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Periodic Solutions of the Differential Delay Equation

2(t) = —f(z(t — 1))

Ge Weigao

Abstract. For an odd function f(z) defined only on a finite interval, this paper deals with the
existence of periodic solutions and the number of simple periodic solutions of the differential delay
equation (DDE) &(t) = — f(z(t — 1)). By use of the method of qualitative analysis combined with
the constructing of special solutions a series of interesting results are obtained on these problems.
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1 Introduction

J. L. Kaplan and J. A. Yorke!! made use of differential equations for the first time to discuss
the conditions for the existence of periodic solutions of differential delay equations

#(t) = —f(z(t - 1)) and &(t) =~f(z(t-1)) - f(=(t - 2)),

where f € C°(R,R) being odd, zf(z) > 0 for £ # 0. After then their results have been
extended(®3]. All those contributions are made under the condition that f(z) is continuous on
R. This paper deals with the existence of periodic solutions and the number of simple periodic
solutions of the differential delay equation

z(t) = - f(z(t - 1)), (1.1)

where f satisfies

(Ho): f € C%([~a,a},R), f(—z) = —f(z) and f(z) >0 for z € (0,a).

By the use of the method of qualitative analysis combined with constructing special solutions
to Eq. (1.1) we give some new results in Section 2 about the existence. The number of simple
periodic solutions is discussed in Section 3.

Definition 1.1. Suppose both z1(t) and z2(t) are solutions of Eq. (1.1). Then z1(t) and z3(t)
are said o be identical when there is a constant v such that z;(f) = zy(t + 7).
This definition is essential in counting the number of solutions.
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2 Existence of Periodic Solutions

We consider first the relation between Eq. (1.1) and the ordinary differential equations
t=-f(y), y=f(z) (2.1)

Lemma 2.1. Suppose (Hg) holds. If Egs. (2.1) has a nontrivial periodic solution {z(t),y(t))
with period 4/(4l + 1),1 > 0, and with ||z|| < a, then z(t) is a periodic solution of Eq. (1.1).
Here ||z|| = max|z(t)).

Proof. It is easy to see that all the trajectories of Egs. (2.1) in the square {(z,y)||z] < a,|y| < a}

are determined by
Fl@)+ F(y) =<, (2.2)

where F(z) = / F(&)de for |z} < a and 0 < ¢ € 2F(a). When 0 < ¢ £ F(a) all the curves

represented by I*gq. (2.2) are closed and symmetric with respect to the r-axis and y-axis and
each of them except for the case when ¢ = F(a) consists of a periodic solution of Egs. (2.1).
And F(z) + F(y) = F{a) can represent a periodic solution of {2.1) only when the time that a
moving point goes round the curve in a cycle is finite.

Since (z(¢),y(t)) is a periodic solution of Eqs. (2.1) with period 4/(4{ + 1), we have

&(t) = -fu®), 98 = f=(8). (2.3)

Let T = {(z(¢), y(t))|t € R} and denote by 4, B,C and D the four intersection points of I" with
the two axes in the counter-clockwise direction:

A= oo+ i)
B=(z(0+q%7) ¥(
C=((0+ g7) w(ta+
D= (a: (t3+@%),y(t3+4—[‘;—1)) =(0,~r),

where 0 < ty < t; <ty < t3 < 4/(4l+1),k is an integer. I' is now determined by F(z)+ F(y) =
: _ 1 _ 2 —
F(r). It follows from the symmetry of the trajectory that t; = to + Trpt Tt ty =

to+ Zl%-—l It is easy to verify that (y(¢), —z(t)) and (z (t - @_}T——l) Y (t - Zl%-—l)) are both
solutions of Egs. (2.1) and

(), a(t0)) = (= (to - ﬁ) " (to - :J%)) — (0, —r).

Since the uniquencess of solution of Eqs. (2.1) for any given initial conditions holds when

|z, ly] < a, we have
1 1
0-s0= o) o)
It follows that

1 2 1 4
y(t)“z(t—4l+1) ‘_y<t_4l+1) ”’(t"4z+1_4l+1) 2(t = 1),

o+ q51)) =
t+ ‘l—)) ,7),
7471)) = (

t2
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and therefore

#(t) = —f(y(t)) = —f(z(t - 1)).

