Acta Mathematica Sinica, New Series 1996, Vol.12, No.2, pp. 113-121

Periodic Solutions of the Differential Delay Equation $\dot{x}(t) = -f(x(t-1))$

Ge Weigao

Abstract. For an odd function $f(x)$ defined only on a finite interval, this paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation (DDE) $\dot{x}(t) = -f(x(t-1))$. By use of the method of qualitative analysis combined with the constructing of special solutions a series of interesting results are obtained on these problems.

Keywords. Odd function, Periodic solution, Differential delay equation

1 Introduction

J. L. Kaplan and J. A. Yorke^[1] made use of differential equations for the first time to discuss the conditions for the existence of periodic solutions of differential delay equations

$$
\dot{x}(t) = -f(x(t-1))
$$
 and $\dot{x}(t) = -f(x(t-1)) - f(x(t-2)),$

where $f \in C^0(\mathbb{R}, \mathbb{R})$ being odd, $xf(x) > 0$ for $x \neq 0$. After then their results have been extended^[2,3]. All those contributions are made under the condition that $f(x)$ is continuous on]~. This paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation

$$
\dot{x}(t) = -f(x(t-1)),
$$
\n(1.1)

where f satisfies

(H₀): $f \in C^0([-a, a], \mathbb{R}), f(-x) = -f(x)$ and $f(x) > 0$ for $x \in (0, a)$.

By the use of the method of qualitative analysis combined with constructing special solutions to Eq. (1.1) we give some new results in Section 2 about the existence. The number of simple periodic solutions is discussed in Section 3.

Definition 1.1. *Suppose both* $x_1(t)$ *and* $x_2(t)$ *are solutions of Eq.* (1.1). *Then* $x_1(t)$ *and* $x_2(t)$ are said to be identical when there is a constant r such that $x_1(t) \equiv x_2(t + r)$.

This definition is essential in counting the number of solutions.

Received December 6, 1993.

Supported by the National Natural S, \lnot nce Foundation of China.

2 Existence of Periodic Solutions

We consider first the relation between Eq. (1.1) and the ordinary differential equations

$$
\dot{x} = -f(y), \quad \dot{y} = f(x). \tag{2.1}
$$

Lemma 2.1. *Suppose* (H_0) *holds. If Eqs.* (2.1) *has a nontrivial periodic solution* $(x(t), y(t))$ with period $4/(4l+1), l \geq 0$, and with $||x|| < a$, then $x(t)$ is a periodic solution of Eq. (1.1). *Here* $||x|| = \max |x(t)|$.

Proof. It is easy to see that all the trajectories of Eqs. (2.1) in the square $\{(x,y)| |x| \le a, |y| \le a\}$ are determined by

$$
F(x) + F(y) = c,\t\t(2.2)
$$

where $F(x) = \int_{0}^{x} f(\xi) d\xi$ for $|x| \le a$ and $0 \le c \le 2F(a)$. When $0 < c \le F(a)$ all the curves represented by Eq. (2.2) are closed and symmetric with respect to the x-axis and y-axis and each of them except for the case when $c = F(a)$ consists of a periodic solution of Eqs. (2.1). And $F(x) + F(y) = F(a)$ can represent a periodic solution of (2.1) only when the time that a moving point goes round the curve in a cycle is finite.

Since $(x(t), y(t))$ is a periodic solution of Eqs. (2.1) with period $4/(4l + 1)$, we have

$$
\dot{x}(t) = -f(y(t)), \quad \dot{y}(t) = f(x(t)). \tag{2.3}
$$

Let $\Gamma = \{(x(t), y(t)) | t \in \mathbb{R} \}$ and denote by A, B, C and D the four intersection points of Γ with the two axes in the counter-clockwise direction:

$$
A = \left(x\left(t_0 + \frac{4k}{4l+1}\right), y\left(t_0 + \frac{4k}{4l+1}\right)\right) = (r, 0),
$$

\n
$$
B = \left(x\left(t_1 + \frac{4k}{4l+1}\right), y\left(t_1 + \frac{4k}{4l+1}\right)\right) = (0, r),
$$

\n
$$
C = \left(x\left(t_2 + \frac{4k}{4l+1}\right), y\left(t_2 + \frac{4k}{4l+1}\right)\right) = (-r, 0),
$$

