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O N  C O N D I T I O N S  F O R  E X I S T E N C E  O F  U M B I L I C A L  

P O I N T S  O N  A C O N V E X  S U R F A C E r )  

V. A. T o p o n o g o v  UDC 515.164.13 

Let F be a complete convex surface of class C ~ in the three-dimensional Euclidean space R 3. The 
convexity property of F implies that  the surface is homeomorphic to either a circular cylinder, or 
a plane, or a sphere. In the last case, on F (as on any other surface homeomorphic to a sphere) there 
are at least two umbilical points. In the first case, umbilical points on F are either absent or fill some 
set of generators. We are left with considering the case of a complete convex surface homeomorphic 
to a plane. In this event, it is easy to exhibit an example of a surface on which there are no umbilical 
points. For instance, let 3' be a convex planar curve whose curvature differs from zero at each point 
and let C be a cylinder whose director curve is 7 and whose generators are perpendicular to the plane 
of the curve % As is easily seen, there are no umbilical points on C. Denote by kl(p) and k2(p) the 
principal curvatures of F at a point p, and assume the normal n(p) to the surface F be directed so 
that kl (p) and k2(p) be nonnegative. For definiteness, assume that  

0 < kl(p) <_ k2(p). (1) 

It is obvious that  the following equality holds for the cylinder C: 

k l ( p ) )  = 0. (2) 

In such a case, we can say that  C "has" an umbilical point at "infinity." This example, as well as 
other examples of convex surfaces known to the author, leads to the conjecture: On a complete convex 
surface F homeomorphic to a plane, the following equality of type (2) holds: infpef(k2 ( p ) -  kl (p)) = 0. 
It is possible to reformulated this as follows: every complete convex surface homeomorphic to a plane 
has an umbilical point which may lie at "infinity." However, the author did not succeed in proving this 
conjecture; hence, it is unknown whether the conjecture is true or not. The following two theorems 
are proven: 

T h e o r e m  1. If  the integral curvature of a complete convex surface F of class Coo and homeo- 
morphic to a plane is strictly less than 27r, then 

~ f ( k 2 ( p ) -  kl(p) ) -- O. 

T h e o r e m  2. If, for a complete convex surface F of class C ~ and homeomorphic to a plane, 
the Gaussian curvature K of F and the moduli of the gradients of the functions kl(p) and k2(p) are 
bounded on F, then 

~ f ( k 2 ( p ) -  kl(p)) ---- 0. 

Theorems 1 and 2 are equivalent to the next Theorems 1" and 2* respectively. 

T h e o r e m  1". If  the integral curvature of a complete convex surface F of class Coo is strictly 
less than 2r and infp~F(k2(p) -- kx(p)) = co > O, then F is a cylinder homeomorphic to a circular 
cylinder. 
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T h e o r e m  2*. If, for a complete convex surface F of class C ~176 the relation infpeF(k2(p) -- 
kl(p)) = co > 0 holds on F and the Gaussian curvature K of F and the m o d u / / o f  the gradients of 
the functions kl(p) and k2(p) are bounded on F, then the surface F is a cylinder homeomorphic to 
a circular cylinder. 

REMARK. Under the conditions of Theorems 1" and 2* the director curve 3' of the cylinder is 
a convex planar curve whose curvature is not less than co at any point. 

The proofs of Theorems 1 and 2 are based on the following lemmas: 

L e m m a  1. IfinfpEF k2(p) = 0 then infpEF(k2(p) -- kl(p)) = 0. 

The proof is obvious, since kl (p) > 0. 
Denote by D(F) the convex domain of the Euclidean space R 3 which is bounded by the surface 

F and denote by D(u, F) the projection of D(F) to some plane perpendicular to the vector u. 

L e m m a  2. If, for some vector u, the domain D(u, F) includes a circle of radius R, then 
infrEF k2(p) < 1/R. 