Lemma 2.2. Suppose (Hg) holds and F(a) = 0. Let (p,q) € T = {(z,v)|F(z) + F(y) =
F(a)},p,q > 0 and (zo(t),yo(t)) be a solution of Egs. (2.1) with (zo(to),vo(t0)) = (p,q)-
Suppose 31,82 > 0 are two constants such that z(t),y(t) > 0 for t € (ty — 51,80 + S2) and
t_}}ggﬂ(%(t),m(t)) = (a,0) as well as tjgﬁsz(zo(t),yo(t)) = (0,0). If 81 + 32 < co, then Fgq.
(2.1) has a 4(s1 + s2)-periodic solution (z(t),y(t)) satisfying

1) (z(t + 81+ 82), y(t + 51 + 82)) = (—u(t),z(t));

2) max|z(t)| = a.
Proof. Since the trajectories of Eqs. (2.1) are determined by the family of curves (2.2), we have

F(zo(t)) + F(yo(t)) = Fla), (2.4)
Zo(t) = —f(wo(t)), Fo(t) = flzo(t)) (2.5)
for t € (tg — 1,9 + s2). Set s = s1 + s2. Define (z(t),y(t)) as
(z(8),y(t)) = (zo(t — 4ks),y(t — 4ks)),
| t € [tg — 81 + 4ks, tg + 35 + 4ks);
(2(2),y(1)) = (~yo(t — (4k +1)s), zo(t — (4k + 1)3)),

t € [to— 1+ (4k + 1)s,to + 32 + (4k + 1)s);

(z(2), y(@) = (-zo(t — (4k +2)s, —o(t — (4k + 2)5)),

t € [t — 81 + (4k + 2)s,tp + 2 + (4k + 2)s);

(z(£),y(t)) = (yo(t — (4k + 3)s), —zo(t — (4k + 3)s)),
t € [ty —s1+ {4k + 3)s,tg + 52 + (4k + 3)3),

where k = 0,+1,---. Clearly the vector function (z(t),y(¢)) is 4s-periodic and satisfies the
requirements 1) and 2). We now prove that (z(t),y(t)) is a solution of Egs. (2.1).

When ¢ € {tg — 31 + (4k + 1)s,t0 + 82 + (4k + 1)s), let 7 = ¢t — (4k + 1)s. Then we have
T € [to — 81,t0 + 82) and -

£(t) = —go(r) = —f(2o(r)) = —f(y(t)),
y(t) = &o(r) = —f(—v0(r)) = —f(—=(1)) = f(z(2)).

Obviously (z(t),y(t)) satisfies Eqs. (2.1). The other three cases can be proved in a similar way.
Besides, (z(t), y(t)) is continuous and differentiable at each of the connection points. Therefore
(z(t),y(t)) is a 4s-perio-tic solution of Egs. (2.1).

We now consider # segivent of curve F(z) + F(y) = F(a), z,y>0.
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When (Hp) holds, F : [0,a] — [0, F(a)] C R is a strictly monotonic function and hence F~?
exists on [0, F(a)]. Since F(a) — F(z) € [0, F(a)] for = € [0, a}, we define

H(z) := f[F~(F(a) — F(z))] for z € [0,a].

Obviously H : [0,a] — [0, a] is a continuous mapping.
Theorem 2.1. Suppose (Hp) holds. If hm fzYz=a> (4k+1) and/ o a:) > Zkl—-i-l for

an integer k > 0, then Eq. (1.1) has at least one 4/(4k + 1) -pertodic solution x( ) z(t)] < a.
Proof. Take (z9,10) € T = {(z,y)|F(z)+ F(y) = f(a)}, zo,y0 > 0. Denote by (z,(t),:1(t)) the
solution of Eqs. (2.1) satisfying (z1(¢0), ¥1(te)) = (%o, o). Then there are s;, sy > 0 such that
(21(20), 91(t0)) = (0, %0) and (21(to — 1), 91 (to — 51)) = (g,0), (z1(to +52), y1 (2o +52)) = (0, a).
We have f(y1(t)) = f[F~Y(F(a) — F(z1(t))] = H(z1(t)) and then
dt = —dz1(t)/ f(ys(t)) = —dz1(8)/H(z1(t))-

Therefore

® dz__ [* de
. H@) ~ Jo Hz)
That’s to say, the time that a moving point goes along the trajectory from (a,0) to (0,a) is
greater than 1/ (4k +1). It follows from the continuous dependence of solutions upon the initial

conditions that there is b < a, sufficiently near a, such that the time that a point goes along
the trajectory from (b,0) to (0,b) is greater than 17517_——, too. The trajectory r, determined by

S1+ 82 =— > 1/(4k +1).

F(z)+ F(y) = F(b) T (2.6)

is a closed curve. It follows from the symmetry of the trajectories of Eqs. (2.1) that the period
Ty of the closed trajectory ry is greater than 4/(4k + 1).

