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Recent progress in computing the energy of the universe including the 
gravitational contribution is discussed. Various issues are raised includ- 
ing symmetries, energy localization and observational verification. 

For many years, when one discussed the energy density or the energy of 
the universe, the focus was on the "matter" (Too) part. This was under- 
standable because the primary issue regarding the closure of the universe 
rested upon the value of the matter density. However, we know that grav- 
itation plays a role in the energy of a physical system. This is most clearly 
revealed in the mass defect when one calculates the energy of an isolated 
spherically symmetric body. Recently [1,2], we showed that the consid- 
eration of the gravitational contribution resolves the problems connected 
with the equality of inertial and gravitational mass. Thus, the question 
arises of what role gravitational energy plays in the total energy density 
and the total energy of the universe. 

An immediate motivation for determining the gravitational contribu- 
tion to the energy of the universe arose from the Albrow [3] and Tryon 
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[4] proposal that the universe may have arisen as a quantum fluctuation 
of the vacuum. Noting that such a universe must have a zero net value 
for all conserved quantities, Tryon indicated how this might arise using a 
Newtonian order-of-magnitude estimate. He also referred to a topological 
argument attributed to Peter Bergmann that a closed universe must have 
zero total energy. Since the advent of inflationary cosmological theories, 
some authors, particularly Vilenkin [5], have developed the vacuum fluc- 
tuation idea further. Thus, it is now appropriate that the issue of the 
total energy of the universe, within the context of general relativity, be 
examined carefully. 

To this end, we recently considered [6] the energy-momentum conser- 
vation laws as applied to an F~w universe. We found that the covariant 
conservation laws 

T~k;k = 0 (1) 

(i, k = 0, 1, 2, 3 and a semi-colon denotes a covariant derivative) can be 
expressed in the form of an ordinary divergence 

3 

(a comma denotes a partial derivative) using the conformal FP.W metric 

ds2 = a(t)2 [ dr' 1 -drg-kr 2 r ' d ~ ' ]  . (3) 

The traditional manner in which physicists have identified a total 
density including the contribution from gravity has been that of re-casting 
(1) into the form of an ordinary vanishing divergence such as we found in 
(2). However, this generally entailed the introduction of a pseudotensor 
tik. For example, in the Einstein form, (1) is changed to 

[r [T2 + t~]],~ = 0 (4) 

and from this, one deduces both a density and a Poynting vector as in 
electromagnetism. However, there is an important distinction between 
(4) and the procedure in electromagnetism because in the latter, there is 
no pseudotensor and all the elements are tensorial. In general relativity, 
the pseudotensor can be changed at will and hence there is an impor- 
tant ambiguity introduced regarding the value of the density. In fact, the 
question of the meaningfulness of energy localization in general relativ- 
ity is raised. These issues were first discussed during the early years after 
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the development of general relativity and the debate continued for decades. 
While local meaning to pseudotensorial quantities are clearly questionable, 
global measures in the case of isolated systems admitting asymptotically 
Minkowskian metrics have been shown to yield consistent results under 
transformations which retain the required conditions. The calculations in 
[2] were of such form. 

The significant aspect of (2) was that it did not conform to any pseu- 
dotensorial form. In fact, from (3) and the expression for the Einstein 
tensor, we found that (2) could be expressed as 

[ ( x/ ' :~ T~ - k - J ,0  (5) 

and hence in the absence of a cosmological constant, we [6] identified the 
total density as zero. Apart from the benefit of determining the actual 
value, of added interest is that since the elements going into the make-up 
of the total density are components of tensors, the problems associated 
with pseudotensors are absent. 

At first glance, this result might appear trivial. The vanishing of this 
density could have been seen from the outset by starting with the Einstein 
field equations and taking the terms to one side. A divergence of the 
resulting vanishing quantity remains zero and one might even claim that a 
conservation law has thus emerged. Indeed, Lorentz [7] and Levi-Civita [8] 
followed such a procedure, but this was justifiably criticized by Einstein 
(see Panli, Ref. 9). However, this was not the procedure which we followed. 
We used the actual conservation laws and found that when applied to FRw 
spacetimes, the combined density which could be identified was 

' 1 
Too - ~. G 0 0 .  

