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The nature of the initial singularity in spatially compact plane symmetric 
scalar field cosmologies is investigated. It is shown that this singularity 
is crushing and velocity dominated and that the Kretschmann scalar 
diverges uniformly as it is approached. The last fact means in particular 
that a maximal globally hyperbolic spacetime in this class cannot be 
extended towards the past through a Cauchy horizon. A subclass of 
these spacetimes is identified for which the singularity is isotropic. 

1. I N T R O D U C T I O N  

The  na ture  of  singularities in general solutions of  the Einstein equations 
is a subject  about  which much remains to  be learned. Various classes of 
singularities have been defined which represent possible models for general 
behaviour.  Examples  are curvature singularities, crushing singularities [1], 
velocity dominated  singularities [2] and isotropic singularities [3]. In this 
paper  spacetimes belonging to  one of the simplest classes of inhomoge- 
neous cosmologies will be examined in order to  get as much information 
as possible about  their singularities and to  test  the applicability of  the  
models just  mentioned. 

The  spacetimes considered in the following are solutions of  the  Ein- 
stein equations foupled to a massless scalar field in the s tandard  way. 
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Thus, if ~b denotes the scalar field they are solutions of 

(1) 

The Bianchi identities imply that  r satisfies the wave equation. These 
spacetimes are further assumed to be plane symmetric. Plane symmetric 
solutions of the Einstein equations with a scalar field as matter source 
have been discussed by Tabensky and Taub [4]. In fact their paper is on 
stiff fluids but, as they show, it is possible to transform between these two 
matter models under rather general circumstances. They write the field 
equations in a particularly simple form. If the gradient of the area of the 
orbits is everywhere timelike then these equations can be simplified fur- 
ther. This condition will be assumed in the following. It has been shown 
elsewhere that  for appropriate boundary conditions it is automatically ful- 
filled unless the spacetime is flat [5]. Tabensky and Taub show that  the 
only non-trivial equation to be solved is the linear hyperbolic equation 

r + t - lr  = r (2) 

When this has been done a quantity f/ is obtained by integrating the 
ordinary differential equation 

n,  = t(r + r (3) 

This can be done starting on an initial hypersurface of constant t. In order 
that  all Einstein equations should be satified the constraint equation 

a= = 2tr162 (4) 

should hold on the initial hypersurface. The spacetime metric is 

&2 = t-X/2en(_dt2 + d=2) + t(dy2 + dz2). (5) 

Here t belongs to the interval (0, co). To avoid spurious singularities it is 
assumed that  the spacetime is spatially compact. This can be arranged 
by demanding that  the coordinates x,9 and z be periodic. The periodicity 
of y and z plays no significant role in the following but the periodicity of 
x means that  ~b and ~ (which only depend on t and x) are required to be 
periodic in x. In order to say anything about the nature of singularities 
in some general class of spacetimes it seems unavoidable to demand some 
kind of spatial boundary conditions since otherwise anything could hap- 
pen. Spatial compactness is the simplest possibility of specifying boundary 
conditions for cosmological spacetimes. 
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The initial value problem for data given on the hypersurface t --- to ~> 0 
can be solved as follows. An initial data set consists of periodic functions 
4o, 41 and fro which satisfy the equation 

( o)x = 2to41( o)x. (6) 

For simplicity they will be assumed to be C ~ although the arguments 
which follow can also be carried through when these functions have an 
appropriate finite degree of differentiabUity. A solution is sought with 
4(to, x) = 4o(x), 4~(to, z) --- 41(z) and f~(to,z) -- fro(z). Under these 
conditions (6) is just the constraint equation (4) on the hypersurface t = 
to. To construct the solution first solve the linear hyperbolic equation 
(2) on the time interval (0, oo) with initial data 4o and 41. Standard 
theory ensures the existence of a unique C ~ solution 4. (The classic 
reference is Ref. 6. The reader interested in finding out more about modern 
developments in the theory of hyperbolic equations may consult Refs. 7 
and 8.) Then f/may be determined by integrating (3) with initial value 
f/o for each fixed value of z. 