Let ¢ = F(s),s € (0,a) in Eq. (2.2). For a trajectory 7, := {(z,(t),y,(¢))|t € R} determined
by F(z) + F(y) = F(s), let z = pcos8,y = psin§. Then we have the equivalent equations

{p = —f(psin @) cosd + f(pcosb)sind,

= %[f(ﬁ cos @) cos @ + f(psin @) sind]. 27

Clearly Iin}J F(8) = 0 implies lin‘l)p = 0. Therefore Ve € (0,a — 35(4%: + 1)), there is an s small
enough such that
in 6
- 1(pcos) 9+&?m—)sin29>a—s>£(4k+l).
pcosé psiné 2 _
So the period T, of the closed trajectory v, : F(z) + F(y) = F(s) is less than 4/(4k + 1).
Since the‘periods of the closed trajectories change continuously, there is a closed trajectory
ra, {(z(t),¥(t))}, of Egs. (2.1), d € (0,a), whose period equals 4/(4k + 1). Then Lemma 2.1
implies that z(t) is a periodic solution with period 4/(4k + 1). It is clear that |z(t)| < a.
This theorem is now proved.
Corollary 2.1. Suppose (Hp) holds, m,_ f(z)/z=a> (4k+1 and/ e (D) > 1/(41+1),
where k > 1 > 0. Then Eq. {1.1) has at least k— 1 + 1 dzjferent nonirivial periodic solutions
2;(t) with periods 4/(4i + 1), respectively, and |z:(t)| < a,i=11+1,---,k.
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This can be directly deduced from Theorem 2.1.
Corollary 2.2. Suppose (Hy) holds. If lin}J f(z)/xz = oo, then Eq. (1.1) has infinite different
periodic solutions.

a
d
Proof. Since / _}_I_(:z:_) is a positive number, there is an integer kg > 0 such that
0 T

¢ dx
o H(z)
for £ > ko. At the same time lin}) fl@)/z > g—(4k + 1). It follows from Theorem 2.1 that Eq.
x—

(1.1) has at least one 4/(4k + 1)-periodic solution z(t) for every k > ko. The corollary is now
proved.

Theorem 2.2. Suppose (Hp) holds and f(a) = 0. If/ EI%—) < 1/(4k + 1) for an integer
0

k >0, then Eq. (1 1) has at least a 4/(4k + 1)-periodic solution z,(t) with max{z.(t)} = a.

Proof. Let / @)~ = s and take (zg,%) € {(z,¥)|F(z) + F(y) = F(a)}, zo,y0 > 0. Suppose

(zo(t), yo(t)) is the solution of Eqs. (2.1) satisfying (zo(to), Yo(to)) = (Zo, o), (Zo(te—31), Yo(to—
31)) = (a,0), (zo(to + s2), yo(to + 52)) = (0,a) and zo(t), yo(t) > O for ¢ € (to ~ 81,20 + 52). It
follows from F(zo(t)) + F(ye(t)) = F(a) and the first equation of Egs. (2.1) that

[l o(t)dt _ [ dz _
neET /to—sl SF T (F) - Fwo®)]  Jo H@

Then Eqs. (2.1) has a 4s-periodic solution (z*(t),y*(t)) satisfying

1) (*(t + 8),4"( +9)) = (=7 (8), 5" (1)),

2) max |z(t)| = a,
since Lemma 2.2 holds. Property 1) implies z*(¢t + 3) = —y*(t) = —z*(t — s) or z*(t) =
~y*(t — s8) = —2*(t — 25). Then

(t) = ~f(y"(t), 9 (t) = f(=z*(t)).

Let t; € [0,4s], (z*(t1),¥*(t1)) = (a,0). Then

> 1/(4k + 1),

(z*(t1 + 8), 3" (t1 + 5)) = (—v"(ta), 2 (11)) = (0, 0),
(2*(t1 +25), ¥*(t1 + 25)) = (—y*(t1 + ), 2" (t1 + 5)) = (=2, 0)

and (z*(t1 + 3s),y*(t1 + 3s)) = (0, —a).
Let ¢ = Ik%-_l_ — 8. We define (z(t),y(t)) as follows:

(#0y®): =0,  te[n+gliph+ gliv+o);

(209 : = (2" (t- g —0).v" (t- glig - 0)),

te[n+ gy ron +4ET);

(@(®.9(): =00,  te|u+iEra+fiELvo);
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(z(t),y(t): = (a:* (t-—zk%T—-hr),y* (t—a-ki’_ﬁ——2a)),
te b+ gl von+ HE2);
(@(),9(t)): = (-a,0), te [+ 20+ fE2 +0);

(z(t),y(t)): = (a:‘ (t - ZE%T - 30) U* (t -~ ZE4_:__'T - 30')) ,

te [+ #3210+ HE3);
(z(t),y(t) : = (0, —a), te [tl + ;‘}ci?,tl + jf}ci:i +o—),
(x(t),y(t): = (z* (t— Zk%—l —4”) 'y (t )

te[t1+§}c—i—3l—+a,tl+4il}c-—i—‘{).

