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Periodic  Solutions of  the Differential Delay Equat ion 

Ge Weigao 

A b s t r a c t .  For an odd function f ( x )  defined only on a finite interval, this paper deals with the 
existence of periodic solutions and the number of simple periodic solutions of the differential delay 
equation (DDE) 5:(t) = - f ( x ( t  - 1)). By use of the method of qualitative analysis combined with 
the constructing of special solutions a series of interesting results are obtained on these problems. 
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1 I n t r o d u c t i o n  

J. L. Kaplan and J. A. Yorke [1] made use of differential equations for the first time to discuss 

the conditions for the existence of periodic solutions of differential delay equations 

k( t )  -= - f ( x ( t  - 1)) and J:(t) = - f ( x ( t  - 1)) - f ( x ( t  - 2)), 

where f E C~ being odd, x f ( x )  > 0 for x r 0. After then their results have been 
extended [2'3]. All those contributions are made under the condition that f ( x )  is continuous on 

]~. This paper deals with the existence of periodic solutions and the number of simple periodic 

solutions of the differential delay equation 

~(t)  = - f ( x ( t  - 1)), (1.1) 

where f satisfies 

(H0): f E C ~  = - f ( x )  and f (z )  > 0 for x E (0, a). 
By the use of the method of qualitative analysis combined with constructing special solutions 

to Eq. (1.1) we give some new results in Section 2 about the e.xistence. The number of simple 

periodic solutions is discussed in Section 3. 

Def in i t ion  1.1. Suppose both x : ( t )  and x2(t)  are solutions of Eq. (1.1). Then  x : ( t )  and x2(t) 

are said to be identical when there is a constant  r such that x j ( t )  - x 2 ( t  + 7"). 

This definition is essential in counting the number of solutions. 
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2 E x i s t e n c e  o f  P e r i o d i c  S o l u t i o n s  

We consider first the relation between Eq. (1.1) and the ordinary differential equations 

= - f (Y ) ,  ~1 = f(x).  (2.1) 

L e m m a  2.1. Suppose (Ho) holds. If Eqs. (2.1) has a nontrivial periodic solution (x(t), y(t)) 
with period 4/(4l + 1), l > O, and with IJxJ[ < a, then x(t) is a periodic solution of Eq. (1.1). 

Here JJx H = max jx(t)i. 
Proof. It is easy to see that all the trajectories of Eqs. (2.1) in the square {(x,y)iJx [ <_ a, [y[ <_ a} 

are determined by 

Fix ) + F(y) = c, (2.2) 

/Z where F(x) = f(()d(  for JxJ _< a and 0 < e < 2F(a). When 0 < c _< F(a)  all the curves 

represented by Eq. (2.2) are closed and symmetric with respect to the x-axis and y-axis and 

each of them except for the case when c = F(a) consists of a periodic solution of Eqs. (2.1). 
And F(x) + F(y) = F(a) can represent a periodic solution of (2.1) only when the time that  a 

moving point goes round the curve in a cycle is finite. 

Since r~(~ , , t t~ is a periodic solution of Eqs. (2.1) with period 4/(4l + 1), we have 

it(t) = - f (y ( t ) ) ,  il(t) = f(x(t)).  (2.3) 

Let F = {(x(t), y(t))Jt E ~} and denote by A, B, C and D the four intersection points of F with 

the two axes in the counter-clockwise direction: 

4k A = (x (to + ~ )  ,y (to + 

4k B = (X (tl + ~ )  ,y (tl  + 

where 0 _< to < tl < t2 < t3 _< 4/(4l + 1), k is an integer. F is now determined by F(x)+ F(y) = 
1 , 2 t F(r). It follows from the symmetry of the trajectory that tl = to + ~ t2 = to + ~ ,  3 = 

3 1 , \ ~z(t-4-Z--~-T))areb~ to + ~ .  It is easy to verify that (y(t), - x ( t )  ) and (x (t - 4-i--~-~ ) y 1 
solutions of Eqs. (2.1) and 

11) ) = (o,-r). 1 1) ,y(t0 4l+ (y(to),-x(to)) -= (x (to 4l+ 

Since the uniquencess of solution of Eqs. 