\n
$$
D = \left(x\left(t_3 + \frac{4k}{4l+1}\right), y\left(t_3 + \frac{4k}{4l+1}\right)\right) = (0, -r),
$$

where $0 \le t_0 < t_1 < t_2 < t_3 \le 4/(4l+1)$, k is an integer. Γ is now determined by $F(x) + F(y) =$ *F(r).* It follows from the symmetry of the trajectory that $t_1 = t_0 + \frac{1}{4l+1}$, $t_2 = t_0 + \frac{2}{4l+1}$, $t_3 =$ $t_0 + \frac{3}{4l+1}$. It is easy to verify that $(y(t), -x(t))$ and $\left(x\left(t-\frac{1}{4l+1}\right), y\left(t-\frac{1}{4l+1}\right)\right)$ are both solutions of Eqs. (2.1) and

$$
(y(t_0), -x(t_0)) = \left(x\left(t_0 - \frac{1}{4l+1}\right), y\left(t_0 - \frac{1}{4l+1}\right)\right) = (0, -r).
$$

Since the uniquencess of solution of Eqs. (2.1) for any given initial conditions holds when $|x|, |y| < a$, we have

$$
(y(t),-x(t))=\left(x\left(t-\frac{1}{4l+1}\right),y\left(t-\frac{1}{4l+1}\right)\right).
$$

It follows that

$$
y(t) = x\left(t - \frac{1}{4l+1}\right) = -y\left(t - \frac{2}{4l+1}\right) = x\left(t - \frac{1}{4l+1} - \frac{4l}{4l+1}\right) = x(t-1),
$$

and therefore

$$
\dot{x}(t) = -f(y(t)) = -f(x(t-1)).
$$

Lemma 2.2. *Suppose* (H₀) *holds and* $F(a) = 0$. Let $(p,q) \in \Gamma = \{(x,y) | F(x) + F(y) = 0\}$ $F(a)$, $p, q > 0$ and $(x_0(t), y_0(t))$ be a solution of Eqs. (2.1) with $(x_0(t_0), y_0(t_0)) = (p, q)$. *Suppose* $s_1, s_2 > 0$ are two constants such that $x(t), y(t) > 0$ for $t \in (t_0 - s_1, t_0 + s_2)$ and $\lim_{t\to t_0-s_1}(x_0(t),y_0(t)) = (a,0)$ as well as $\lim_{t\to t_0+s_2}(x_0(t),y_0(t)) = (0,a)$. If $s_1 + s_2 < \infty$, then Eq. (2.1) *has a* $4(s_1 + s_2)$ -periodic solution $(x(t), y(t))$ satisfying

- 1) $(x(t + s_1 + s_2), y(t + s_1 + s_2)) = (-y(t), x(t));$
- 2) $\max_{t \in \mathbb{R}} |x(t)| = a$.

Proof. Since the trajectories of Eqs. (2.1) are determined by the family of curves (2.2), we have

$$
F(x_0(t)) + F(y_0(t)) = F(a), \qquad (2.4)
$$

$$
\dot{x}_0(t) = -f(y_0(t)), \quad \dot{y}_0(t) = f(x_0(t)) \tag{2.5}
$$

for $t \in (t_0 - s_1, t_0 + s_2)$. Set $s = s_1 + s_2$. Define $(x(t), y(t))$ as

$$
(x(t), y(t)) = (x_0(t - 4ks), y(t - 4ks)),
$$

\n
$$
t \in [t_0 - s_1 + 4ks, t_0 + s_2 + 4ks);
$$

\n
$$
(x(t), y(t)) = (-y_0(t - (4k + 1)s), x_0(t - (4k + 1)s)),
$$

\n
$$
t \in [t_0 - s_1 + (4k + 1)s, t_0 + s_2 + (4k + 1)s);
$$

\n
$$
(x(t), y(t)) = (-x_0(t - (4k + 2)s, -y_0(t - (4k + 2)s)),
$$

\n
$$
t \in [t_0 - s_1 + (4k + 2)s, t_0 + s_2 + (4k + 2)s);
$$

\n
$$
(x(t), y(t)) = (y_0(t - (4k + 3)s), -x_0(t - (4k + 3)s)),
$$

\n
$$
t \in [t_0 - s_1 + (4k + 3)s, t_0 + s_2 + (4k + 3)s),
$$

where $k = 0, \pm 1, \dots$. Clearly the vector function $(x(t), y(t))$ is 4s-periodic and satisfies the requirements 1) and 2). We now prove that $(x(t), y(t))$ is a solution of Eqs. (2.1).

