ON CONDITIONS FOR EXISTENCE OF UMBILICAL POINTS ON A CONVEX SURFACE^{†)} V. A. Toponogov UDC 515.164.13

Let F be a complete convex surface of class C^{∞} in the three-dimensional Euclidean space \mathbb{R}^{3} . The convexity property of F implies that the surface is homeomorphic to either a circular cylinder, or a plane, or a sphere. In the last case, on F (as on any other surface homeomorphic to a sphere) there are at least two umbilical points. In the first case, umbilical points on F are either absent or fill some set of generators. We are left with considering the case of a complete convex surface homeomorphic to a plane. In this event, it is easy to exhibit an example of a surface on which there are no umbilical points. For instance, let γ be a convex planar curve whose curvature differs from zero at each point and let C be a cylinder whose director curve is γ and whose generators are perpendicular to the plane of the curve γ . As is easily seen, there are no umbilical points on C. Denote by $k_1(p)$ and $k_2(p)$ the principal curvatures of F at a point p, and assume the normal $n(p)$ to the surface F be directed so that $k_1(p)$ and $k_2(p)$ be nonnegative. For definiteness, assume that

$$
0 \leq k_1(p) \leq k_2(p). \tag{1}
$$

It is obvious that the following equality holds for the cylinder C :

$$
\inf_{p \in C} (k_2(p) - k_1(p)) = 0. \tag{2}
$$

In such a case, we can say that C "has" an umbilical point at "infinity." This example, as well as other examples of convex surfaces known to the author, leads to the conjecture: On a complete convex surface F homeomorphic to a plane, the following equality of type (2) holds: $\inf_{p \in F}(k_2 (p) - k_1 (p)) = 0$. It is possible to reformulated this as follows: every complete convex surface homeomorphic to a plane has an umbilical point which may lie at "infinity." However, the author did not succeed in proving this conjecture; hence, it is unknown whether the conjecture is true or not. The following two theorems are proven:

Theorem 1. If the integral curvature of a complete convex surface F of class C^{∞} and homeo*morphic to a plane is strictly less than* 2π , *then*

$$
\inf_{p\in F}(k_2(p)-k_1(p))=0.
$$

Theorem 2. If, for a complete convex surface F of class C^{∞} and homeomorphic to a plane, *the Gaussian curvature K of F and the moduli of the gradients of the functions* $k_1(p)$ *and* $k_2(p)$ *are bounded on F, then*

$$
\inf_{p\in F}(k_2(p)-k_1(p))=0.
$$

Theorems 1 and 2 are equivalent to the next Theorems 1" and 2* respectively.

Theorem 1^{*}. If the *integral curvature of a complete convex surface F of class* C^{∞} *is strictly* less than 2π and $\inf_{p\in F}(k_2(p) - k_1(p)) = c_0 > 0$, then F is a cylinder homeomorphic to a circular *cylinder.*

^{?)} **The research was** supported by the AMS.

Novosibirsk. Translated from *Sibirskff Matematicheski~ Zhurnal,* Vol. 36, No. 4, pp. 903-910, July-August, 1995. Original article submitted July 27, 1994.

Theorem 2^{*}. If, for a complete convex surface F of class C^{∞} , the relation $\inf_{p\in F}(k_2(p)$ $k_1(p) = c_0 > 0$ holds on F and the Gaussian curvature K of F and the moduli of the gradients of the functions $k_1(p)$ and $k_2(p)$ are bounded on F, then the surface F is a cylinder homeomorphic to *a circular cylinder.*

REMARK. Under the conditions of Theorems 1^{*} and 2^{*} the director curve γ of the cylinder is a convex planar curve whose curvature is not less than c_0 at any point.

The proofs of Theorems 1 and 2 are based on the following lemmas:

Lemma 1. If $\inf_{p \in F} k_2(p) = 0$ then $\inf_{p \in F} (k_2(p) - k_1(p)) = 0$.

The proof is obvious, since $k_1(p) \geq 0$.

Denote by $D(F)$ the convex domain of the Euclidean space \mathbb{R}^3 which is bounded by the surface F and denote by $D(\nu, F)$ the projection of $D(F)$ to some plane perpendicular to the vector ν .