Ix[, JyJ < a, we have 

(y( t) , -x( t))  = ( x  ( t  

(2.1) for any given initial conditions holds when 

1 1 )  y ( t  1 1 )  ) 
41 + ' 4l + " 

It follows that 

( = - y  t = x  t = x ( t - 1 ) ,  y(t) = x t 41+1 4 l+1  41+1 41+1 
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and therefore  

~( t )  = - f ( y ( t ) )  = - f ( x ( t  - 1)). 

L e r n i n a  2.2.  Suppose  (Ho) holds and F ( a )  = O. Le t  (p ,q)  e F = { ( x , y ) l F ( x )  + F ( y )  = 

F ( a ) } , p , q  > 0 and ( x o ( t ) , y o ( t ) )  be a so lu t ion  of  Eqs.  (2.1) with  ( x o ( t o ) , y o ( t o ) )  = (p,q).  

Suppose  s l , s 2  > 0 are two cons tan t s  such  that  x ( t ) , y ( t )  > 0 f o r  t E (to - s l , t o  + s2) and 

tl~om_s ( x o ( t ) , y o ( t ) )  = (a,O) as wel l  as l~oms2(xo ( t ) , yo ( t ) )  = (O,a).  I f  s l  + s2 < c~, then Eq. 

(2.1) has  a 4(sl  + sz ) -periodic  so lu t ion  ( x (  t ) , y (  t ) ) sa t i s fy ing  

1) ( x ( t  + Sl Jr- s 2 ) , y ( t  + s l  + s2))  = ( - y ( t ) , x ( t ) ) ;  

2) m a x  Ix(t)l = a. 
tER 

Proof.  Since the t rajectories  of Eqs. (2.1) are de te rmined  by the family of curves (2.2), we have 

F ( x o ( t ) )  + F ( y o ( t ) )  = F ( a ) ,  

e o ( t )  = - y ( y o ( t ) ) ,  So(t)  = y ( x o ( t ) )  

for t C (to - Sl, to + se). Set s = sx + s2. Define ( x ( t ) ,  y ( t ) )  as 

(2.4) 

(2.~) 

( x ( t ) , y ( t ) )  

( x ( t ) , y ( t ) )  

= ( xo ( t  - 4 k s ) , y ( t  - 4ks)) ,  

t E [to - s l  + 4 k s ,  to + s2 + 4ks);  

= ( - y o ( t  - (4k + 1 ) s ) , x o ( t  - (4k + 1)s)), 

t e [to - s l  + (4k + 1)s, t0 + s2 + (4k + 1)s); 

( x ( t ) , y ( t ) )  = ( - x o ( t  - (4k + 2 ) s , - y o ( t  - (4k + 2)s)),  

t E [to - sl  + (4k + 2)s, to + s2 + (4k + 2)s); 

( x ( t ) ,  y ( t ) )  = (yo( t  - (4k + 3)s),  - x o ( t  - (4k + 3)s)),  

t E [to - s l + ( 4 k + 3 ) s ,  t o + s 2 + ( 4 k + 3 ) s ) ,  

where k = 0,-4-1,--- .  Clearly the vector  funct ion ( x ( t ) , y ( t ) )  is 4s-per iodic  and  satisfies the  

requirements  1) and 2). We now prove tha t  (x(t) ,  y ( t ) )  is a solution of Eqs. (2.1). 

When  t E [to - s l  + (4k + 1)s, t0 + s2 + (4k + 1)s), let r = t - (4k + 1)s. Then  we have 

r E [to - s l ,  to + s2) and 

= - y o ( r )  = - / ( x o ( r ) )  = - / ( y ( t ) ) ,  

f /(t)  = Jzo(r) = - f ( - y o ( r ) )  = - / ( - x ( t ) )  = f ( x ( t ) ) .  

