
VENKOV'S REDUCTION THEORY OF POSITIVE-QUADRATIC FORMS 

P. P. Tammela UDC 511.512+511.9 

We prove the "absolute" finiteness of the number of faces (independent of the pa- 

rameter ~ ) of Venkov's reduction domain ~/(~) (Izv. Akad. Nauk SSSR, Ser. Mat. 

4, 37-52 (1940)) of ~-ary positive quadratic forms. The case ~-~ is given special 

consideration. We study the change of the reduction domain ~(~) when ~ changes 

along a line segment in the space of coefficients. 

The present paper is concerned with the reduction theory of positive quadratic forms ac- 

cording to Venkov [3]. The reader can get acquainted with the definitions and results of the 

reduction theory of positive quadratic forms through [i-ii, 13-17]. Before we state the main 

result of this paper -- Theorem i -- we introduce some notation and definitions from [3, 9]. 

Let 

f , ~,~=~ ~ ~ -~,~=~ ~ ~ ~ 

be two positive-definite quadratic forms; we write 

The expression ~,~) 

inner product of ~(~) 

(i) 

is called the Voronoi semiinvariant [5], sometimes also the scalar or 

and @ (m). For 

K 
= 

we obtain 

K 

The form ~ I ~ ) = ~  A ~ = ~ i = ~ { ~  - -,o- i s  c a l l e d  a d j o i n t  to  the  f o ~  ~ , i f  t h e  c o e f f i c i e n t s  

Ak~ are the cofactors of the elements ~ of the matrix (~ of # ~S denotes the 

quadratic form obtained from # by the unimodular transformation S �9 

Definition. Let ~ be a given positive-definite quadratic form, ~ its adjoint. We 

denote by V [@) the set of all positive quadratic forms ~ satisfying the inequality 

where ~ runs through the set of all unimodular integral matrices. The form ~ is called 

the basic form of the Venkov reduction domain V(~, and the form ~ is called ~ -reduced 

or Venkov reduced with respect to the basic form 
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In [3] Venkov showed that the reduction domain V [4) is a simple gonohedron in the sense 

of the following definition of Ryshkov and Baranovskii [9]: 

Definition. A quadratic form # (~41...~ ~) of rank ~ is called simple if it can be 

transformed by an integral unimodular transformation into the form # [~4,...~z) . A bounded 

polyhedron Q c ~[ (~ is the positive cone) with finitely many faces is called simple if all 

its vertices correspond to simple quadratic forms. An unbounded pyramid with vertex 0 the 

same as that of the positive cone ~ is called a positive gonohedron if its base is a simple poly- 

hedron Q c 

THEOREM i. Let ~ be a simple gonohedron. Then there exists a finite sequence of in- 

tegral unimodular matrices ~[~I$~L~l such that for every form ~E~ all inequalities (3) 

which define the Venkov reduction domain V i@) are consequences of a finite number of inequal- 

ities 

here SL runs through the set* ~(~) . 

The proof of Theorem 1 will be given in Sec. 3. It is substantially different from the 

proof of the theorem about the finiteness of the number of independent inequalities defining 

the Venkov reduction domain V(~) (cf. [3, 16, 15]), where a positive-definite form ~ is 

fixed. 

In Sec. 4 we consider the concrete situation where N-~, and choose for ~ the simple 

domain of Selling (Theorem 3). In the same section we evaluate (Theorem 4) the faces of the 

reduction domain V(~o) , where ~o=~+X~+~+~+~+~, a form which Ryshkov [8] focused 

upon. Theorem 4 is a relatively simple consequence of Theorem 3. 

In Sec. 5 we bring a result (Theorem 5) concerning the deformation of the Venkov reduc- 

tion domain V{~), when ~ varies along a special line segment in the space of coefficients. 

The author is grateful to A. V. Malyshev for posing the problem and for his interest in 

the work. 

2. PROOF OF AUXILIARY THEOREM 

The proof of Theorem i rests on the following result. 