When $t \in [t_0 - s_1 + (4k + 1)s, t_0 + s_2 + (4k + 1)s)$, let $r = t - (4k + 1)s$. Then we have $r \in [t_0 - s_1, t_0 + s_2)$ and

$$
\begin{aligned} \dot{x}(t) &= -\dot{y}_0(r) = -f(x_0(r)) = -f(y(t)), \\ \dot{y}(t) &= \dot{x}_0(r) = -f(-y_0(r)) = -f(-x(t)) = f(x(t)) \end{aligned}
$$

Obviously $(x(t), y(t))$ satisfies Eqs. (2.1). The other three cases can be proved in a similar way. Besides, $(x(t), y(t))$ is continuous and differentiable at each of the connection points. Therefore $(x(t), y(t))$ is a 4s-periodic solution of Eqs. (2.1).

We now consider a segment of curve $F(x) + F(y) = F(a), x, y \ge 0.$

When (H_0) holds, $F : [0, a] \to [0, F(a)] \subset \mathbb{R}$ is a strictly monotonic function and hence F^{-1} exists on $[0, F(a)]$. Since $F(a) - F(x) \in [0, F(a)]$ for $x \in [0, a]$, we define

$$
H(x) := f[F^{-1}(F(a) - F(x))] \text{ for } x \in [0, a].
$$

Obviously $H: [0, a] \to [0, a]$ is a continuous mapping.

Theorem 2.1. *Suppose* (*H₀*) *holds. If* $\lim_{x\to 0} f(x)/x = \alpha > \frac{\pi}{2} (4k+1)$ *and* $\int_{0}^{a} \frac{dx}{H(x)} > \frac{1}{4k+1}$ *for* **an integer** $k \geq 0$ **, then Eq. (1.1) has at least one** $4/(4k+1)$ **-periodic solution** $x(t)$ **:** $|x(t)| < a$ **.** *Proof.* Take $(x_0, y_0) \in \Gamma = \{(x, y) | F(x) + F(y) = f(a) \}$, $x_0, y_0 > 0$. Denote by $(x_1(t), y_1(t))$ the solution of Eqs. (2.1) satisfying $(x_1(t_0), y_1(t_0)) = (x_0, y_0)$. Then there are $s_1, s_2 > 0$ such that $(x_1(t_0),y_1(t_0)) = (x_0,y_0)$ and $(x_1(t_0-s_1),y_1(t_0-s_1)) = (a,0),(x_1(t_0+s_2),y_1(t_0+s_2)) = (0,a).$ We have $f(y_1(t)) = f[F^{-1}(F(a) - F(x_1(t))] = H(x_1(t))$ and then

$$
dt = -dx_1(t)/f(y_1(t)) = -dx_1(t)/H(x_1(t)).
$$

Therefore

$$
s_1 + s_2 = -\int_a^0 \frac{dx}{H(x)} = \int_0^a \frac{dx}{H(x)} > 1/(4k+1).
$$

That's to say, the time that a moving point goes along the trajectory from $(a, 0)$ to $(0, a)$ is greater than $1/(4k+1)$. It follows from the continuous dependence of solutions upon the initial conditions that there is $b < a$, sufficiently near a, such that the time that a point goes along the trajectory from $(b, 0)$ to $(0, b)$ is greater than $\frac{1}{4k+1}$, too. The trajectory r_b determined by

$$
F(x) + F(y) = F(b) \tag{2.6}
$$

is a closed curve. It follows from the symmetry of the trajectories of Eqs. (2.1) that the period T_b of the closed trajectory r_b is greater than $4/(4k+1)$.