Obviously (x ( t ) ,  y ( t ) )  satisfies Eqs. (2.1). The  o ther  three  cases can be proved in a similar way. 

Besides, (x(t) ,  y( t ) )  is cont inuous and differentiable at  each of the  connect ion points .  Therefore  

( x ( t ) , Y ( t ) )  is a 4s-perio,~.i, �9 solution of Eqs. (2.1). 

We now consider ;~ seg.~-.nt of  curve F ( x )  + F ( y )  = F ( a ) ,  x , y  >> O. 
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When (H0) holds, F : [0, a] ~ [0, F(a)] C ~[ is a strictly monotonic function and hence F -1 

exists on [0, F(a)]. Since F(a) - F(x)  E [0, F(a)] for x e [0, a], we define 

H(x)  := f [ F - l ( F ( a ) - F ( x ) ) ]  for x E [0,a]. 

Obviously H :  [0, a] ~ [0, a] is a continuous mapping. 

2 f0 dx 1 T h e o r e m 2 . 1 .  Suppose(Ho) holds. I f l i m o f ( x ) / x = c ~ >  (4k+1) and H(x----~ > 4--k-~ f~  

an integer k > O, then Eq. (1.1) has at least one 4 / ( 4 k  + l)-periodic solution x(t )  : ]x(t)l < a. 

Proof. Take (xo,Yo) E F = { (x , y ) lF (x )+  F(y)  = f(a)},  xo,Yo > 0. Denote by (x l ( t ) ,y l ( t ) )  the 
solution of Eqs. (2.1) satisfying (Xl(t0), Yl (to)) = (x0, Yo). Then there are s l, s2 > 0 such that  

(xl(to),yl(to)) = (xo,Yo) and ( x l ( t O - S l ) , y x ( t o - s l ) )  = (a,O),(xl( to+s2),yl( to+s2))  = (O,a). 
We have f (y l ( t ) )  = f [ F - l ( F ( a )  - F(xl(t))] = H(x l ( t ) )  and then 

d t =  - d x l  (t)/  f (y l  (t) ) = - d x l  ( t ) /H(Xl  (t) ). 

Therefore 

Sl + s2 = - H ~ )  H-~) > 1/(4k + 1). 

That 's  to say, the time that  a moving point goes along the trajectory from (a, 0) to (0, a) is 

greater than 1/(4k + 1). It follows from the continuous dependence of solutions upon the initial 
conditions that there is b < a, sufficiently near a, such that  the time that  a point goes along 

the trajectory from (b, 0) to (0, b) is greater than 1 ~ ,  too. The trajectory rb determined by 

F(x)  + F(y) = F(b) (2.6) 

is a closed curve. It follows from the symmetry of the trajectories of Eqs. (2.1) that the period 

Tb of the closed trajectory rb is greater than 4/(4k + 1). 
Let c = F(s),  s E (0, a) in Eq. (2.2). For a trajectory rs := {(xs(t), y,(t))lt  E ]~} determined 

by F(x)  + F(y) = F(s),  let x = pcosS, y = psinO. Then we have the equivalent equations 

( ~  = - f ( p s i n  0) cos 9 + f (p  cos 8) sin 8, (2.7) 
= l [ f ( p  cos 8) cos 9 + f ( p  sin 8) sin 8]. 

Clearly Iim F(s) = 0 implies lim p = 0. Therefore Ve E (0,c~ - ~(4k + 1)), there is an s small 
s--+O s-.--*O 

enough such that  

= f (p  cos 8) cos2 9 + f ( p  sin 8) sin2 9 > (~ - ~ > 2(4k + 1). 
p cos 9 p sin 9 

So the period Ts of the closed trajectory rs : F(x)  + F(y) = F(s) is less than 4/(4k + 1). 