PROOF. Denote by KR a circle of radius R which lies in D(u, F). Introduce a Cartesian rect- 
angular coordinate system x, y, z in R 3 with origin O at the center of the circle KR and the z-axis 
directed in parallel to the vector u. Let C stand for the right circular cylinder whose director curve is 
the boundary circumference of the circle KR. The cylinder C cuts out at least one surface F1 from F 
which is projected onto the circle KR in a one-to-one fashion. Let z = f l ( z ,  y) be the equation of the 
surface F1, where z 2 + y2 < R2, and let, for definiteness, the surface F1 be convex downward. Now, 
take a sphere S(R  - ~) of radius R - r whose center is on the z-axis and which lies entirely higher 
than the surface F1 (~ is an arbitrary number satisfying the inequality 0 < r < R). We now lower the 
sphere S(R  - ~) until the first contact of S(R - ~) and F~. Let a point p belongs to F~ N S(R - E). 
The surface F1, as is seen from our construction, lies entirely lower than S(R - ~) and touches it at 
the point p which is an interior point of F1. Therefore, all normal curvatures of F1 at p do not exceed 
1/R - ~. Since r can be taken arbitrarily close to zero, Lemma 2 is thus proven. 

L e m m a  3. If infpeF(k2(p) -- k~(p)) = co > 0 then, for each point in the domain D(F), there is 
exactly one ray that passes through the point and lies entirely in the domain D( F). 

PROOF. Since the domain D(F) is convex and noncompact, for each point p E D(F) there is at 
least one ray that  passes through the point and lies in D(F). If we suppose that  two rays rl  and r2 
pass through some point p0 E D(F) and lie entirely in D(F), then the projection of D(F) to the plane 
of the rays rl  and r2 includes a circle of an arbitrarily large radius. In that  event infpE F k2(p) = 0 by 
Lemma 2, contradicting the hypothesis of Lemma 3. The contradiction obtained proves Lemma 3. 

Lemma 3 implies that  all rays in D(F) are parallel to one another. Let a stand for a plane 
perpendicular to all the rays and tangent to F at some point O. Construct a Cartesian rectangular 
coordinate system x, y, z, placing the origin at the tangency point O and directing the z-axis so that  it 
be perpendicular to the plane a. In this coordinate system, the surface F can be given by an explicit 
equation 

z = f ( z , y ) ,  (z ,y)  E I n t D ( k , F ) .  

L e m m a  4. Ifinft,  eF k2(p) = co > 0 then the domain D(k ,F)  is compact. 

PROOF. Suppose that  the domain D(k, F)_ is not compact. Since it is convex, we can draw a ray 
r0 through the origin which lies entirely in D(k, F). Let r0 coincide with the positive half-axis of the 
z-axis. Consider the convex curve z = f ( z ,  0), y = 0, z > 0, lying entirely in the plane XOZ.  Let 
R be an arbitrary positive number. In the plane XOZ,  consider the domain DI(R) determined by 
the inequalities 0 < z < 2R, z > R1 = f(2R, 0). Then we can place a circle KR of radius R in the 
domain D1 and assume that  KR C D(j,  F).  By Lemma 2, we then have infpEF k2(p) < 1/R. In view 
of the arbitrariness of the number R, we obtain infre F k2(p) = 0, which contradicts the hypothesis of 
Lemma 4. The contradiction proves Lemma 4. 

Denote the boundary of the domain D(k, F)  by a, and denote by Ca the right cylinder that  is 
constructed on a as on the director set. The surface F lies entirely in the cylinder Ca and may touch 
it only in some half-lines. Let us pass from the Cartesian coordinates (z, y, z) to cylindrical ones 
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(r, ~, z): �9 = r cos V~, y = r sin~, z = z. In these coordinates, the surface F can be determined by the 
equations 

r=r(z ,~) ,  z = z ,  z>_0, 0_<~_<27r. 

From convexity of F and compactness of D(k, F),  we can easily infer the following properties of the 
function: 

lim r ( z , ~ ) =  ro(v~)< oo, lim r2.(z,~v)= 0, (3) 
2"----400 2 . ' - -*00  

r2.(z,~) > 0, rzz(Z, Cp) < 0 for z > 0. (4) 

We can now prove Theorem 1 by using equalities (3). To prove Theorem 2, we need uniform upper 
estimates for the moduli of the functions r~, r ~ ,  rzz, and rz~. These estimates are in general absent 
for the surface F itself. For this reason, we pass from the surface F to an equidistant surface (I) for 
which the mentioned estimates are now existent. Let a be some positive number. Define the surface 
(I) by lapping, from each point p of F,  a segment of length a in the direction of the outward normal 
( -n(p) ) .  Denote by ~v(p) the homeomorphism of F onto ~ that is generated by this construction. 