Let $c = F(s), s \in (0, a)$ in Eq. (2.2). For a trajectory $r_s := \{(x_s(t), y_s(t)) | t \in \mathbb{R}\}\)$ determined by $F(x) + F(y) = F(s)$, let $x = \rho \cos \theta$, $y = \rho \sin \theta$. Then we have the equivalent equations

$$
\begin{cases}\n\dot{\rho} = -f(\rho \sin \theta) \cos \theta + f(\rho \cos \theta) \sin \theta, \\
\dot{\theta} = \frac{1}{\rho} [f(\rho \cos \theta) \cos \theta + f(\rho \sin \theta) \sin \theta].\n\end{cases}
$$
\n(2.7)

Clearly $\lim_{s\to 0} F(s) = 0$ implies $\lim_{s\to 0} \rho = 0$. Therefore $\forall \varepsilon \in (0, \alpha - \frac{\kappa}{2}(4k+1))$, there is an s small enough such that

$$
\dot{\theta} = \frac{f(\rho\cos\theta)}{\rho\cos\theta}\cos^2\theta + \frac{f(\rho\sin\theta)}{\rho\sin\theta}\sin^2\theta > \alpha - \varepsilon > \frac{\pi}{2}(4k+1).
$$

So the period T_s of the closed trajectory r_s : $F(x) + F(y) = F(s)$ is less than $4/(4k+1)$. Since the periods of the closed trajectories change continuously, there is a closed trajectory r_{d} , $\{(x(t),y(t))\}$, of Eqs. (2.1), $d \in (0,a)$, whose period equals $4/(4k+1)$. Then Lemma 2.1 implies that $x(t)$ is a periodic solution with period $4/(4k+1)$. It is clear that $|x(t)| < a$.

This theorem is now proved.

Corollary 2.1. *Suppose* (H₀) *holds*, $\lim_{x\to 0} f(x)/x = \alpha > \frac{\pi}{2}(4k+1)$ *and* $\int_0^a \frac{dx}{H(x)} > 1/(4l+1)$, where $k \ge 1 \ge 0$. Then Eq. (1.1) has at least $k - l + 1$ different nontrivial periodic solutions $x_i(t)$ with periods $4/(4i + 1)$, *respectively*, and $|x_i(t)| < a, i = l, l + 1, \dots, k$.

This can be directly deduced from Theorem 2.1.

Corollary 2.2. *Suppose* (H₀) *holds.* If $\lim_{x\to 0} f(x)/x = \infty$, then Eq. (1.1) has infinite different *periodic solutions.*

Proof. Since $\int_0^a \frac{dx}{H(x)}$ is a positive number, there is an integer $k_0 > 0$ such that

$$
\int_0^a \frac{dx}{H(x)} > 1/(4k+1),
$$

for $k \ge k_0$. At the same time $\lim_{x\to 0} f(x)/x > \frac{1}{2}(4k+1)$. It follows from Theorem 2.1 that Eq. (1.1) has at least one $4/(4k+1)$ -periodic solution $x_k(t)$ for every $k \geq k_0$. The corollary is now proved.

Theorem 2.2. *Suppose* (H₀) *holds and* $f(a) = 0$. If $\int_0^a \frac{dx}{H(x)} \le 1/(4k+1)$ for an integer $k \geq 0$, then Eq. (1.1) has at least a $4/(4k+1)$ -periodic solution $x_k(t)$ with $\max\{x_k(t)\} = a$. *Proof.* Let $f_{\overline{H(x)}} = s$ and take $(x_0, y_0) \in \{(x, y) | F(x) + F(y) = F(a)\}, x_0, y_0 > 0$. Suppose $(x_0(t), y_0(t))$ is the solution of Eqs. (2.1) satisfying $(x_0(t_0), y_0(t_0)) = (x_0, y_0), (x_0(t_0 - s_1), y_0(t_0 - s_1))$ $S_1(x) = (a,0), (x_0(t_0 + s_2), y_0(t_0 + s_2)) = (0,a)$ and $x_0(t), y_0(t) > 0$ for $t \in (t_0 - s_1, t_0 + s_2)$. It follows from $F(x_0(t)) + F(y_0(t)) = F(a)$ and the first equation of Eqs. (2.1) that

$$
s_1 + s_2 = -\int_{t_0 - s_1}^{t_0 + s_2} \frac{\dot{x}_0(t)dt}{f[F^{-1}(F(a) - F(x_0(t))] } = -\int_a^0 \frac{dx}{H(x)} = s.
$$