Since the periods of the closed trajectories change continuously, there is a closed trajectory 

ra,{(x( t) ,y( t))} ,  of Eqs. (2.1), d E (0,a), whose period equals 4/(4k + 1). Then Lemma 2.1 

implies that  x(t) is a periodic solution with period 4/(4k + 1). It is clear that  ]x(t)l < a. 

This theorem is now proved. 

C o r o l l a r y  2.1. Suppose (H0) holds, lim~_.of(X)/x = c~ > (4k+l)  and H(x----~ > 1/(4l+1), 

where k > 1 > O. Then Eq. (1A) has at least k - l + 1 different nontrivial periodic solutions 

xi(t) with periods 4/(4i + 1), respectively, and [xi(t)l < a,i  = l, l + 1 , . . . ,  k. 
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This can be directly deduced from Theorem 2.1. 

C o r o l l a r y  2.2. Suppose (H0) holds. I f  lim ~ ] ( x ) / x  = oo, then Eq. (1.1) has infinite different 
periodic solutions. 

~o ~ dx Pro@ Since H- -~  is a positive number, there is an integer k0 > 0 such that 

fo ~ dx H(x---~ > 1/(4k + 1), 

for k >_ k0. At the same time lira f ( x ) / x  > -~(4k + 1). It follows from Theorem 2.1 that Eq. 
m---+0 -f. 

(1.1) has at least one 4/(4k + 1)-periodic solution xk(t) for every k __ k0. The corollary is now 
proved. 

fo ~ dx T h e o r e m  2.2. Suppose (H0) holds and f(a) = O. I f  H(x)  <- 1/(4k + 1) ]or an integer 

k > O, then Eq. (1.1) has at least a 4/(4k + 1)-periodic solution xk(t) with max{xk(t)} = a. 

fo ~ dx Proof. Let H(x---~ = s and take (Xo, Yo) �9 { (x ,y) lF(x)  + F(y) = F(a)}, xo, Yo > 0. Suppose 

(xo(t), yo(t)) is the solution of Eqs. (2.1) satisfying (xo(to), y0(t0)) = (xo, Yo), (xo( to-s l ) ,  yo( to-  
Sl)) = (a,O),(xo(to + s2),yo(to + s~)) = (O,a) and xo(t),yo(t) > 0 for t �9 (to - sl,to + s2). It 
follows from F(xo(t)) + F(y0(t)) = F(a) and the first equation of Eqs. (2.1) that 

fto+~2 ~o(t)dt ~o dx 
sl + s2 = - Jto-~ " f [ F - l ( F - ~ : - F ( x o ( t ) ) ]  = - H(x)  - s. 

Then Eqs. (2.1) has a 4s-periodic solution (x*(t),y*(t)) satisfying 
1) (x*(t + s),y*(t + s)) = (-y*(t) ,x*(t)) ,  

2)  m a x  Ix(t)J = a ,  

since Lemma 2.2 holds. Property 1) implies x*(t + s) = -y*( t )  = - x * ( t  - s) or x*(t) = 
-y*( t  - s) = - x* ( t  - 2s). Then 

5c*(t) = - f (y*( t ) ) ,  ~*(t) = f(x*(t)) .  

Let tl �9 [0,4s],(x*(tl),y*(tl)) = (a,0). Then 

(x*(tl + s),y*(tl  + s)) = ( -y*( t l ) , x*( t l ) )  = (O,a), 

(x*(tl + 2s),y*(tl  + 2s)) = ( -y*( t l  + s),x*(tl  + s)) = (-a,O) 

and (x*(tl + 3s),y*(tl  + 3s)) = (0 , - a ) .  
1 Let ~ = ~ - s. We define (x(t), y(t)) as follows: 

[ ) y( t ) )  : = 0), t c tl + 4---z 'tl + + ; 