Lemma 2. If, for some vector ν , the domain $D(\nu, F)$ includes a circle of radius R, then $\inf_{p\in F} k_2(p) \leq 1/R$.

PROOF. Denote by K_R a circle of radius R which lies in $D(\nu, F)$. Introduce a Cartesian rectangular coordinate system x, y, z in \mathbb{R}^3 with origin O at the center of the circle K_R and the z-axis directed in parallel to the vector ν . Let C stand for the right circular cylinder whose director curve is the boundary circumference of the circle K_R . The cylinder C cuts out at least one surface F_1 from F which is projected onto the circle K_R in a one-to-one fashion. Let $z = f_1(x, y)$ be the equation of the surface F_1 , where $x^2 + y^2 < R^2$, and let, for definiteness, the surface F_1 be convex downward. Now, take a sphere $S(R - \varepsilon)$ of radius $R - \varepsilon$ whose center is on the z-axis and which lies entirely higher than the surface F_1 (ε is an arbitrary number satisfying the inequality $0 < \varepsilon < R$). We now lower the sphere $S(R - \varepsilon)$ until the first contact of $S(R - \varepsilon)$ and F_1 . Let a point p belongs to $F_1 \cap S(R - \varepsilon)$. The surface F_1 , as is seen from our construction, lies entirely lower than $S(R - \varepsilon)$ and touches it at the point p which is an interior point of F_1 . Therefore, all normal curvatures of F_1 at p do not exceed $1/R - \varepsilon$. Since ε can be taken arbitrarily close to zero, Lemma 2 is thus proven.

Lemma 3. If $inf_{p \in F}(k_2(p) - k_1(p)) = c_0 > 0$ then, for each point in the domain $D(F)$, there is *exactly one ray that passes through the point and lies entirely in the domain* $D(F)$ *.*

PROOF. Since the domain $D(F)$ is convex and noncompact, for each point $p \in D(F)$ there is at least one ray that passes through the point and lies in $D(F)$. If we suppose that two rays r_1 and r_2 pass through some point $p_0 \in D(F)$ and lie entirely in $D(F)$, then the projection of $D(F)$ to the plane of the rays r_1 and r_2 includes a circle of an arbitrarily large radius. In that event inf $_{p\in F} k_2(p) = 0$ by Lemma 2, contradicting the hypothesis of Lemma 3. The contradiction obtained proves Lemma 3.

Lemma 3 implies that all rays in $D(F)$ are parallel to one another. Let α stand for a plane perpendicular to all the rays and tangent to F at some point O . Construct a Cartesian rectangular coordinate system x, y, z , placing the origin at the tangency point O and directing the z-axis so that it be perpendicular to the plane α . In this coordinate system, the surface F can be given by an explicit equation

$$
z = f(x, y), \quad (x, y) \in \text{Int } D(k, F).
$$

Lemma 4. If $inf_{p \in F} k_2(p) = c_0 > 0$ then the domain $D(\bar{k}, F)$ is compact.

PROOF. Suppose that the domain $D(\bar{k}, F)$ is not compact. Since it is convex, we can draw a ray r_0 through the origin which lies entirely in $D(k, F)$. Let r_0 coincide with the positive half-axis of the x-axis. Consider the convex curve $z = f(x, 0)$, $y = 0$, $x > 0$, lying entirely in the plane *XOZ*. Let R be an arbitrary positive number. In the plane XOZ , consider the domain $D_1(R)$ determined by the inequalities $0 < x < 2R$, $z > R_1 = f(2R, 0)$. Then we can place a circle K_R of radius R in the domain D_1 and assume that $K_R \subset D(j, F)$. By Lemma 2, we then have $\inf_{p \in F} k_2(p) \leq 1/R$. In view of the arbitrariness of the number R, we obtain $\inf_{p \in F} k_2(p) = 0$, which contradicts the hypothesis of Lemma 4. The contradiction proves Lemma 4.