L e m m a  5. If  on a complete convex surface F of class Coo the next conditions hold: 
(i) the Gaussian curvature K is bounded by some constant Cl; 
(ii) [grad kl(p)[ and [grad k2(p)[ are bounded by a constant c2; 
(iii) infpEF(k2(p) -- kl(p)) = b > 0 

then, for every a, the surface �9 is a complete convex surface of class Coo for which the same 
conditions (i)-(iii) hold but possibly with other constants. 

PROOF. The principal radii of curvature RF(p) and Ro(~(p)) of the surfaces F and r are well 
known to be connected by the relation 

n.(~v(p)) = RF(p) + a. (5) 

It follows from (5) that  (I) is convex and belongs to the class C ~176 Furthermore, it follows from (1) 
that the principal curvatures kl(q) = kl(~(P)) and k2(q) = k2(~(P)) of the surface F are expressed in 
terms of kl(p) and k2(p) by the formulas 

k2(p) kl(p) , k2(q)- (6) kl(q)- 1 -4-akl(p) 1 + ak2(p)" 

From (6) we infer 

kl(p)k2(p) < kl(p)k2(p) < Cl. (7) 
Kc(q)  = (1 + ,k l(p))(1 + ak2(p)) 

Now, (7) implies the validity of item (i) of Lemma 6 for the surface (I), and (6) implies the validity of 
item (ii) for (I). Finally, 

~ f ( k 2 ( q ) -  kl(q)) = inf k 2 ( p ) -  kl(p) 
pEF (1 + akl(p))(1 + ak2(p)) 

b 
--- (1 + c3a)(z + e0a)' (s) 

where c3 = supvE F kl (p) and ~0 = infvcF k2 (p) > 0. We are left with observing that  the boundedness 
of the function kl (p) ensues from the boundedness of the Gaussian curvature of the surface F.  Lemma 5 
is proven. 

Now, assume that ,  in the above-introduced cylindrical coordinate system, the surface (I) is given 
by the equations r = f ( z ,  ~), z = z, z > - a ,  0 < ~ < 2r.  Let s > - a  be some number. We say that  
some function B(r,~p) is bounded on F,  if there is a constant C such that  IB(z,~)l < c for z >__ ~ and 
0 < ~  <2~r. 



L e m m a  6. H a  surface F satisfies the conditions of Lemma 5, then the function f ( z ,  ~) possesses 
the following properties: 

(a) fz  >_ O for z > -a ,  (b) lim~--.oo f z ( z ,~ )  = O, (c) f ~  < O for z > - a ,  (d) the functions 
If~(z,~)l, I f~(z ,~) l ,  Ifz~(z,~)l, If~(z,~)l ,  and I f~ (z ,~ ) l  are b o u n d e d  on ~. 

PROOF. Properties (a)-(c) of the function f follow from convexity of the surface �9 and compact- 

ness of the domain D(~:, ~), where k is the unit vector of the z-axis. We begin proving boundedness 
of [f~(z,~)[. Let ~ be the boundary of the domain D(k,O); assume it lying in the plane z = - a .  

Denote by 2r0 the minimal distance from the point A(0, 0, - a )  to ~ and by r l ,  the maximal distance. 
Since the orthogonal projections of the curves %: r = f(c,  q0), z -- c, to the plane z = - a  converge to 

as c --+ oo, there is zi such that  
f ( z ,  qo) > r0 (9) 

for z > zl. Denote by a(qo) the acute angle between the tangent to 7c at the po!nt r = f (c ,  cp) and 
the radius-vector from A(c)(O, O, c) to this point. Let d(qa) be the distance of A(c) from the tangent 
straight line and let b(qo) be the length of the radius-vector. Then 

sin a(~) = d/b, cos a(qo) = V ~  - d 2/b. (lO) 

On the other hand, cos a(qo) = II~,IIv/~ +/~, whence we infer 

If~l = bcotan a(q0) - v /b -2 -  d2 b. (11) 
d 

The convexity of the curve 7c implies the inequalities 

d(qo) > r0, b(qo) < rl.  (12) 

From (11) and (12) we obtain 

I:~I < ~1 ~ ~~ ~ 
- -  r0 V rl - -  " 

Inequality (13) implies the first claim in item (d) of Lemma 6. 
Now, we evaluate the curvature k(qo) of the curve 3'c at an arbitrary point: 

