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The Dimension of Leaf Closures of K-Contact Flows

PHILIPPE RUKIMBIRA

Abstract: For K-contact flows on (2n + 1)-dimensional compact manifolds, we show that
the dimension of any leaf closure is at most the smaller of (n + 1) and (2n + 1) minus the
rank of the vector space of harmonic vector fields.
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1. Introduction

Weinstein Conjecture ([12]) states that any compact contact manifold should carry
at least one closed characteristic. This conjecture has been proved in some special
cases, among others, it is proved in [10] for compact hypersurfaces of contact type
in R?® and in [7] for compact K-contact manifolds.

Many properties of a flow can be derived from those of the algebra of foliate vector
fields; for example the leaf closures of an isometric flow on a compact manifold are
orbits of an abelian Lie algebra of Killing foliate vector fields ([6]). For K-contact
flows, we point out the fact that the leaf closures can have dimension at most n + 1
when the manifold is (2n + 1)-dimensional.

In Section 4, a slightly more precise bound for the dimension of leaf closures of
K-contact flows is obtained in terms of the first Betti numbers of the manifold.

2. The Contact Characteristic Vector Field

Let M be a (2n + 1)-dimensional manifold with a contact form « on it. It is well
known that there is a unique vector field £ on M such that a(§) = 1 and 2¢da = 0.
The vector field £ is called the characteristic vector field of the contact manifold M.
The contact form « defines a 2n-dimensional distribution D on M.

D = ker a.

The distribution D, which is left invariant by the vector field £ ([11]), is called the
contact distribution. Sections of the bundle D are called horizontal vector fields,
whereas any vector field proportional to £ is called a vertical vector field.

The 2-form do induces a symplectic structure on the distribution D; that is, D is
a symplectic vector bundle over M.
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Definition 1. A vector fleld X is said to be foliate if its Lie bracket with £ is a
vertical vector field. X will be called transverse if it is foliate and horizontal. In that
case, X commutes with £, that is [X,£] = 0.

Definition 2. A differential form B is said to be basic if igf = 0 and L¢3 = 0.

3. Killing Foliate Vector Fields

This section is devoted to a particular type of foliate vector fields, mainly those
which are infinitesimal isometries. They arise naturally in the setting of isometric
flows ([2]) where they describe the leaf closures.

Let M be a (2n + 1)-dimensional compact K-contact manifold. Since ¢ is Killing
with respect to some K-contact metric ([7]), it is known that the closure of the
characteristics are orbits of an abelian Lie algebra G of Killing vector fields ([5]).

Definition 3. A vector field X on M is said to be a contact vector field if the
identity

Lya=ha
holds for some function hon M. If h =0, that is Lya = 0, X is said to be strictly

contact.

The function a{ X) is usually called the contact hamiltonian function of the contact
vector field X and is related to h by the formula

d{a(X))(€) =h (1)
where £ is the characteristic vector field of the contact form o.
Remark. Unlike the group of isometries of a compact riemannian manifold, little is
known about the group of contact transformations in general. The following propo-
sition, which will not be needed in proving our main result, implies that the group

of contact transformations of a compact K-contact manifold contains a compact
subgroup.

Proposition 1. Let M be a K-contact manifold with K-contact metric g. Then any
Killing foliate vector field on M is a strictly contact vector field with basic contact
hamiltonian.

Proof. Let g be a fixed K-contact metric and let X be a Killing foliate vector field
on M. Since « is the metric dual of £ ([7]), one has, for any horizontal vector field
A:

LXa(A) = Xa(A) - a([Xv A]) = Xg(f, A) - g(£7 [Xv AD
Xg(E,A) —9(51 [X7A]) - g([X,E],A)

1

Therefore
Lxo = ha (2)
for some function h, where h = d(a(X))(£) = t¢dixo by formula (1). Note that
o([X,€]) = 9(¢, [X,€]) = Xg(&,€) — Lxg(§, &) — 9(&, [X,€]) = ~a([X,£]);
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hence a({X, £]) = 0, which implies that
[X,€]=0, (3)
since [X, €] is a vertical vector field. Using the identities (2) and (3), we see that
h= Lxo(§) = Xa(§) - o([X,£]) = 0.
O

We shall denote by £ the Lie algebra of Killing foliate vector fields. Any element
X in £ decomposes uniquely as

X =X +a(X)E.

The fact that a(X) is basic, implies that X commutes with ¢, that is [X,£] = 0.
Also the identity

igda = —~dixa (4)
holds.

Remark. On a compact manifold M with an isometric flow, the Lie algebra G
which describes the leaf closures is a subalgebra of L.

Lemma 1. Let M be a K-contact compact manifold with Lie algebra of Killing
foliate vector fields L. If X, Y € L and [X,Y] =0, then [X, Y] =0.

Proof. The vanishing of [X,Y] implies that
0=[X+a(X),Y +a(Y)E] = [X, Y]+ [X(a(Y)) - ¥ (a(X)))E.
So [X,Y] is a vertical vector field and hence, applying identity (4),
0= 'L[X,)‘/]da = LX’L)‘/dO! - ’l?LXdCY
digipda +igdipda — ipigda — ipdigda
d(da(Y, X)),

thus da(X,Y) is a constant function. But since da(X,¥) = —d(a(X))(¥) must
vanish at some point on the compact manifold M, we deduce that da(X,Y) = 0,
which implies that

a([X,Y]) = —da(X,Y) =0,
and therefore [X,Y] = 0 since [X, Y] is a vertical vector field. a

Before we state our next proposition, we define the rank of a set of vector fields
on a given manifold to be the maximum dimension of tangent planes spanned by
elements of the set at any point on the manifold.