Obviously (z(t),y(t)) is a continuous and differentiable periodic vector function with period
4/(4k + 1). We now prove that (x(t) y(t)) is a solution of Egs. (2.1).
Wkhen ¢ € [tg _ki_l"tl + _E— + a) , we have f(z()) = f(y(t)) = 0 since z(t) = q,
y(t) = 0. Then
£(t) = —f(y(t)), U(t) = f(=z(t)) (2.8)

holds. When ¢ € [t1 + Zk%j + ot + ——i:i—l—) , we have

3(t) =4 (t— glig - o) = —f [y (t - giiy - o)] = -1 o)),
90 =" (= gy -) = [ (- @i - )] = /=)

The other cases can be proved in a similar way.
We now prove that (z(2), y(t)) satisfies

D (o (t+ geieg) v (t+ g5r1) ) = (-3(®),2() and
2) max|z(t)| = a.
It is obvious that max |z(t)| = a.

When ¢ € [tl + Zkij_——,tl + @&i_l -+ a) , then (z(2), y(¢)) = (a,0) and (z (t1 + Zk%) ,
(t1 + —E_—)) (0,a) imply that the relation in 1) bolds.

When ¢ € [t1+—E———+at1+—Ei'——) then t+-L € [t1+i,’c—'t—+at1+—ﬁ).

So
(e () ) = (o (At 2) o (o4 B )
- (e (g o) (- i o +9)
- (7 (i) (i)
= (—y(t),2(2))-
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The relation in 1) also holds. The other cases can be proved in a similar way.
Since (z(t), y(¢)) is a solution of Egs. (2.1) satisfying (a: (t + 717(':%-_1) Y (t + ﬁ)) =

(—y(t), z(2)), ie., (z(t),y(t)) = (—y (t - Ik‘l:T) , T (t - Zkl-i-—l_)) , it follows from the first
equation in (2.1) that

i) = =160 =1 (2 (t- 1) ) =~/ (= (1= gg ~ Ty ) ) = ~Jate = 1),

Therefore z(t) is a 4/(4k + 1)-periodic solution of Eq. (1.1). The proof is now completed.
¢ d
Corollary 2.3. Suppose (Hy) holds. If f(a) =0 and ~
0

1
—_— L i k>
o) S i for an integer k > 0,

then Eq. (1.1) has at least k + 1 different periodic solutions, z;(t), with period 4/(4l + 1),l =
0,1,---, k.

1
Corollary 2.4. Suppose (Hp) holds and f(z) = f(a — x) for z € [0,a]. If/ < 4k T

then Eq. (1.1) has at least k + 1 different periodic solutions z{t) : max |z,(t)| = a wzth periods
4/(4k +1),1=0,1,--+,k: Here k > 0 is an integer.
Proof. Clearly f(0) = f(a) = 0. Therefore it suffices to prove

H(E) = f(2). 29)
In fact, the condition f(z) = f(a — ) for z € [0, a] implies
F(z) = / F(e)dg / Cfa-wde= [T fwds=Fa-a),
H(z) = fIF~'(F(a) - F(2))] = f[F~}(F(a - 2))] = f(a — z) = f(2).

So this corollary is a direct deduction drawn from Theorem 2.2.

Theorem 2.3. Suppose (Hy) holds and f(a) = 0. If al:li% flz)/)z=a> —72[(4k+ 1} for an integer
k >0, then Eq. (1.1) has at least k + 1 different periodic solutions with periods 4/(4l +1),1 =
0,1,---,k. .

Proof. These periodic solutions are confirmed by Corollary 2.1 when / 7{(—1:”—) > 1 and by

* dz 1 c dr
< —. for th h <
| H@) S W1 As for the case where | T =p: 4l+1 < pB<

1 <1<k, the k — [ + 1 periodic solutions are ensured by Corollary 2.1 and the other !

Corollary 2.3 when

-3
ones by Corollary 2.3.