THEOREM 2. Let ~4 and ~L be simple gonohedra. Then there exists a finite set of 

unimodular integral matrices ~(~i~ =[ S~M such that for all positive-definite quadra- 

tic forms ~ and ~ t h e  set of all minima of 

(h,f s) (5) 

on the set of unimodular integral matrices S~(~,Z) equals 

First of all we note that for the proof of Theorem 2 we may assume, without loss of gen- 

erality, that ~4 and ~ are Minkowski reduction domains (multiple or single), since by 

Lemma 2.6 of [9] every simple gonohedron can be covered by a finite family of sets which are 

equivalent to Minkowski reduction domains. Every form from a Minkowski reduction domain has the 

form 

*We stress that the set ~I~) does not depend on the choice of the basic form 
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where q41...,~,$ 

then 

~U 

t,, o 

are edge forms. If 

%= .__ . =  .. ,:t,,,), 

each of the expressions [~L,~) is a quadratic form in the elements of the matrix S We 

have the following lemma which is a simple generalization of Lemma 1 of the paper by Crisalli 

[15]. 

LEMMA i. Let ~s and q~ be edge forms of the Minkowski reduction domain, of rank k 

and ~ , respectively. Then (~b%S) is a positive-definite quadratic form in the elements of 

which are positioned at the intersection of rows number K-[*~,-~+2~ ...,m and columns num- 

ber ~-k+1) ... ~b 

LEMMA 2. Let 0~ be the class of all integral unimodular matrices whose elements in 

some given family of positions are fixed. Then the class ~ contains a finite number of 

matrices S such that [~4,~ is a minimum for all positive-definite quadratic forms #4 and 

~ which are Minkowski reduced. 

The proof of this lemma is by reverse induction on the number of fixed elements in the 

matrices of the class. The lemma is obvious if all ~z elements are fixed, i.e., if 0~ con- 

sists of one matrix S , which gives a minimum. 

Assume now that our result holds for all classes of integral unimodular matrices in which 

no less than k elements, ~z>/k >/~ , are fixed. Consider the class 0L 4 of integral unimod- 

ular matrices in which some K-i elements are fixed. 

Consider some matrix ~E ~. Then we have for every S~4 such that (#4,~$) is a min- 

imum: 

The expressions Cr and (~,r are equal if they depend only on the fixed 

elements of the matrices in the class O~. Since ~ and ~ are positive-definite quad- 

ratic forms it follows from inequality (6) that there exists at least one set of indices 

(~,~) with ~>0,~ > 0 such that 

where both sides of the inequality depend also on nonfixed elements of matrices in ~ By 

Lemma 1 all nonfixed elements of the matrix SE 0~4 , on which (~,~; ~) depends, must belong 

to a finite set. Since the number of edge forms of a Minkowski reduction domain is finite, 

it follows that all matrices ~ in 0~ on which (~4,~zS) takes a minimum belong to at least 

one of the finite number of classes in which no less than k elements are fixed. Using the 

inductive hypothesis, we obtain Lemma 2. 

1308 



Proof of Theorem 2. Since ~h(~) is the class of all integral unimodular matrices in 

which the elements are fixed on an empty set of positions, it follows from Le~na 2 that there 

exists a finite set of matrices $ on which (~,~S) takes a minimum for all positive-def~ 

inite quadratic forms ~ z  which are Minkowski reduced. Theorem 2 is established. 

3. PROOF OF THE MAIN THEOREM 

Let ~ be a Minkowski reduction domain, ~ a simple gonohedron and ~(~,~) a set of 

integral unimodular matrices such that for every ~ e ~ )  there exist at least one posi- 

tive-definite quadratic form ~E~ and one positive-definite quadratic form ~ E n , 

for which the value of (~,~) on the set of all integral unimodular matrices takes its min- 

imum on ~ By Theorem 2 ~(~) is finite. This means that all Venkov reduction do- 

mains V(~) with ~ ~ ~ can be covered by a finite set of Minkowski domains which intersect 

in nondegenerate forms Of the Venkov domain V[~) for all ~ �9 

It follows now from the definition of the Venkov reduction domain V(q) that every face 

of highest dimension of V[q} is defined by an equation of the form 

where S is an integral unimodular matrix. Since 

s)= 
we find that S T transforms the forms from face (8) of the domain V~q) into some other face 

of vC ) 
For the proof of the main theorem it suffices to prove that the number of transformations 

of ~ -reduced positive-definite quadratic forms into q -reduced forms (i.e., into V[W) ) is 

finite for all ~ ~ and that they all belong to one finite set. 