Denote the boundary of the domain $D(\bar{k}, F)$ by σ , and denote by C_{σ} the right cylinder that is constructed on σ as on the director set. The surface F lies entirely in the cylinder C_{σ} and may touch it only in some half-lines. Let us pass from the Cartesian coordinates (x, y, z) to cylindrical ones (r, φ, z) : $x = r \cos \varphi, y = r \sin \varphi, z = z$. In these coordinates, the surface F can be determined by the equations

$$
r=r(z,\varphi), \quad z=z, \quad z\geq 0, \quad 0\leq \varphi \leq 2\pi.
$$

From convexity of F and compactness of $D(\bar{k}, F)$, we can easily infer the following properties of the function:

$$
\lim_{z \to \infty} r(z, \varphi) = r_0(\varphi) < \infty, \quad \lim_{z \to \infty} r_z(z, \varphi) = 0,\tag{3}
$$

$$
r_z(z,\varphi) > 0, \quad r_{zz}(z,\varphi) \le 0 \quad \text{for} \quad z > 0. \tag{4}
$$

We can now prove Theorem 1 by using equalities (3). To prove Theorem 2, we need uniform upper estimates for the moduli of the functions r_{φ} , $r_{\varphi\varphi}$, r_{zz} , and $r_{z\varphi}$. These estimates are in general absent for the surface F itself. For this reason, we pass from the surface F to an equidistant surface Φ for which the mentioned estimates are now existent. Let a be some positive number. Define the surface Φ by lapping, from each point p of F, a segment of length a in the direction of the outward normal $(-n(p))$. Denote by $\varphi(p)$ the homeomorphism of F onto Φ that is generated by this construction.

Lemma 5. If on a complete convex surface F of class C^{∞} the next conditions hold:

- (i) the Gaussian curvature K is bounded by some constant c_1 ;
- (ii) $\lvert \text{grad } k_1(p) \rvert$ and $\lvert \text{grad } k_2(p) \rvert$ are bounded by a constant c₂;
- (iii) $\inf_{p \in F}(k_2(p) k_1(p)) = b > 0$

then, for every a, the surface Φ is a complete convex surface of class C^{∞} for which the same *conditions* (i)-(iii) *hold but possibly with other constants.*

PROOF. The principal radii of curvature $R_F(p)$ and $R_{\Phi}(\varphi(p))$ of the surfaces F and Φ are well known to be connected by the relation

$$
R_{\Phi}(\varphi(p)) = R_F(p) + a. \tag{5}
$$

It follows from (5) that Φ is convex and belongs to the class C^{∞} . Furthermore, it follows from (1) that the principal curvatures $\bar{k}_1(q) = \bar{k}_1(\varphi(p))$ and $\bar{k}_2(q) = \bar{k}_2(\varphi(p))$ of the surface F are expressed in terms of $k_1(p)$ and $k_2(p)$ by the formulas

$$
\bar{k}_1(q) = \frac{k_1(p)}{1 + ak_1(p)}, \quad \bar{k}_2(q) = \frac{k_2(p)}{1 + ak_2(p)}.
$$
 (6)

From (6) we infer

$$
K_{\Phi}(q) = \frac{k_1(p)k_2(p)}{(1 + ak_1(p))(1 + ak_2(p))} \leq k_1(p)k_2(p) \leq c_1.
$$
 (7)

Now, (7) implies the validity of item (i) of Lemma 6 for the surface Φ , and (6) implies the validity of item (ii) for Φ . Finally,

$$
\inf_{q\in\Phi}(\bar{k}_2(q)-\bar{k}_1(q))=\inf_{p\in F}\frac{k_2(p)-k_1(p)}{(1+ak_1(p))(1+ak_2(p))}\geq\frac{b}{(1+c_3a)(1+\bar{c}_0a)},\hspace{1cm} (8)
$$

where $c_3 = \sup_{p \in F} k_1(p)$ and $\bar{c}_0 = \inf_{p \in F} k_2(p) \ge 0$. We are left with observing that the boundedness of the function $k_1(p)$ ensues from the boundedness of the Gaussian curvature of the surface F. Lemma 5 is proven.