Remark. When f(z) has finite discontinuous points of the first type, i.e., for any one of its
discontinuity points, say , zg, both hm f(z) and lim f(z) exist and are finite, all the above

3"‘20 :E—"ZO
theorems remain valid.
Example 2.1. Consider a differential delay equation

#(t) = —af(z(t - 1)), (2.10)

where a > 0 is a parameter and

{ ~Va(l+2), z€[-1,0],

r(l-2z2), =z€ [O,l].
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Obviously f(z) satisfies all requirements of Corollary 2.4. We know from lin}) af(z)/z = +o00
that Va > 0 Eq. (2.10) has infinitely many oscillating periodic solutions z;(¢t) with periods

a .
4/(41 +1),1 =0,1,2,---. Furthermore / % = 7 implies that when a > w(4{ + 1) for an
0
integer k¥ > 0, among these periodic solutions there are at least k + 1 ones with amplitudes
being 1.

3 Number of Simple Periodic Solutions

Definition 3.1. An w-periodic solution z(t) of Eq. (1.1) is said to be simple periodic when the
trajectory {(z(t), z(t))|t € R} is a simple closed curve in the z,Z-plane.
This definition is consistent with that in [5] when f(z) is continuous on R and zf(z) > 0

for z # 0.

We have given in [5] a result as follows (see [5], Theorem 2.1).
Theorem 3.1. Suppose f € C'(R,R) being odd, f'(z) > 0 and there is a constant € > 0 such
that f'(z) is monotonically decreasing on (0,¢) and not increasing on (g,00). If there are two

integers k,n > 0 such that
Z man{0, 4k - 3} < £/(00) < Z(4k +1) < Tk +n) +1] < (0) < Z[4(k +n) +5],

then Eq. (1.1) has ezactly n + 1 simple periodic solutions with periods 4/[4(k + 1) + 1],1 =
0,1,---,n.

When f(z) is defined only on a finite interval [—a, a], we give the following theorem.
Theorem 3.2. Suppose (Hy) holds, f € C'([—a,a],[0,00)) and there is ¢ € (0,a) such that
f'(z) is monotonically decreasing on (0,¢) and not increasing on (¢,a). If

f@) <a, Zln+1] < £(0) < Fldn+35),

then Eq. (1.1) has exactly n + 1 simple periodic solutions, z,(t), with periods 4/(4l + 1),1 =
0,1,---,mn. '
Proof. We define a function as follows:

f(=), z € [~a,q]
9(z) = { fla)+ f'(a)(z—a), z>a,
~f(a) + f'(a)(z +a), z< —a.
Obviously g(z) satisfies the requirements of Theorem 3.1. Since
f(a) _ fla) = £0) _,
a a-0
there is £ € (0,a) such that f'(£) < 1 and therefore f'(a) < f'(¢§) < 1. The fact that ¢'(z) =

f'(a) for |z| > a implies g'(o0) £ 1.
Theorem 3.1 tells us that

2

#(t) = —g(z(t - 1)) (3.1)

has exactly n + 1 simple periodic solutions z;(t) with periods I[i—,l =0,1,2,---,n.
Suppose max |z;(t)] = m. We now prove m < a. Supposing to the contrary m > a, then
lg(z)| < f(a) + f'(a)(m — a) < m. The equality does not hold for all |z| < m.
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Let z((tg) = m. Then
Zi(to) = —g(zi(to — 1)) = 0.

Therefore z;(t; — 1) = 0 and

to 1
I[(to) = [0_1 q (.’E( (t -~ m)) dt < m,
a contradiction.

Because g(z) = f(z) for |z| < a and |z;(t)| < a,z(t) is also a periodic solution of Eq. (1.1).
Obviously Eq. (1.1) has no other simple periodic solutions. The theorem is proved.
Example 3.1. Let f(z) = (1 — |sinz|)sinz,z € [~7/2,7/2]. Consider

i(t) = —af(x(t - 1)), (32)

where a > 0 is a parameter. Clearly f(z) is odd and continuous on [—-7/2,7/2].

Because };1-{.1}) f(z)/z =1 and f(x/2) = O,‘f(a:) > 0 for ¢ € (0,7/2) Eq. (3.2) has periodic
solutions when a > /2. Furthermore f(z) reaches its maximum 1/4 at z = 7/6 and f'(z) > 0
is monotonically decreasing on interval (0,7/6). We can show as in the proof of Theorem 3.2
that all the periodic solutions of Eq. (3.2) have their maxima less than 7/6 when o < %7!’.

So when a € (72"-, %w), Eq. (3.2) has one and only one simple periodic solution, which is
4-periodic.
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