational. 

The general case follows now since lh(~) and h(rc) are increasing functions of 
m by 8.4. [] 

9. Further Remarks 

This section is a collection of remarks about problems conceming approximation: 
restrictions to invariant subalgebras, tensor products and last but not least the di- 
mension versus rank question. 

9.1. Restrictions. 

The problem is, whether 
ha(elN) < ha(a), 

where N C M is a v o n  Neumann subalgebra of M, so that e(N) = N. There is an 
obvious analogue of this question for hat in the AF-algebra context. Progress on 
this question may involve developing further the techniques of Christensen [2]. 

9.2. Tensor Products. 

Propositions 1.9, 2.7, 3.10 and 4.9 naturally lead to the question whether for any 
of these entropies the entropy of e | fl actually equals the sum of those of e and 

ft. 

9.3. Dimension versus Rank. 

In the definitions of ha and hat one may replace the f-rank by the 6-dimension, 
thereby obtaining two invariants had(a) and hadt(e). In more details, we define 

d(co; 6) = inf{dim AIA c ~(M),co  c6 A } ,  

where the g-inclusion is w.r.t. [ 12 in the W*-case and w.r.t [] [1 in the AF- 
ease. One then defines had(e, co;~),had(e, oJ),had(e) like in Definition 1.2 and 
hadt(e, co;g),hadt(e, co),hadt(e) like in Definition 2.1 with r(co;6) replaced by 
d(e); 3). 
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Similarly one can modify Definition 3.1, 

dcpo(co;6) = inf{dim BI(~,~,B) C CPA(M,a), []($ o q))(a) - all  < 6 for a E co), 

and the definition in Sect. 4 

dcp(co;6) = inf{dim c CPA(M), tl(O o - all < 6 for a E co}. 

This can then be followed up with definitions of hcpado(a, co;f),hcpad~(a, co), 
hcpad~( a ) and respectively htd( a, co; 6 ), htd( a, co), htd( a ) by replacing rcp with dcp. 

Since rank A < dim A =< (rank A) 2 and rank A equals dim A irA is commuta- 
tive, we infer: ha(a) <= had(a) <= 2ha(a),hat(a) <= haM(a) < 2hatd(a),hcpa~(a) 
< hcpado(a) <= 2hcpad~(a),ht(a) <= htd(a) < 2ht(a). If A is commutative the 
lower bounds for had(a),hadt(a),hepado(a),htd(a) are attained. It is a natural 
question whether for Bernoulli shifts 2ha(a) = had(a), 2hat(a) = hatd(a), 2hcpa~ 
(a) = hcpad~(a), 2ht(a) = htd(a). It is also natural to ask whether there are ergodic 
automorphisms of the hyperfinite IIl-factor for which ha(a) = 2had(a) or hcpa~ 
(a) = 2hcpad~(a) with 1 < )~ < 2. 

9.4. Miscellaneous. 

There are several natural extensions to consider. Most of the facts about entropies of 
automorphisms of operator algebras work for endomorphisms. In another direction 
the definition of the entropy of a unitary operator easily adapts to a definition of 
an entropy for isometric automorphisms of Banach spaces. 

Appendix. A Question of St6rmer on Implemented Ergodic Transformations 

Using the completely positive approximation entropy of Sect. 3 we answer here a 
question of St6rmer (Problem 4.2 in [11]). The result solving the problem is the 
Corollary at the end of this Appendix. 

Let (X,p) be a probability measure space and let a be the automorphism of 
L~ #) induced by an ergodic measure-preserving transformation T of (X, #). On 
J# = L~(X, #) >~  2g let ~ be the trace-state corresponding to #. Let s~r C L~(X,#)  
be a unital finite-dimensional subalgebra (i.e. the functions measurable w.r.t, a finite 
measurable partition). We denote by ~ , ,  the subspace of L2( j / ,  r), 

~ =  ~ ukd, 
Ik[<=. 

and by Qn the orthogonal projection ofL2(JCd, ~) onto Jfn. Let Pk be the orthogonal 
projection of ~ onto ukd([k[ =< n) and ekz the partial isometry from u t d  to u k d  
determined by left multiplication by u ~ I. We also denote by Lx and Rx the left 
and right multiplication operators by x E ~ on L2(.~, z). 

Lemma 1. 

QnLumfQn = ~ ek+m,kRE(~-I f)Pk , 
Ikl<n 

[ k + m  ] < n 
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where f C L~(x,#) and E is the conditional expectation of L~176 onto sd. In 
particular 

QnL~zQn c ~ eklRd ~-- B(12([-n,n]) | ~r . 
Ikl<=n 
Ill<=~ 

Proof This is a quite standard computation, which we shall only sketch. 
I f  9 C sO, then 

Lum fuk 9 = um+kcz-k(f )9 ' 

and hence 
PrLu,, f uk y = Lu~ PoLu_rum+k ~-k ( f )g 

= Lu,.Poum+k-r7-k(f)g 

0 i f m + k # r  
= um+kE(~-~(f))9 if  r = m + k ,  

so that 
~" 0 if  m + k # r 

PrLu'n f Pk l erkRE(~_k(f)) if  m + k = r .  

Since Q. = ~lk l  <n Pk we easily get the desired result. 

Lemma  2. There & a unital completely positive map 

~ " B(12([-n,n]) ) | ~r ---+ J/l, 

so that 
~n(ekl | f )  = (2n + 1)-luk-l~l( f ) .  