The solutions of the initial value problem have an apparent singularity 
at t -- 0. The aim of the following is to show that this is a true singular- 
ity (i.e. that the spacetime cannot be extended through it) and to obtain 
more detailed information about its nature. In Section 2 it is shown that 
t -~ 0 is always a curvature singularity and that the Kretschmann scalar 
Ra/3~Ra~8 blows up uniformly as t --* 0. The consequences for strong 
cosmic censorship axe discussed. In Section 3 the singularity is shown to 
be crushing and it is concluded that a neighbourhood of the singularity 
can be foliated by constant mean curvature hypersurfaces. An asymptotic 
expansion for the solution in a neighbourhood of t ~- 0 is obtained in Sec- 
tion 4 which shows in particular that the singularity is velocity dominated. 
In the final section a sufficient condition is given for the singularity to be 
isotropic. 

Note that the simplification of the field equations which allows the 
analysis which follows to be carried out depends very much on the plane 
symmetry and the fact that the matter content of spacetime is described 
by a massless scalar field. If plane symmetry is replaced by spherical 
symmetry or if the massless scalar field is replaced by almost any other 
kind of matter, then the equations for the matter fields, the equation for f~ 
and the equation ~for the area of the orbits are all coupled. The property of 
the matter which is needed for decoupling is that the trace of the projection 
of the energy-momentum tensor to the orthogonal complement of the orbits 
should vanish. 
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2. CURVATURE SINGULARITIES 

The curvature of a general plane-symmetric spacetime will now be 
computed. It is always possible to introduce local coordinates so that  the 
metric takes the form 

ds 2 = gabd, xa dx b -}- r2 ~ AB dyA dy B. (7) 

Here lower and upper case indices take the values 0, 1 and 2, 3 respectively. 
Let K denote the Gaussian curvature of the two-dimensional metric gab 
and let V~ denote the covariant derivative associated to that  metric. Then 
the curvature components are 

R$o~ = K(~$ gb~ - ~ gbo) 

R i c ~  = - V ~  ~ . ~  - ~ B c )  

RaBeD = -rVaVcr ~B D " 

(8) 
(9) 

(lO) 

Hence 

Ra~aRa~6 -- 4K 2 q- 4r-4(V a rVar) 2 + 8r-2VaVbrVaVbr. (11) 

When the curvature components have been computed the Einstein equa- 
tious can easily be obtained. One combination of the field equations gives 

1 
VaVb r ---- ~r  VCrV~r gab -- 47rr(Tab -- tr  Tgab) (12) 

where t r T  = gabTab. Combining (11) and (12), 

RaW'aRabia =4K2T4r-4(VarVar)2 + r - 4 (  l~r V~rVcr - 27rr tr  T)2 

+167r2r-2(Tab- l t rTg 'b )  ( Tab -21 tr Tgab)" (13) 

The first three terms on the right hand side of (13) are obviously non- 
negative and when the matter content of spacetime is described by a mass- 
less scalar field the fourth term is non-negative. (This condition also holds 
for many other physically reasonable matter fields but that  fact is not 
relevant for this paper.) It follows that  if m = -rV~rV%/2  then 

Ra~6 Ra~a >__ 16m2 /r  6. (14) 
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Returning from these general considerations to the particular class of 
spacetimes considered here, it turns out that  in that  case m ---- ~e - n  and 
r is a constant times t 1/2. It follows from (3) that  • is non-decreasing. 
Hence the curvature invariant R~6RaI3~  blows up at least as fast as t -a 
as t = 0 is approached. 

It has now been shown that  t -- 0 is a curvature singularity and thus 
the spacetime cannot be extended further. This gives a statement which 
might be called 'strong cosmic censorship in the past '  for the class of space- 
times considered here. (This terminology assumed that  a time orientation 
of spacetime has been chosen so that  t increases towards the future.) It 
says tha t  if a spacetime of this type is the maximal globally hyperbolic de- 
velopment of initial data on some hypersurface then no extension of that  
spacetime contains a point to the past of the initial hypersurface which 
does not belong to the original spacetime. 