Then Eqs. (2.1) has a 4s-periodic solution $(x^*(t), y^*(t))$ satisfying

1) $(x^*(t + s), y^*(t + s)) = (-y^*(t), x^*(t)),$

2) max $|x(t)| = a$,

since Lemma 2.2 holds. Property 1) implies $x^*(t + s) = -y^*(t) = -x^*(t - s)$ or $x^*(t) =$ $-y^*(t-s) = -x^*(t-2s)$. Then

$$
\dot{x}^*(t) = -f(y^*(t)), \quad \dot{y}^*(t) = f(x^*(t)).
$$

Let $t_1 \in [0, 4s], (x^*(t_1), y^*(t_1)) = (a, 0)$. Then

$$
(x^*(t_1 + s), y^*(t_1 + s)) = (-y^*(t_1), x^*(t_1)) = (0, a),
$$

$$
(x^*(t_1 + 2s), y^*(t_1 + 2s)) = (-y^*(t_1 + s), x^*(t_1 + s)) = (-a, 0)
$$

and $(x^*(t_1+3s),y^*(t_1+3s))=(0,-a).$

Let $\sigma = \frac{1}{4k+1} - s$. We define $(x(t), y(t))$ as follows:

$$
(x(t), y(t)) : = (a, 0), \t t \in \left[t_1 + \frac{4i}{4k+1}, t_1 + \frac{4i}{4k+1} + \sigma\right);
$$

$$
(x(t), y(t)) : = \left(x^* \left(t - \frac{4i}{4k+1} - \sigma\right), y^* \left(t - \frac{4i}{4k+1} - \sigma\right)\right),
$$

$$
t \in \left[t_1 + \frac{4i}{4k+1} + \sigma, t_1 + \frac{4i+1}{4k+1}\right);
$$

$$
(x(t), y(t)) : = (0, a), \t t \in \left[t_1 + \frac{4i+1}{4k+1}, t_1 + \frac{4i+1}{4k+1} + \sigma\right);
$$

$$
(x(t), y(t)) : = \left(x^* \left(t - \frac{4i}{4k+1} - 2\sigma\right), y^* \left(t - \frac{4i}{4k+1} - 2\sigma\right)\right),
$$

\n
$$
t \in \left[t_1 + \frac{4i+1}{4k+1} + \sigma, t_1 + \frac{4i+2}{4k+1}\right);
$$

\n
$$
(x(t), y(t)) : = (-a, 0), \qquad t \in \left[t_1 + \frac{4i+2}{4k+1}, t_1 + \frac{4i+2}{4k+1} + \sigma\right);
$$

\n
$$
(x(t), y(t)) : = \left(x^* \left(t - \frac{4i}{4k+1} - 3\sigma\right), y^* \left(t - \frac{4i}{4k+1} - 3\sigma\right)\right),
$$

\n
$$
t \in \left[t_1 + \frac{4i+2}{4k+1} + \sigma, t_1 + \frac{4i+3}{4k+1}\right);
$$

\n
$$
(x(t), y(t)) : = (0, -a), \qquad t \in \left[t_1 + \frac{4i+3}{4k+1}, t_1 + \frac{4i+3}{4k+1} + \sigma\right);
$$

\n
$$
(x(t), y(t)) : = \left(x^* \left(t - \frac{4i}{4k+1} - 4\sigma\right), y^* \left(t - \frac{4i}{4k+1} - 4\sigma\right)\right),
$$

\n
$$
t \in \left[t_1 + \frac{4i+3}{4k+1} + \sigma, t_1 + \frac{4i+4}{4k+1}\right).
$$

Obviously $(x(t), y(t))$ is a continuous and differentiable periodic vector function with period $4/(4k+1)$. We now prove that $(x(t), y(t))$ is a solution of Eqs. (2.1).

When $t \in \left[t_1 + \frac{4i}{4k+1}, t_1 + \frac{4i}{4k+1} + \sigma\right)$, we have $f(x(t)) = f(y(t)) = 0$ since $x(t) = a$, $y(t) = 0$. Then

$$
\dot{x}(t) = -f(y(t)), \quad \dot{y}(t) = f(x(t)) \tag{2.8}
$$

holds. When $t \in \left[t_1 + \frac{4i}{4k+1} + \sigma, t_1 + \frac{4i+1}{4k+1} \right)$, we have

$$
\dot{x}(t) = \dot{x}^* \left(t - \frac{4i}{4k+1} - \sigma \right) = -f \left[y^* \left(t - \frac{4i}{4k+1} - \sigma \right) \right] = -f(y(t)),
$$

$$
\dot{y}(t) = y^* \left(t - \frac{4i}{4k+1} - \sigma \right) = f \left[x^* \left(t - \frac{4i}{4k+1} - \sigma \right) \right] = f(x(t)).
$$

The other cases can be proved in a similar way.