(x( t) ,y( t)):  = ( x * ( t - ~ 4 i  - a ) , y * ( t - ~ 4 i  _ ~ ) ) ,  

4i 4i + 1 ~. t � 9  t l + ~ + a , t l + 4--k-~-~ ) , 

[ 4 i + 1  ~ ) (x( t) ,y( t)):  = ( 0 ,  a), t � 9  t l + ~ , t l + 4 k + 1 + o "  ," 
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(x(t),y(t)) : = (x* ( t -  4i 

tE [ t l+  4 / + 1 +  
4 k + 1  

(x(t),y(t)) : = (-a,O), t E 

(x(t),y(t)) : = (x* ( t -  4i 
4 - k - - 4 - T  - 

4i +2  
tE  tl + 4-k--4-i + 

( x ( t ) , y ( t ) )  : = ( o , - a ) ,  t 

(x(t),y(t)) : = (x* ( t -  4i 

4 i + 3  
tE  tl + 4-K-T- I 

2a) ,y* ( t -  4i - 2 a ) )  

4 i + 2 ~ .  
a, tl + 4 - Y ~ )  ' 

[ 4 i + 2  ~ ) tx + 4--k---4~,tl + +(r �9 4 k + 1  

4i -J-3h. or, ti + 4-'k-'TT) ' 

[ 4 / + 3 , 4 / + 3 )  E t l + ~ , ~ l + 4 k + l  +or ," 

- 4cr) ,y* (t- 4i -4a)) 

4 i + 4 ~  + cr, tl + ~ ) .  

Obviously (x(t), y(t)) is a continuous and differentiable periodic vector function with period 
4/(4k + 1). We now prove that (x(t), y(t)) is a solution of Eqs. (2.1). 

[t~ 4i 4i ) Wben t E - t - ~ , t l + ~ + a  , we have f(x(t)) = f(y(t)) = O since x(t) = a, 
y(t) = 0. T h e n  

~ ( t )  = -S(y(t)) ,  ~(t) = S(z(t)) (2.s) 

4i 4i + 1 holds. When t E tl + ~ + a, tl + 4-E-4--i) ' we have 

4i ~( t )=~*  t - ~ -  

y ( t )  = y" t - ~ - 

cr) =-f[y*(t- 4i 4-k--W-l- -o-)] = -f(y(t)), 
-) :S[-'('- ~ 4-~-')]-- i ( . / , ) )  

The other cases can be proved in a similar way. 
We now prove that (x(t), y(t)) satisfies 
1) ( x ( t + ~ )  y 1 
2) maxix(t)]=a. 

It is obvious that max Ix(t)I = a. 
4i 4i (r) then = 1 W h e n  t (-- I t  I ~- 4 - - - ~ , t l - ~ -  ~ -~- , (x(t),y(t)) (a, O)and (z (t I -Jff 4 ~ ' ~ )  ' 

1 y (tl + 4-k-'T-T)) --- (0,a) imply that the relation in 1) holds. 

[ 4i 4 / + 1 ~  then 1 [ 4 / + 1  4 / + 2 ~  When tE  tl+4-k---~-T+a, t l + 4 k + l j ,  t+4--k---~E t l + 4 k + l + a ,  t l + 4 k + l ] .  
So 

1 (t + 4--k-~)) ---- (x* ( t +  ~ ( x ( t + ~ ) , y  1 1 - 4 i - 2 ~ r ) , y *  ( t +  1 - 4 i -  2~r)) 

= ( x * ( t - ~ 4 i  - a + s ) , y * ( t - ~ 4 i  _ ~ + s ) )  

--(-~" 0-~-~4~ _.),." 0- ~-~ - ) ) ~ -  
= ( - y ( t ) ,  z ( t ) ) .  
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The relation in 1) also holds. The other cases can be proved in a similar way. 
( 1 , (t+~))=l (x(t) ,y(t))  is a solution of Eqs. (2.1) satisfying kx (t  + ~ )  y Since 

1 1 ( -y ( t ) , x ( t ) ) ,  i.e., ( x ( t ) , y ( t ) ) =  ( - y  ( t-4-~--+'-T),x ( t -4 - - k - -4~) ) ,  it follows from the first 

equation in (2.1) that 

( ( 1 ))  ( ( 1 4k ))  
x ( t ) = - f ( y ( t ) ) = - f  x t 4 k + 1  = - f  x t - 4 k + l  4 k + 1 '  = - f ( x ( t - 1 ) ) .  