Now, assume that, in the above-introduced cylindrical coordinate system, the surface Φ is given by the equations $r = f(z, \varphi)$, $z = z$, $z \ge -a$, $0 \le \varphi \le 2\pi$. Let $\bar{z} > -a$ be some number. We say that some function $B(r,\varphi)$ is bounded on F, if there is a constant C such that $|B(z,\varphi)| \leq C$ for $z \geq \overline{z}$ and $0\leq\varphi\leq2\pi.$

Lemma 6. If a surface F satisfies the conditions of Lemma 5, then the function $f(z, \varphi)$ possesses *the following properties:*

(a) $f_z \ge 0$ for $z > -a$, (b) $\lim_{z\to\infty} f_z(z,\varphi) = 0$, (c) $f_{zz} < 0$ for $z > -a$, (d) the functions $|f_{\varphi}(z,\varphi)|, |f_{\varphi\varphi}(z,\varphi)|, |f_{zz}(z,\varphi)|, |f_{z\varphi}(z,\varphi)|,$ and $|f_{zzz}(z,\varphi)|$ are bounded on Φ .

PROOF. Properties (a)–(c) of the function f follow from convexity of the surface Φ and compactness of the domain $D(\bar{k}, \Phi)$, where \bar{k} is the unit vector of the z-axis. We begin proving boundedness of $|f_{\varphi}(z,\varphi)|$. Let $\bar{\sigma}$ be the boundary of the domain $D(\bar{k},\Phi)$; assume it lying in the plane $z = -a$. Denote by $2r_0$ the minimal distance from the point $A(0, 0, -a)$ to $\bar{\sigma}$ and by r_1 , the maximal distance. Since the orthogonal projections of the curves γ_c : $r = f(c, \varphi)$, $z = c$, to the plane $z = -a$ converge to $\bar{\sigma}$ as $c \to \infty$, there is z_1 such that

$$
f(z,\varphi)\geq r_0\tag{9}
$$

for $z \ge z_1$. Denote by $\alpha(\varphi)$ the acute angle between the tangent to γ_c at the point $r = f(c, \varphi)$ and the radius-vector from $\hat{A}(c)(0,0,c)$ to this point. Let $d(\varphi)$ be the distance of $A(c)$ from the tangent straight line and let $b(\varphi)$ be the length of the radius-vector. Then

$$
\sin \alpha(\varphi) = d/b, \quad \cos \alpha(\varphi) = \sqrt{b^2 - d^2}/b. \tag{10}
$$

On the other hand, $\cos \alpha(\varphi) = |f_{\varphi}| / \sqrt{b^2 + f_{\varphi}^2}$, whence we infer

$$
|f_{\varphi}| = b \cot \alpha(\varphi) = \frac{\sqrt{b^2 - d^2}}{d} b. \tag{11}
$$

The convexity of the curve γ_c implies the inequalities

$$
d(\varphi) \geq r_0, \quad b(\varphi) \leq r_1. \tag{12}
$$

From (11) and (12) we obtain

$$
|f_{\varphi}| \le \frac{r_1}{r_0} \sqrt{r_1^2 - r_0^2}.\tag{13}
$$

Inequality (13) implies the first claim in item (d) of Lemma 6.

Now, we evaluate the curvature $k(\varphi)$ of the curve γ_c at an arbitrary point:

$$
k(\varphi) = \frac{-f_{\varphi\varphi}f + 2f_{\varphi}^2 + f^2}{(f^2 + f_{\varphi}^2)^{3/2}}.
$$

From this equality we have

$$
f_{\varphi\varphi}=-k(\varphi)\frac{\left(f^2+f_{\varphi}^2\right)^{3/2}}{f}+\frac{2f_{\varphi}^2}{f}+f.
$$

Estimate the function $k(\varphi)$ from above. According to Euler's formula, (5) implies that the normal curvature of the surface Φ at every point and in every direction does not exceed $1/a$. Therefore, from Meusnier's theorem we infer the inequality

$$
k(\varphi) \le 1/a \cos \beta, \tag{14}
$$

where β is the angle between the principal normal to the curve γ_c and the normal to the surface Φ ,

$$
\cos \beta = \frac{f_{\varphi}^2 + f^2}{\sqrt{f_{\varphi}^2 + f^2} \sqrt{f_{\varphi}^2 + f^2 (1 + f_z^2)}} = \frac{\sqrt{f_{\varphi}^2 + f^2}}{\sqrt{f_{\varphi}^2 + f^2 (1 + f_z^2)}}.
$$
(15)

7R2

Since $\lim_{z\to\infty} f_z(z,\varphi) = 0$, it follows from (15) that there is z_2 such that $\cos \beta \geq 1/2$ for $z > z_2$. Inequalities (9) and (14) now imply the second claim in item (d) of Lemma 6.