We now prove that $(x(t), y(t))$ satisfies

1) $\left(x(t+\frac{1}{4k+1}), y(t+\frac{1}{4k+1})\right)$ 2) $\max |x(t)| = a$.

It is obvious that max $|x(t)| = a$.

When
$$
t \in \left[t_1 + \frac{4i}{4k+1}, t_1 + \frac{4i}{4k+1} + \sigma\right)
$$
, then $(x(t), y(t)) = (a, 0)$ and $\left(x\left(t_1 + \frac{1}{4k+1}\right)\right)$,
\n $y\left(t_1 + \frac{1}{4k+1}\right)\right) = (0, a)$ imply that the relation in 1) holds.
\nWhen $t \in \left[t_1 + \frac{4i}{4k+1} + \sigma, t_1 + \frac{4i+1}{4k+1}\right)$, then $t + \frac{1}{4k+1} \in \left[t_1 + \frac{4i+1}{4k+1} + \sigma, t_1 + \frac{4i+2}{4k+1}\right)$.

So

 \bar{z}

$$
\left(x\left(t+\frac{1}{4k+1}\right),y\left(t+\frac{1}{4k+1}\right)\right) = \left(x^*\left(t+\frac{1-4i}{4k+1}-2\sigma\right),y^*\left(t+\frac{1-4i}{4k+1}-2\sigma\right)\right)
$$

$$
= \left(x^*\left(t-\frac{4i}{4k+1}-\sigma+s\right),y^*\left(t-\frac{4i}{4k+1}-\sigma+s\right)\right)
$$

$$
= \left(-y^*\left(t-\frac{4i}{4k+1}-\sigma\right),x^*\left(t-\frac{4i}{4k+1}-\sigma\right)\right)
$$

$$
= (-y(t),x(t)).
$$

The relation in 1) also holds. The other cases can be proved in a similar way.

Since $(x(t), y(t))$ is a solution of Eqs. (2.1) satisfying $\left(x\left(t + \frac{1}{4k+1}\right), y\left(t + \frac{1}{4k+1}\right)\right)$ = $(-y(t),x(t)),$ i.e., $(x(t),y(t)) = \left(-y\left(t-\frac{1}{4k+1}\right),x\left(t-\frac{1}{4k+1}\right)\right)$, it follows from the first equation in (2.1) that

$$
\dot{x}(t) = -f(y(t)) = -f\left(x\left(t - \frac{1}{4k+1}\right)\right) = -f\left(x\left(t - \frac{1}{4k+1} - \frac{4k}{4k+1}\right)\right) = -f(x(t-1)).
$$

Therefore $x(t)$ is a $4/(4k+1)$ -periodic solution of Eq. (1.1). The proof is now completed. **Corollary 2.3.** *Suppose* (H_0) *holds.* If $f(a) = 0$ and $\int \frac{H(a)}{H(a)} \leq \frac{1}{4k+1}$ for an integer $k \geq 0$, *then Eq.* (1.1) *has at least k + 1 different periodic solutions,* $x_i(t)$ *, with period* $4/(4l + 1)$ *,l* = $0,1,\cdots,k.$

Corollary 2.4. *Suppose* (H_0) *holds and* $f(x) = f(a-x)$ for $x \in [0, a]$. If $\int_a^a \frac{dx}{f(x)} \leq \frac{1}{4b+1}$, *then Eq.* (1.1) *has at least k + 1 different periodic solutions* $x_l(t)$: max $|x_l(t)| = a$, with periods $4/(4k+1), l = 0, 1, \dots, k.$ *Here* $k \ge 0$ *is an integer.*

Proof. Clearly $f(0) = f(a) = 0$. Therefore it suffices to prove

$$
H(x) = f(x). \tag{2.9}
$$

In fact, the condition $f(x) = f(a-x)$ for $x \in [0, a]$ implies

$$
F(a) - F(x) = \int_x^a f(\xi) d\xi \stackrel{u=a-f}{=} \int_0^{a-x} f(a-u) du = \int_0^{a-x} f(u) du = F(a-x),
$$

$$
H(x) = f[F^{-1}(F(a) - F(x))] = f[F^{-1}(F(a-x))] = f(a-x) = f(x).
$$

So this corollary is a direct deduction drawn from Theorem 2.2.