Let # be any positive-definite form from the Minkowski reduction domain and let S be 

any one of the transformations of ~ of ~ -reduced form. By definition of ~C~]%, ~) and of 

the domain V(~) (for ~ ~ ) we obtain that STE~[~,~J Therefore, all transformations 

of ~ -reduced forms into ~ -reduced forms are among the transformations 

�9 ~7 ~-~ 

where ~$2~(~2~ )- Since ~(~ is finite we conclude that set (9) is finite. Since 

~<~J is contained in (9) it, too, is finite. This concludes the proof of Theorem i. 

lowing representation: 

where ~4,~s 0 �9 

S 3. Then 

4. CASE ~=~ OF THE MAIN THEOREM FOR A SIMPLE SELLING REDUCTION DOMAIN 

Quadratic forms in the Selling reduction domain as principal perfect domain have the fol- 

Let S=($4,Sz, S~) be an integral unimodular matrix with columns ,$4~S~ 

(li) 
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where the form ~ has form (i0). With every matrix S we associate the augmented matrix 

. ( 1 2 )  

Note that the group ~0 of integral unimodular transformations of the squares ~,%~,'~, 

transforms every Selling reduced form into another Selling reduced form. 

To the group ~o correspond permutations (possibly with sign changes) of the columns in the 

augmented matrix (12). 

A simple Selling reduction domain [13] contains forms of type (i0) for which 04~4As6k6, 

THEOREM 3. The faces of highest dimension of the Venkov reduction domain V(q) for 

in the simple Selling domain are defined by integral unimodular matrices ~ for which 

The p roo f  o f  t h i s  theorem i s  based on the p roo fs  of  Theorems 1 and 2 ( f o r  ~4 and [-l z 

simple Selling reduction domains) and the following Lemma 3. 

LEMMA 3. Assume that # does not lie on a face of the Selling reduction domain with 

dimension less than ~-~=~-~-~=~ . Then the augmented matrix ~ of the matrix ~ for which 

(~) takes a minimum contains three linearly independent proximity vectors which are Sell- 

ing reduced. 

We apply Theorem 3 and Lemma 3 to the description of ~/(~o) (cf. [8]) where ~o----~+~+ 

~+~4~+~T$+~_z~ is a principal perfect form. 

THEOREM 4. The reduction domain V~o) is defined by the following 42 independent in- 

equalities: 

~]+%K>- 0; ~r162162 z~cg=~-=~+~>,0; 

5 ~ t ~jj-6 ~d+ Z~ 2 ~ K >/0~ 5~+~j-6o~Lj- 6~+ 6 ~ ~ # 0; 

i o, 

where 5,~,k run through all permutations of the numbers i, 2, 3. 

The proof of the necessity of this system of inequalities follows from the theorem of 

Minkowski--Farkas [12, Lemma 2.4]. The totality of all these inequalities is obtained by means 

of Theorem 3 from the set of matrices (as subset of the matrices of Lemma 3) for which 0S,~ 

takes a minimum under the condition that # does not lie in a face of the simple Selling re- 

duction domain of dimension less than N-l:~-~i~ -|'5" 

5. A CLASS OF VENKOV REDUCTION DOMAINS 

In this section we put m=3 and determine the faces of highest dimension of the reduc- 

tion domain V (45) , where ~ runs through all real values from 0 to ~ , and 

For %=0 we obtain the symmetrized Minkowski reduction domain r~ ~ and for %=~ 
1 

the 

Selling reduction domain of 
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Consider the following four sets of matrices: 