3. CRUSHING SINGULARITIES 

The mean curvature of the hypersurfaces of constant t is given by 

(3)  H = -~I tl/4e_fl/2 ~t ~- ~ (15) 

Equation (3) shows that  f~ _> 0 and so (15) implies that  [H I >__ ~t-a14e -n/2 
>_ Ct -3/4. Thus it can be seen that  H tends uniformly to - o o  as the 
singularity is approached. This means that  this singularity is a crushing 
singularity [1]. A crushing singularity in a spatially compact spacetime 
always has a neighbourhood which can be foliated by hypersurfaces of 
constant mean curvature. The proof of this will now be recalled. Note first 
that  a spacetime which has a compact Cauchy hypersurface can contain at 
most one compact spacelike hypersurface with a given non-zero constant 
mean curvature [9]. The fact that  IHI tends uniformly to infinity shows 
that  given any real number H1 which is sufficiently large and negative 
there exist tl ,  t2 > 0 such that  the hypersurface t ---- t l  has mean curvature 
less than H1 and the hypersurface t -- t2 has mean curvature greater than 
H1. These hypersurfaces provide barriers which ensure that  there exists 
a hypersurface of constant mean curvature H1 between the hypersurfaces 
of t = tl  and t --.t2 [10,11]. Thus there is an interval ( - co ,  H0] such that  
the spacetime contains exactly one compact hypersurface of constant mean 
curvature H1 for each H1 in this interval. It remains to show that  these 
hypersurfaces cover a neighbourhood of the singularity. A standard result 
[9] implies that  if H2 < H1 the hypersurface of mean curvature H2 lies 
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strictly to the past of that  with mean curvature H1. By construction the 
hypersufaces tend to the singularity a s / / 1  --* -oo .  In other words there 
is no point which lies to the past of all these hypersurfaces. It remains 
to show that  there are no gaps, i.e. that  there is no point which lies to 
the past of the hypersurface with mean curvature H1 but  to the future 
of the hypersurfaces with mean curva ture / /2  for a l l / /2  < H1. Suppose 
that  a point p with this property existed. Then there would be an open 
neighbourhood U of the hypersurface with mean curvature H1 disjoint 
from the future of p. In U there exist hypersurfaces of constant mean 
curvature/ /2  for a l l / /2  in some interval [//1 -- e,//1 + ~] with c > 0. Hence 
there is a point of the hypersurface with mean curvature/ /1 + r which lies 
to the past of the hypersurface with H1 - c/2, contradicting a statement 
made earlier. It follows that  no point p with the above property can exist. 

4. VELOCITY DOMINATED SINGULARITIES 

The central problem in analysing the singularities in the class of space- 
times considered here is to determine the behaviour of a general spatially 
periodic solution of eq. (2) as t --, 0. Letelier and Tabensky [12] have 
written down an integral formula for solutions of this equation but  they 
give an explicit example of a solution which is not of that  form. They 
conjecture that  all solutions can be obtained as limits of solutions given 
by the integral formula. Without a proof of this conjecture their analysis is 
incomplete. This problem can be circumvented by the direct use of energy 
estimates, as has been shown by Isenberg and Moncrief [13] in the course 
of a study of polarised Gowdy spacetimes. A sketch of the argument will 
now be given. It will be supposed for simplicity that  the solution ~b being 
considered is C ~ .  A computation gives the inequality 

d 2 2 - [tj >o (16) 

for t > 0 when ~b is a solution of (2). Since the coefficients in the equation 
do not depend explicitly on the spatial coordinate the derivative of ~ of any 
order with respect to z satisfies the same equation as ~ itself. Hence all 
spatial derivatives of ~ satisfy inequalities analogous to (16). The Sobolev 
embedding theorem then implies that  t ~ t ,  t~b. and the derivatives of these 
quantities with respect to z of any order are bounded in a neighbourhood 
of t = 0. Equation (2) can be rewritten as 

(tqbt)t  = t~==. (17) 