Theorem 2.3. *Suppose* (H₀) *holds and* $f(a) = 0$. If $\lim_{x \to a} f(x)/x = \alpha > \frac{1}{2}(4k+1)$ for an integer $k \geq 0$, then Eq. (1.1) has at least $k + 1$ different periodic solutions with periods $4/(4l + 1), l =$ $0,1,\cdots,k$.

Proof. These periodic solutions are confirmed by Corollary 2.1 when $\int_0^x \frac{dx}{H(x)} > 1$ and by *Corollary 2.3 when* $\int_0^a \frac{dx}{H(x)} \leq \frac{1}{4k+1}$. As for the case where $\int_0^x \frac{dx}{H(x)} = \beta$: $\frac{1}{4l+1} < \beta \leq$ $\frac{1}{4l-3}$, $1 \leq l \leq k$, the $k-l+1$ periodic solutions are ensured by Corollary 2.1 and the other l ones by Corollary 2.3.

Remark. When $f(x)$ has finite discontinuous points of the first type, i.e., for any one of its discontinuity points, say, x_0 , both lim $f(x)$ and lim $f(x)$ exist and are finite, all the above $x \rightarrow x_0$ $x \rightarrow x_0$

theorems remain valid.

Example 2.1. Consider a differential delay equation

$$
\dot{x}(t) = -\alpha f(x(t-1)),\tag{2.10}
$$

where $\alpha > 0$ is a parameter and

$$
f(x) = \begin{cases} -\sqrt{x(1+x)}, & x \in [-1,0], \\ \sqrt{x(1-x)}, & x \in [0,1]. \end{cases}
$$

Obviously $f(x)$ satisfies all requirements of Corollary 2.4. We know from $\lim_{x\to 0} \alpha f(x)/x = +\infty$ that $\forall \alpha > 0$ Eq. (2.10) has infinitely many oscillating periodic solutions $x_i(t)$ with periods $f(4l + 1), l = 0, 1, 2, \cdots$. Furthermore $\int_0^{\pi} f(x) dx = \pi$ implies that when $\alpha \geq \pi(4l + 1)$ for an integer $k \geq 0$, among these periodic solutions there are at least $k + 1$ ones with amplitudes being 1.

3 Number of Simple Periodic Solutions

Definition 3.1. An ω -periodic solution $x(t)$ of Eq. (1.1) is said to be simple periodic when the *trajectory* $\{(x(t), \dot{x}(t)) | t \in \mathbb{R}\}$ *is a simple closed curve in the x, x-plane.*

This definition is consistent with that in [5] when $f(x)$ is continuous on $\mathbb R$ and $xf(x) > 0$ for $x \neq 0$.

We have given in [5] a result as follows (see [5], Theorem 2.1).

Theorem 3.1. *Suppose* $f \in C^0(\mathbb{R}, \mathbb{R})$ *being odd,* $f'(x) \geq 0$ *and there is a constant* $\epsilon > 0$ *such that* $f'(x)$ *is monotonically decreasing on* $(0, \varepsilon)$ and not increasing on (ε, ∞) . If there are two *integers* $k, n \geq 0$ *such that*

$$
\frac{\pi}{2}\max\{0, 4k-3\} \le f'(\infty) < \frac{\pi}{2}(4k+1) \le \frac{\pi}{2}[4(k+n)+1] < f'(0) \le \frac{\pi}{2}[4(k+n)+5],
$$

then Eq. (1.1) *has exactly n* + 1 *simple periodic solutions with periods* $4/[4(k+l) + 1]$, $l =$ $0,1,\cdots,n$.

When $f(x)$ is defined only on a finite interval $[-a, a]$, we give the following theorem. **Theorem 3.2.** *Suppose* (H_0) *holds,* $f \in C^1([-a, a], [0, \infty))$ and there is $\varepsilon \in (0, a)$ such that $f'(x)$ is monotonically decreasing on $(0, \varepsilon)$ and not increasing on (ε, a) . If

$$
f(a) \leq a, \quad \frac{\pi}{2}[4n+1] < f'(0) \leq \frac{\pi}{2}[4n+5],
$$

then Eq. (1.1) has exactly $n + 1$ simple periodic solutions, $x_i(t)$, with periods $4/(4l + 1)$, $l =$ $0,1,\cdots,n$.