(13) 

k ( ~ )  = 
-f~o~f + 2f~ + f2 

(: + :~)~/~ 

From this equality we have 

f ,~  = -k (~ ) ( f2  + -o-j;)3/2 2f~ 
f + --~- + f" 

Estimate the function k(qo) from above. According to Euler's formula, (5) implies that  the normal 
curvature of the surface �9 at every point and in every direction does not exceed 1/a. Therefore, from 
Meusnier's theorem we infer the inequality 

k(~) < i/acos/3, (14) 

where fl is the angle between the principal normal to the curve 7c and the normal to the surface ~, 

= = (15) 
+ + :.(x + zi 

7 R 2  



Since limz--,oo f z ( z ,  qo) = 0, it follows from (15) that there is z2 such that cos fl > 1/2 for z > z2. 
Inequalities (9) and (14) now imply the second claim in item (d) of Lemma 6. 

Let 7e be the curve determined by the equations z = f ( z ,  c), z = z, r = c. The curvature k(z) of 
the curve is given by the formula 

~:(z) : - f z ~ / ( 1  + f2)3/2. (16) 

By analogy with the above, from (16) we obtain 

If-I  acos ( 1 + fz2) 3/2 (17) 

where/~ is the angle between the principal normal to the curve 7c and the normal to the surface (I), 

cos# = f(1 + f2) . (18) 

V ~ + Z ~/S~ + / 2 (  1 + Z )  

Relations (17), (18), (13), and (9) imply the third claim in item (d) of Lemma 6: 

Ifz l _< e for  z > z3. (19) 

We compute the coefficients E, F,  G and L, M, N of the first and second quadratic forms of the 
surface (I): 

E = I + ]  2, F = - f ~ f ~ ,  G = f 2 + f  2, L -  
A ' (20) 

M = - f ~ f  + f * f v  N = f2 + 2f2 _ f ~ f  
A ' A ' 

where A = ~/f2 + f2(1 + f2). Since the surface (I) is convex, we have i 2 <_ LN.  Whence we infer 

the inequality 
( f ~ , f  _ f::f~,)2 <_ _ f ~ f ( f 2  + 2f~ - f v ~ f ) .  (21) 

From (21) and the inequalities proven earlier we infer the second claim of item (d) of Lemma 6: 

If  l- e3 for z > z4. (22) 

We turn to proving boundedness of the function [f:~:(z, qo)]. The boundedness of the moduli of 
the gradients of the functions kl (p) and k2(p) implies the boundedness of the moduli of the_gradients 
of the functions ]el(q) and ]e2(q), and consequently the boundedness of the functions Ikl(q)+k2(q)[ and 
Ik2(q) + kl(q)l, which leads to the boundedness of the functions ILG + E N -  2 M F  I and [ L N -  M21. 
Involving the inequalities proven earlier and formulas (20), from the preceding conditions we obtain 
the equalities 

L~G + N z E -  2 M z F  = hi(z, ~o), 
L~N + N ~ L -  2M~M = h3(z,~), 

L~G + N ~ E  - 2 M ~ F  = h2(z, ~), 

L~,N + N~L - 2 M ~ M  = h4(z, ~), 
(23) 

where the functions h.1, h2, h3, and h4 are bounded on the surface (I). Further, using the Peterson- 
Codazzi equations, we express the functions Mz and M~ through the functions L~ and N, respectively, 
and insert their expressions into (23). We obtain 

LzG - L~2F  + N z E  = hl(z ,  cp), L~G - N~2F + N ~ E  = h2(z, qo), 
L z N  - L ~ 2 M  + NzL  = h3(z, r L ~ N  - N z 2 M  + N~L  -- h4(z, qo), 

(24) 



where the functions hi ,  h2, h3, and h4 are bounded on the surface ~. Consider equalities (24) as 
a system of equations in the functions L~, L~, N~, and N~o. The determinant A of the system equals 

A = L 2 G  2 + N 2 E  2 - 4 M F L G  - 4 M F N E  - 2 E G L N  + 4 M 2 E G  + 4 F 2 L N  

= ( L G +  NE-2FM)2-4(EG-F2)(LN-M2)= (k2 - ka)  2 -~ (EG - F 2 )  2 . (25) 

From (25) and (8) we infer that A is bounded above on the surface O: 

A _> b > 0. (26) 

But then (24), (26), and (20) imply that 

(27) 

where hs(x,  r is bounded on the surface ~. Rewrite equality (27) as follows: 

-L=(z,v)f(z,v) = h6(z, v),  (28) 

where h6(z, r is bounded on the surface (I). The last claim of Lemma 6 follows from (9) and (28). 
Lemma 6 is proven. 