Therefore x(t) is a 4/(4k + 1)-periodic solution of Eq. (1.1). The proof is now completed. 

/o ~ dx 1 for an integer k > O, C o r o l l a r y  2.3. Suppose (H0) holds. I f  f (a)  = 0 and H(x---~ <- 4k +---'~ 

then Eq. (1.1) has at least k + 1 different periodic solutions, x~(t), with period 4 / ( 4 / +  1),l = 
0 ,1 , - - . , k .  

~ dx 1 
C o r o l l a r y  2.4. Suppose (H0) holds and f ( x )  = f (a  - x) for x �9 [0, a]. I f  f ( x )  <- 4k +----~' 

then Eq. (1.1) has at least k + 1 different periodic solutions xt(t) : max Ixl(t)l = a, with periods 
4/(4k + 1), l = 0, 1 , - . . ,  k: Here k > 0 is an integer. 
Proof. Clearly f(0)  = ](a) = 0. Therefore it suffices to prove 

H(x) = f ( x ) .  (2.9) 

In fact, the condition f ( z )  = f (a  - x) for x E [0, a] implies 

/ /  /0 ~ /0 F(a) - F(x)  = f(~)d~ ~=~-r f (a  - u)du = f (u)du = F(a - x), 

H(x)  = f [ F - l ( F ( a )  - F(x))] = f [ F - l ( F ( a  - x))] = f (a  - x) = f (x) .  

So this corollary is a direct deduction drawn from Theorem 2.2. 

T h e o r e m  2.3. Suppose (H0) holds and f ( a ) = O. I f  lim ~ f ( x ) / x = ~ > ~ ( 4 k +  1) for an integer 

k ~ O, then Eq. (1.1) has at least k + 1 different periodic solutions with periods 4/(4l + 1), l -- 
0 ,1 , - - . , k .  

f0 x dx Proof. These periodic solutions are confirmed by Corollary 2.1 when H(z-----) > 1 and by 

/o~ dx 1 As for the case where /0~ dx 1 Corollary 2.3 when H(x----) <- 4k +-----1" H(x)  - ~ : 4l +-----1 < ~ <- 
1 

1 < I < k, the k - l + 1 periodic solutions are ensuredby Corollary 2.1 and the other l 
41 - 3 '  
ones by Corollary 2.3. 

R e m a r k .  When f ( x )  has finite discontinuous points of the first type, i.e., for any one of its 

discontinuity points, say ,  x0, both lim f ( x )  and lim f (x )  exist and are finite, all the above 
~-+~o + ~ - + ~ o  

theorems remain valid. 
E x a m p l e  2.1. Consider a differential delay equation 

x(t) = - a f ( x ( t  - 1)), (2.10) 

where a > 0 is a parameter and 

xe[-1,0], 
f(x)= xe[0,1]. 
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Obviously f (x)  satisfies all requirements of Corollary 2.4. We know from lim exf (x) /x  = +cx~ 
z---*0 

that Va > 0 Eq. (2.10) has infinitely many oscillating periodic solutions xt(t)  with periods 

fo 4/(4l + 1),l = 0, 1, 2 , . - . .  Furthermore f - ~  = r implies that when c~ _> ~r(4l + 1) for an 

integer k ~ 0, among these periodic solutions there are at least k + 1 ones with amplitudes 
being 1. 

3 N u m b e r  o f  S i m p l e  P e r i o d i c  S o l u t i o n s  

Def in i t ion  3.1. An w-periodic solution x(t)  of Eq. (1.1) is said to be simple periodic when the 

trajectory {(x(t), ~(t))[t E] l}  is a simple closed curve in the x, ~-plane. 