Proposition 2. Let M be a K-contact compact (2n+ 1)-dimensional manifold and
Ly a mazimal abelian Lie subalgebra of Killing vector fields containing the charac-
teristic vector field. Then the rank of Lo is at most equal to n + 1.

Proof. Each set of linearly independent local commuting Killing foliate vector fields
{X1,..., Xi} determines a local (k — 1)-dimensional horizontal integrable distribu-
tion by Lemina 1, and it is well known that the maximum dimension of an integral
submanifold of the contact distribution is n, so ¥ —~1 < n and hence k <n+1. O
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Corollary 1. A leaf closure of a K-contact (2n+ 1)-dimenstonal compact manifold
has at most dimenstonn + 1.

Proof. Corollary 1 is an immediate consequence of the fact that the leaf closures
are orbits of G, a subalgebra of some L. ]

4. Cohomological Rank of K-Contact Manifolds

Starting with a contact metric structure on M with structure tensors J and g, one
defines an almost complex operator J on M x R by

. d
J(X+f%) = JX —a(X) 3+ fE.

If the almost complex structure defined by J is integrable ([1]), then the original
contact metric structure is called Sasakian. We refer to {1] for more properties of
these structures. Let us point out, however, that we have the following inclusion of
classes of flows:

Sasakian «— K-contact.

On 3-dimensional compact manifolds, the inclusion is an identity ({8]).

In [7], it was shown that the basic first cohomology of a K-contact flow on a
compact manifold is isomorphic to its first de Rham cohomology. It is therefore
expected that the de Rham cohomology will affect the topology of those flows. We
will show how the first Betti number of the manifold puts some restrictions on the
maximum dimension of leaf closures.

In {8], examples of non-almost regular K-contact lows on the 3-dimensional sphere
S3 were provided. As a consequence of our next theorem, such non-almost regular
K-contact flows cannot be found on a 3-dimensional compact manifold with nonva-
nishing first Betti number.

We first prove the following elementary lemma.

Lemma 2. Let Z be a harmonic vector field on a (2n + 1)-dimenstonal K-contact
manifold M with K-contact metric g. Then Z s a transverse vector field.

Proof. Since § = ¢(Z,.) is a harmonic 1-form, it is basic ([7]}; in particular the
identity L¢f = 0 holds. Therefore, for any vector field Y on M, one has

9(&,21.Y) = &9(2,Y) - Leg(Z,Y) - g(Z,[¢,Y]) = £B(Y) - B([¢, Y])
= LeB(Y)=0.

Thus

¢, 2] =0. (%)
a

By the rank of a set of vector fields we mean the maximum dimension of tangent
planes spanned by elements in the set at any point of the manifold.

Definition 4. We call the rank of the vector space of harmonic vector fields on a
manifold M the first cohomological rank of M and denote it by 1 (M).
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It follows from {9] that on a compact Sasakian manifold M, r1 (M) is zero or even.
Also, observe that if 71 (M) is attained at a point p € M, then it is attained on an
open neighborhood of p.

Theorem 1. Let M be a compact K-contact (2n + 1)-dimensional manifold with
K-contact metric g and first cohomological rank r1(M). Then a leaf closure of the
K-contact flow has dimension at mostinf {n+1, 2n+1—ri (M)}

Proof. Let {Z;}, k € {1,2,...,r1(M)}, be ri(M) linearly independent harmonic
vector fields whose rank is 71 (M) at some point p € M, hence on an open set O
containing p. Recall that orbit closures on K-contact flows on a compact manifold
are orbits of a compact abelian group G of isometries, hence a torus. More precisely,
denoting by ¢, the l-parameter group of isometries generated by ¢ and by Z(M)
the group of isometries of M, then G is the closure of ¢; in Z(M). Keeping the
same notation as in the previous section, let G denote the Lie algebra of G, so that
elements in G are commuting Killing vector fields on M. Let V € G, then V is
an infinitesimal automorphism of the flow. On the one hand, the flow has at least
2 closed characteristics ([7]) and V is proportional to £ along each of them, hence
9(V, Zi) = 0 along those closed orbits. On the other hand, due to the fact that V'
is Killing and the Z; are harmonic, the functions g(V, Z;) are constant. It follows
that one has

9V, Z) =0

everywhere, in particular on the open set O where r;(M) is attained. Consequently,
in O, the dimension of orbits of G is at most 2n + 1 — r|(M). By Lemma 2, all
Zy commute with £. As a consequence of this, the open set O contains all orbits of
its points. Therefore, thanks to the theory of compact transformation groups ([3],
p. 43), the open set O contains an orbit whose closure has maximum dimension; thus
the maximum dimension of a leaf closure is 2n + 1 — r1(M). This combined with
Corollary 1 completes the proof of Theorem 1. O

Corollary 2. Let M be a K-contact compact 3-dimensional manifold with nonzero
first Betti number. Then the contact flow on M is almost regular.

Proof. Since in dimension 3, K-contact compact manifolds are Sasakian ([8]), it
follows that if there is a nonzero harmonic 1-form on M, then ri(M) = 2 and by
Theorem 1, a leaf closure has dimension at most equal to inf {2, 1} = 1. Hence, all
characteristics are closed. a
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