This appears to be a special feature of such spacetimes. 
Following our work, Rosen [10] used the Einstein pseudotensor with 

cartesian coordinates to calculate the total energy of a closed F~W universe. 
Interestingly, he found that the total energy was again zero. However, a 
cautionary note must be added here. While there are arguments available 
to support global pseudotensorial calculations for isolated systems with 
asymptotically Minkowskian metrics, in the present case we are dealing 
with FRW cosmologies for which there are no boundaries at all. Moreover, 
while (5) yields both a local density and a global energy which respect the 
symmetries of the FRW spacetimes, the pseudotensor calculation not only 
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fails to provide a density consistent with the symmetries but also yields 
non-vanishing pseudo-energy flux densities. 

Similar problems arise in the case of cylindrical gravitational waves 
[11]. While calculations ill cartesian coordinates might appear to be most 
reliable, the system is not isolated and the metric in [11] is singular along 
the symmetry axis. Thus, a global asymptotically Minkowskian metric 
cannot be found for such a system. 

The conventional wisdom has been that gravitational energy cannot be 
localized in principle. However, through the years the conventional wisdom 
has been challenged in various papers in various ways. Recently [12,13], we 
took the following approach to the problem: The deduction of total energy 
including the gravitational contribution sterns from the conservation laws 
(1). These laws have content only in the presence of matter,  7~k. In 
vacuum, (1) degenerates to the empty identity 0 = 0. However, what 
researchers have done with (1) through the decades has been to recast 
(1) into (4) by introducing a pseudotensor and then extracting content 
from the subsequent integral form of (4) in vacuum. For example, energy 
supposedly lost by an otherwise insular system through gravitational waves 
are calculated from the integral form of (4) in the asymptotic vacuum. 
However, the origin of this purported information stems from (1) which is 
in fact devoid of any content in vacuum. 

As a result, we have introduced the hypothesis that energy, includ- 
ing the gravitational contribution, is most logically localized in regions of 
non-vanishing T/k and the proper determination of the energy localization 
is deduced in systems of reference in which the pseudotensor vanishes. 
The hypothesis builds upon the fact that the pseudotensor is such a prob- 
lematic entity, which suggests that preferred physical systems for energy 
localization are those in which it is eradicated. It is eradicated in all Kerr-  
Schild metrics, for example. If the hypothesis is correct, energy including 
the gravitational contribution is localized in the structural form (-g)Too, 
and so acquires a tensorial aspect. An interesting question to be answered 
is the extent and nature of spacetimes in which the pseudotensor can be 
eliminated. In the present case, we have found that the conservation laws 
appear to point to an unambiguous vanishing of F~W total energy. This 
raises the possibility that the FnW cosmologies are degenerate cases of the 
localization hypothesis, as a density which must both vanish and also be 
of the form (-g)Too can only be realized in a singular form with g = 0 
within the context of the hypothesis. 

These are issues which nmst be explored further. Also to be considered 
is the concurrence of the Rosen energy calculation result with that of our 
own. Perhaps reasons ca.n be produced which support such pseudotensor 
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calculations in spite of tile objections which have been raised against them. 
Finally, we consider the issue of observational verification of the cal- 

culated energy. For isolated systems, the mat ter  is straightforward: From 
the asymptotic metric, one can read the value of the total mass (and hence 
energy) from the coefficient of 1 / r  in g00- The tracking of test bodies mov- 
ing according to the geodesics of this metric provide the observational link. 
However, for the cosmological problem, while the motion of bodies within 
the system are easily deduced, there is no asymptotic metric and hence no 
1/r  coefficient to examine and relate to the observed motions. It  would be 
very useful if a link between observations and the total energy density of 
an FRw cosmology could be devised. At this point, we have the deduced 
value of the density as zero from the conservation laws but a confirmation 
is called for. While it might require considerable effort and/or  ingenuity 
to discover the means by which such a confirmation may be achieved, it 
is a worthy and meaningful goal. It is important  as a concept in its own 
right and because of the implications for cosmological models. Tha t  it is 
meaningful is inherent in the theory itself: a conserved energy-momentum 
tensor drives the field equations of cosmology and hence a role for energy 
in the universe is presumed from the outset. 
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