[] 

Proof Since ~r C L~176 #), it will suffice to prove there are completely positive 
maps 

~, " B(I2([-n,n])) |176 ---+ jA/, 

so that 
~n(ekl | f )  = (2n + 1)-luk-ITl(f) .  

Replacing in the construction of  Lemma 1, ~r by L~ #) we get a projection Qn of  
L2(d//, ~) onto ~ lk l  _<n ukL2( X, #) and partial isometrics gkl from ulL2(y, #) t o  ukL 2 

(X,#)  via left multiplication by u k-t .  Lemma 1 becomes now 

OnLumfQn = ~ e~k+m,kR~-kfPk, 
Ik]<n 

]k+ml<n 

where Pk is the projection onto ukL2(X, #) and 

0,,Ld~0n c ~ e~tRL~x,~ -- B(l:([-n,n])) | 
lkl<n 
lll<n 

Thus B(le([-n, n])) | L~(X, #) identifies with a subalgebra of  B(L2(j/{, ~)) and we 
define 

~n(K) = (2n + 1) -1ER~KR.-~.  
kE2 v 
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Note that Rupg~tRu-p = ek+p,l+p, since 

RuP~klRu_pUP+l g --_ RuP~klulo:P(g) 

=- RupUko~P(g) = uk+pg = e~k+p,l+pUP+l g 

(however, the analogous formula for ek, t doesn't hold!). Hence 

~.(e~1 | f ) =  (2n + 1) -1 E R u p ( e k l R f ) R u - p  
pcZ 

= (2n + 1) - l  ~RupekiL~l(f)Ru- p 
pEZ 

= (2n + 1 ) - l ~  ek+p,l+pL~l(f) 
p@Z 

= (2n + 1)-lL~k-)uj(f) 

Also, clearly ~. is completely positive and 

@n(l) = ~n (\-n_k<~ _n< 8n~) = ( 2 n § 1 7 6  

Combining Lemma 1 and 2 we immediately get 

Lemma 3. Let 
~% " J/g --+ B(12([-n,n])) | d 

be the unital completely positive map defined by 

q)n(x) = QnLxQn c eklR d ~-- B( I2([-n,n]) ) | d . 
[kl<n 
Ill<-_n 
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[] 

Let further On " B(12([-n,n])) | sr ~ J / b e  the unital completely positive map in 
Lemma 2. We have 

~((On ~ ~On)(X)) = ~(X) 

if Iml > 12nl 
if Im[ ~ 12n[. 

0 
(~,  0 q)n)(umg) ~- (2n + 1 ) - 1 ~  i~i__<n umc~k(E(o~-k(g))) 

fk+m I <n 

and 

Proposition. We have 
hcpaz(Ad u) < h(T) .  

Proof Let f2 --- (~Q1 . . . . .  •m) be a measurable partition of X and Zej the correspond- 
ing indicator functions. It will be sufficient in view of Proposition 3.4 to show that 

hcpa~( A d  lg, WN ) "~ h( T) 
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for WN = {ukza;] ]k] < N, 1 __< j < m}. Like in the proof o f  Proposition 1.7 we use 
McMillan's theorem to construct for large subalgebras As such that 

OJ(Wo) Cel/2 As for 0 < j < s 

and dim As < 1 + exp(s(h(T) + e)). To evaluate 

rcp~(wx U ' - "  U (Ad bl)s--l(wN ); 3) 

we use Lemma 3. In the construction of  Lemma 3 choose n = CN and ~4 = 
blm o~t l �9 .~ ~-n(As+3n). Then an element in wn tA --. tO (Ad U)s-I(wN) is o f  the form ~,z~j) 

w i t h 0  < t < s a n d l m [  < N .  Then the set {k[ [k[ < n , [ k + m [  < n }  has > ( 2 C -  
2)N elements. With the notations o f  Lemma 3 

I~(E(~-k(~*(ga;))  - ~'(Zaj)l < el/2, 

(0 =< t < s, [kl _-< n, Ik + ml _-< n ) ,  

since 
~ - M ( Z a j )  %1/2 ~ l(As+3n). 

(Indeed 0 < t + (n - k) __< 2n - s and this implies o~t+(n--k)(wo) Gel/2 As+3n. ) 
We infer 

(2C_-_2)N~ (2C - 2)N 1/2 
[(~/, o q~,)(umat(za;)) - umTt(xo;)[ 2 <= 1 2n + 1 J + 2n-+-i e 

2N + 1 el/2 el/2 
_ < _ _  + < 2 C  - 1  + . 
- 2 C N + I  

Choosing C sufficiently large and e sufficiently small we'l l  have 

2 C - 1  + gl/2 < 3 .  

On the other hand 

rank((B(lZ([-n,n])) | d ) )  = (2n + 1)dim ~r 

< (2n + 1)(1 + exp((s + 3n)(h(T) + e))). 

Clearly 

lim sup s - l ( log( (2n  + 1)(1 + exp((s + 3n)(h(T) + e)))))  = h(T) + e, 
S---+ OO 

so that 
hcpaz(Ad u, wN;6) ~ h(T) + e. 

Since a > 0 and e > 0 are arbitrary we infer 

hcpa~(Ad u, wx) < h(T). 

The conclusion follows. [] 

In view of  Proposition 3.6 and of  the inequality h(T) ~ h(Ad u) we have 

Corollary. h(T) = h(Ad u). 
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