Singularities in Plane  Symmetr ic  Scalar Field Cosmologies  219 

Knowing that tr is bounded allows us to conclude that tCt has a con- 
tinuous extension to t -- 0. Integrating twice in time gives the asymptotic 
expansion 

r x) = ~(x)logt  + wCx) + oCt) (18) 

for some smooth functions It(x) and w(x) as t -+ 0. The expression ob- 
tained by formally differentiating (18) once with respect to t and as many 
times as desired with respect to x is also a valid asymptotic expansion. 
Substituting these asymptotic expansions into the evolution equation for 
f~ gives 

~tt = ~r2(x)t -' + O(1). (19) 

Integrating this with respect to t gives 

n(t, x) = ~(x) log t + ~(x) + o(t) (20) 

for some function a. Let the parts of the right hand sides of (18) and 
(20) explicitly written out be denoted by r and ~ respectively so that 
r = ~ + oct ) and f/= f/+ O(~). The quantities r and f~ are solutions of 
the equations obtained from the Einstein evolution equations by dropping 
all spatial derivatives. This is what Isenberg and Moncrief [13] call the ve- 
locity dominated system. Thus the solutions of the full Einstein equations 
are approximated asymptotically near the singularity by solutions of the 
velocity dominated system and these spacetimes have what Isenberg and 
Moncrief call the AVTDS property (asymptotically velocity-term dominated 
near the singularity). This is not literally the same as the original defini- 
tion of velocity dominated singularities which was given by Eardley, Liang 
and Sachs [2] but the spirit is the same and so for brevity this property is 
described here as the property that the singularity is velocity dominated. 

The definition of a velocity dominated singularity makes use of a pre- 
ferred foliation by spacelike hypersurfaces. A singularity which has the 
velocity dominated property with respect to one foliation will in general 
not have it with respect to a different foliation. In the present case it has 
been shown that the property holds with respect to the foliation defined by 
the time coordinate t and this could be interpreted as saying that this foli- 
ation is in some sense well-behaved near the singularity. Taking this view 
it is natural to ask whether the foliation by hypersurfaces of constant mean 
curvature, whose existence was shown in Section 3, is also well-behaved 
in this sense. Despite the excellent control over the spacetime which is 
available, this question appears difficult to decide. It would be interesting 
to know the answer for the following reason. The time coordinate t is 
defined in terms of the symmetry of the solution and so has no obvious 
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analogue in general spacetimes with less symmetry. On the other hand the 
constant mean curvature condition makes sense in any spacetime and it 
seems reasonable to hope that  foliations of constant mean curvature exist 
in a wide class of spacetimes. 

5. ISOTROPIC SINGULARITIES 

In the literature there has been some discussion of isotropic singu- 
larities, a class of singularities which is of relevance to Penrose's Weyl 
curvature hypothesis. A singularity of this kind can be defined [3,14] by 
the condition that  it should be possible to eonformally rescale the given 
metric so that  the rescaled metric extends regularly through the singu- 
larity. In general the asymptotic form of the spaeetime metric near the 
singularity in the class of spacetimes considered here is 

t [ t"' -3 /2e~ 2 + dx 2 ) + (@2 + dz 2) ]. (21) 

This shows that  if ~r 2 = 3/2 everywhere the conformal class of the metric 
extends continuously to t - 0. Thus the singularity is isotropic in this 
case. 

In fact it is desirable to require a little more of an isotropic singularity 
than what has just been demonstrated. The conformally rescaled metric 
should extend not just in a continuous non-degenerate manner to the sin- 
gularity. It should also have some degree of differentiability there. This 
question of the differentiability of the rescaled metric (or more precisely 
the question of the simultaneous differentiability of the rescaled metric 
and the conformal factor) is in general somewhat subtle [14]. However it 
turns out that  in the present case everything can be made C ~~ To show 
this it is necessary to extend the asymptotic expansions (17) and (19) to 
all powers of t. An asymptotic expansion of this type for the solution of 
(17) has been given in [15]. This is an expansion in integral powers of t 
and log t. However, if ~r is constant the only term containing a logarithm 
is that  written out explicitly in (17). It follows immediately that  in the 
case lr -- const. (19) can be extended to an asymptotic expansion to all 
orders which except for the first term is an expansion in integral powers 
of t. This shows that  the rescaled metric is C ~ in the case identified as 
being isotropic above. 
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