This definition is consistent with that in [5] when f ( x )  is continuous on ~t and x f ( x )  > 0 

for x # O. 
We have given in [5] a result as follows (see [5], Theorem 2.1). 

T h e o r e m  3.1. Suppose d E C~ ]l) being odd, f ' ( x )  >_ 0 and there is a constant e > 0 such 
that f ' ( x )  is monotonically decreasing on (0, e) and not increasing on (e, oo). I f  there are two 
integers k, n > 0 such that 

2 [4(k + n) + 5], ~max{O, 4 k - 3 } _ < f ' ( o o ) <  ( 4 k + l ) <  ~ [ 4 ( k + n ) + l ] < f ' ( O )  < ~ 

then Eq. (1.1) has exactly n + 1 simple periodic solutions with periods 4/[4(k + l) + 1], l = 

0 ,1 , - - . , n .  
When f ( x )  is defined only on a finite interval [ -a ,  a], we give the following theorem. 

T h e o r e m  3.2. Suppose (H0) holds, f e Cl([-a,a],[O, oo)) and there is e e (O,a) such that 

f ' ( x )  is monotonically decreasing on ( 0, e) and not increasing on (r a). I f  

lr[4n + 1] < f ' (0)  < 214n + 5], f (a )  < a, ~ 

then Eq. (1.1) has exactly n + 1 simple periodic solutions, xt(t),  with periods 4/(41 + 1), l = 

0 ,1 , . - - , n .  
Proof. We define a function as follows: 

/ (x) ,  x e I -a ,  a] 

g(x) = f (a )  + f ' ( a ) ( x  - a), x > a, 
- / ( a )  + a), x < - a  

Obviously g(x) satisfies the requirements of Theorem 3.1. Since 

f ( a )  f ( a )  - f(O) ~ - - - -  < 1 ,  
a a - 0  

there is ~ E (0,a) such that f ' (~) < 1 and therefore f ' (a )  < f ' (~) < 1. The fact that g'(x) = 

f ' (a )  for Ix I > a implies g'(c~) _ 1. 
Theorem 3.1 tells us that 

d~(t) = - g ( x ( t -  1)) (3.1) 

4 has exactly n + 1 simple periodic solutions xt(t)  with periods 4-F-4~' l = 0, 1, 2 , . . . ,  n. 
Suppose max Ixt(t)l = m. We now prove m < a. Supposing to the contrary m _> a, then 

Ig(x)l <_ f (a )  + f ' ( a ) ( m  - a) <_ m. The equality does not hold for all lxl < m. 
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Let xt(to) = m.  Then 

xt(to) = - g ( x l ( t o  -- 1)) ---- O. 

Therefore xl(to - 1) = 0 and 

a contradiction. 

41 + 1 

Because g(x)  = f ( x )  for Ix] _< a and ]xt(t)] < a, xt( t )  is also a periodic solution of Eq. (1.1). 

Obviously Eq. (1.1) has no other simple periodic solutions. The theorem is proved. 
E x a m p l e  3.1. Let f ( x )  = (1 - ]sin x]) sin x, x e [-~r/2, 7r/2]. Consider 

e ( t )  = - 1 ) ) ,  (3.2) 

where a > 0 is a parameter. Clearly f ( x )  is odd and continuous on [-7r/2, ~r/2]. 

Because lim f ( x ) / x  = 1 and f(Tr/2) = 0, f ( x )  > 0 for x E (0,7r/2) Eq. (3.2) has periodic 
z ~ 0  

solutions wt~en a > 7r/2. Furthermore f ( x )  reaches its maximum 1/4 at x = 7r/6 and f ' (x)  > 0 

is monotonically decreasing on interval (0, 7r/6). We can show as in the proof of Theorem 3.2 

that all the periodic solutions of Eq. (3.2) have their maxima less than 7r/6 when a < 27r. 

( ~ ,  ~ r ) ,  Eq. (3.2)has one and only one simple periodic solution , So w h e n  ~ E which  is 
4-periodic. 
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