Proof. We define a function as follows:

$$
g(x) = \begin{cases} f(x), & x \in [-a, a] \\ f(a) + f'(a)(x - a), & x > a, \\ -f(a) + f'(a)(x + a), & x < -a. \end{cases}
$$

Obviously $g(x)$ satisfies the requirements of Theorem 3.1. Since

$$
\frac{f(a)}{a} = \frac{f(a) - f(0)}{a - 0} < 1,
$$

there is $\xi \in (0,a)$ such that $f'(\xi) \leq 1$ and therefore $f'(a) \leq f'(\xi) \leq 1$. The fact that $g'(x) =$ $f'(a)$ for $|x| > a$ implies $g'(\infty) \leq 1$.

Theorem 3.1 tells us that

$$
\dot{x}(t) = -g(x(t-1))
$$
\n(3.1)

has exactly $n + 1$ simple periodic solutions $x_i(t)$ with periods $\frac{4}{4l+1}, l = 0, 1, 2, \dots, n$.

Suppose max $|x_i(t)| = m$. We now prove $m < a$. Supposing to the contrary $m \ge a$, then $|g(x)| \le f(a) + f'(a)(m - a) \le m$. The equality does not hold for all $|x| < m$.

Let $x_i(t_0) = m$. Then

$$
\dot{x}_l(t_0) = -g(x_l(t_0-1)) = 0.
$$

Therefore $x_l(t_0 - 1) = 0$ and

$$
x_l(t_0) = \int_{t_0-1}^{t_0} g\left(x_l\left(t-\frac{1}{4l+1}\right)\right) dt < m,
$$

a contradiction.

Because $g(x) = f(x)$ for $|x| \le a$ and $|x_i(t)| < a, x_i(t)$ is also a periodic solution of Eq. (1.1). Obviously Eq. (1.1) has no other simple periodic solutions. The theorem is proved. **Example 3.1.** Let $f(x) = (1 - |\sin x|) \sin x, x \in [-\pi/2, \pi/2]$. Consider

$$
\dot{x}(t) = -\alpha f(x(t-1)),\tag{3.2}
$$

where $\alpha > 0$ is a parameter. Clearly $f(x)$ is odd and continuous on $[-\pi/2, \pi/2]$.

Because $\lim_{x \to a} f(x)/x = 1$ and $f(\pi/2) = 0, f(x) > 0$ for $x \in (0, \pi/2)$ Eq. (3.2) has periodic solutions when $\alpha > \pi/2$. Furthermore $f(x)$ reaches its maximum 1/4 at $x = \pi/6$ and $f'(x) \ge 0$ is monotonically decreasing on interval $(0, \pi/6)$. We can show as in the proof of Theorem 3.2 that all the periodic solutions of Eq. (3.2) have their maxima less than $\pi/6$ when $\alpha \leq \frac{2}{3}\pi$. So when $\alpha \in (\frac{\pi}{2}, \frac{2}{3}\pi)$, Eq. (3.2) has one and only one simple periodic solution, which is 4-periodic.

References

- [1] Kaplan J L, Yorke J A, Ordinary differential equations which yield periodic solutions of differential delay equations, *J Math Anal Appl,* 1974, 48: 317-324.
- [2] Nussbaum R D, Periodic solutions of special differential delay equations: An example in nonlinear analysis, *Proc Royal Soc Edingbourgh,* 1978, 81A: 131-151.
- [3] Wen Lizhi, On the existence of periodic solutions of a type of differential difference equations, *Chin Ann Math,* 1989, 10A3: 249-254.
- [4] Ge Weigao, Existence of many and infinitely many periodic solutions of some classes of differential delay equations, *J Beijing Inst Tech*, 1993, 2(1): 5-14.
- [5] Ge Weigao, Number of simple periodic solutions of differential delay equation $\dot{x}(t) = -f(x(t-1))$, submitted.

Ge Weigao

Department of Applied Mathematics Beijing Institute of Technology Beijing, 100081 China