~_f-l o o% /I o o~ 14 oo% /4 I 4~ I_ ~ I~ f4 ~ ~% 
~- IO4OI~+1o-~oI -+_ Io4  oi- : i : [o-~o| ,+  ool .+f-~ ooi ,  

, o o l / "  , o o 4 / ,  , o o - I / '  , o o - ~ / , -  
t-~ o o~ ~-4 o o~ ro-~ o k + i o - ~  ~ o-,, o o- ,  •176 o,. +1 oo-q. +,-, o o, _ ~); o o / : + ( o - ,  ~" 

: o!); . , o o ,  , , o o ,   o,o. 
+_ o-f o + o 4 ~ "+_ 0- I  o'+_ O O - ~ ' + - f  o o 

J r  o t% 0 0 4  of  1 o  4 0 0  o 1 6 t  o o,: • o-% d-,- ,  -\, , o)' U ~ o/~ V oq,  ~ o ,  ,)'-~.o ~ V " C ~ ' o  ~)' 
,o ,o ,  o.o, + o o , . + , o ~  ,o~1, "o ,~  

_ ~ o - ~ . _  o -~ -~  _ f o - ~ ; _ +  ~-4 o ' +  _ _ "'~ i) I,, l i , ,  
+ / o  - I - I  F 

o ~ , + / o  ~ ~ | .  ~ - ~ - ~ - t  -+ _~_, , - ~ , _ ~ _ ~ / ,  +- /o ~ ~t; 

o ~,oso; -• ~) ;  -+ ~ , 

it:(  o'. ~176 
here g,p,~,~ take independently the values +~ and -I With each of the matrix families 

I-IV we associate also the matrices obtained from the given matrices by permuting the columns. 

THEOREM 5. The Venkov reduction domain V{~%), for q% =~ +~z+~3+~(~1~+~1~+~z~ @, 

is defined by the independent inequalities 

where 

i) for 0<~<~ 

2) for t=~ 

3) for ~= 0 

the matrix ~ runs through the sets I and i ; 

the matrix ~ runs through the sets ~ and ~ ; 

the matrix S runs through the set ~ . 

If S I and ~ are any two matrices from the sets I-~ , which differ only by a permuta- 

tion of the columns, they yield a single independent inequality. 

The theorem was proved earlier for %--0 and %=~. We give here only the statement 

of a lemma on which the proof of the theorem rests. 

LEMMA 4. Assume that the form ~ satisfies the conditions of the theorem, with all in- 

equalities strict. Then the coordinates of the proximity vectors of the form ~ have abso- 

lute value not exceeding 1. 
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REPRESENTATION OF INTEGERS BY POSITIVE-TERNARY QUADRATIC FORMS 

Yu. G. Teterin UDC 511.512 

The discrete ergodic method is applied to the problem mentioned in the title. We ob- 

tain estimates (of exact order) of the number of primitive representations in a giv- 

en cone and a given residue class. The paper is an extension of the work of Peters 

(M. Peters, Acta Arithm., 34, 57-80 (1977)). 

i. INTRODUCTION 

i. Content of This Paper. The present paper is a continuation of the investigations 

[4, 5, 15] which deal with the application of the discrete ergodic method to the problem of 

representations of integers by positive ternary quadratic forms. 

The introductory Sec. i contains basic definitions and notations and the statement of the 

main result of the paper: Theorem i.i. At the end of this section we make a number of remarks 

on this result. The proof of Theorem i.i is contained in point 3 of Sec. 4. 

The proof of Theorem i.i is based on the "key lemma" of the discrete ergodic method for 

generalized quaternions (Sec. 4, Proposition 4.3). Proposition 4.3 generalizes and unifies 

Lemmas 1 and 2 of Sec. 3 in Chap. Vof [5]. With this generalization we can rectify some incor- 

rect reasoning in [5, Chap. V, Secs. 4, 5]. 
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