PROOF OF THEOREM 1. Let us prove that under the conditions of Theorem 1 infpe F k2(p) = 0, 
and thereby in view of Lemma 1 infpeF(k2(p ) -- kl(p)) = 0. Assume the contrary. Let in fpef(k2(p ) = 
co > 0. Then Lemma 4 implies that,  in the cylindrical coordinate system introduced in the lemma, 
the surface F is determined by the equations r = r(z,~o), z = z, z > 0, 0 < ~o < 2r. The function 
r(z,  ~o) meets the second of equalities (3). 

In a standard way we find the components of the normal vector n(p) of the surface F in the 
Cartesian coordinate system relating to the cylindrical coordinate system: 

(-(r~sin~o + 2cos~o r~cos~o-  rsin~o rzr ) 
h ( p ) =  ~/r2 + r 2 ( 1 + r 2 )  , l/r 2 + r 2 (  1 + r 2 ) '  V / v 2 + v 2 ( l + r z )  

(29) 

It follows from (29) that the spherical image of the surface F coincides with the upper half-sphere. 
Therefore, by the Gauss theorem on the area of the spherical image, the integral curvature of the 
surface F equals 2r ,  contradicting the hypothesis of Theorem 1. The contradiction obtained completes 
the proof of Theorem 1. 

PROOF OF THEOREM 2. Assume, under conditions of Theorem 2, that infp~F(k2(p) -- ka(p)) = 
co > 0. Then the condition 

~ f ( / c 2 ( q ) -  ~:l(q))= c0 > 0 (30) 

too holds on q). It follows from (30) that there are no umbilical points on ~. Hence, on ~ there are 
two continuous unit vector fields ea (q) and e2 (q), the fields of principal directions of the surface ~. Let 
r = f ( z ,  ~o), z = z, be the equations of the surface ~5 in the cylindrical coordinate system introduced 
in Lemma 5. Were there at least one value z = z0 for which the field ea(q) has a nonzero angle 
with the curve %0: r = f(z0,~v), z = z0, we would obtain, in the domain z < z0 on the surface 
homeomorphic to a circle, existence of a continuous vector field of unit vectors which is not tangent to 
the boundary of the circle and vanish nowhere in the circle, which contradicts the Brauer fixed-point 
theorem. Consequently, for every z = c, z > - a ,  on the curve % there is a point q(c) at which the 
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vector e2(q(c)) is orthogonal to the curve ~c. Furthermore, it follows from Lemma 1 and inequality 
(30) that 

inf k2(q)= k0(q) > 0. (31) 
qE~ 

From (31), Euler's formulas, (20), and claim (b) of Lemma 6 we derive that the normal curvature 
k(c) of the surface r at the point q(c) in the direction of the vector (1,0) is not less than k0/2 for 
a sufficiently large c: 

k(c) = L/E >_ k0/2. (32) 

From (32), (20), and (18) we infer that 

x/EG- F 2 > ~ v/'~. -f,,>y (33) 

We now evaluate the size of the interval in which -fzz > k 0 v ~ / 4 .  Let the point q(c) have coordinates 
(c, ~0). Then 

1 
_ -~ yrS. (34) -f==(z,l#o) = -f==(c,~o) - 7fz,z(~,~po)(z- zo) > 

Here ~ lies between c and z. Solving inequality (34), we find 

Iz-  0v /4e, (35) 

where ~ is a constant bounding the modulus of fzzz (see Lemma 6). From (35) and (34) we obtain 
the inequality 

oo c + k 0 v / ~ / 4 e  c+~:0v/~/4 ~: 

f (-f~)dz >_ i (-fzz)dz >_ / k~ dz -  167= 
C C C 

(36) 

On the other hand, 
O 0  

f (-f,=) 
c 

(37) 

1 fc2r where e is an arbitrarily small number for c large. Choose c large enough to have ~ < 3~ 0 0. Then 
inequality (37) contradicts inequality (36), which completes the proof of Theorem 2. 
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