Let $\bar{\gamma}_c$ be the curve determined by the equations $z = f(z, c)$, $z = z$, $\varphi = c$. The curvature $\bar{k}(z)$ of the curve is given by the formula

$$
\bar{k}(z) = -f_{zz}/(1+f_z^2)^{3/2}.
$$
 (16)

By analogy with the above, from (16) we obtain

$$
|f_{zz}| \le \frac{1}{a\cos\bar{\beta}} \left(1 + f_z^2\right)^{3/2},\tag{17}
$$

where $\bar{\beta}$ is the angle between the principal normal to the curve $\bar{\gamma}_c$ and the normal to the surface Φ ,

$$
\cos \bar{\beta} = \frac{f(1 + f_z^2)}{\sqrt{1 + f_z^2} \sqrt{f_\varphi^2 + f^2(1 + f_z^2)}}.
$$
\n(18)

Relations (17) , (18) , (13) , and (9) imply the third claim in item (d) of Lemma 6:

$$
|f_{zz}| \le \bar{c} \quad \text{for} \quad z > z_3. \tag{19}
$$

We compute the coefficients E, F, G and L, M, N of the first and second quadratic forms of the surface Φ :

$$
E = 1 + f_z^2, \quad F = -f_z f_{\varphi}, \quad G = f^2 + f_z^2, \quad L = \frac{-f_{zz}f}{A},
$$

$$
M = \frac{-f_{z\varphi}f + f_z f_{\varphi}}{A}, \quad N = \frac{f^2 + 2f_{\varphi}^2 - f_{\varphi\varphi}f}{A},
$$
 (20)

where $A = \sqrt{f_{\varphi}^2 + f^2(1 + f_z^2)}$. Since the surface Φ is convex, we have $M^2 \leq LN$. Whence we infer the inequality

$$
(f_{z\varphi}f - f_zf_{\varphi})^2 \le -f_{zz}f(f^2 + 2f_{\varphi}^2 - f_{\varphi\varphi}f). \tag{21}
$$

From (21) and the inequalities proven earlier we infer the second claim of item (d) of Lemma 6:

$$
|f_{z\varphi}| \le \bar{c}_3 \quad \text{for} \quad z > z_4. \tag{22}
$$

We turn to proving boundedness of the function $|f_{zzz}(z,\varphi)|$. The boundedness of the moduli of the gradients of the functions $k_1(p)$ and $k_2(p)$ implies the boundedness of the moduli of the gradients of the functions $\bar{k}_1(q)$ and $\bar{k}_2(q)$, and consequently the boundedness of the functions $|\bar{k}_1(q)+\bar{k}_2(q)|$ and $|\bar{k}_2(q) + \bar{k}_1(q)|$, which leads to the boundedness of the functions $|LG + EN - 2MF|$ and $|LN - M^2|$. Involving the inequalities proven earlier and formulas (20), from the preceding conditions we obtain the equalities

$$
L_z G + N_z E - 2M_z F = \bar{h}_1(z, \varphi), \quad L_{\varphi} G + N_{\varphi} E - 2M_{\varphi} F = \bar{h}_2(z, \varphi),
$$

\n
$$
L_z N + N_z L - 2M_z M = \bar{h}_3(z, \varphi), \quad L_{\varphi} N + N_{\varphi} L - 2M_{\varphi} M = \bar{h}_4(z, \varphi),
$$
\n(23)

where the functions \bar{h}_1 , \bar{h}_2 , \bar{h}_3 , and \bar{h}_4 are bounded on the surface Φ . Further, using the Peterson-Codazzi equations, we express the functions M_z and M_φ through the functions L_φ and \tilde{N}_z respectively, and insert their expressions into (23). We obtain

$$
L_zG - L_{\varphi}2F + N_zE = h_1(z, \varphi), \quad L_{\varphi}G - N_z2F + N_{\varphi}E = h_2(z, \varphi), L_zN - L_{\varphi}2M + N_zL = h_3(z, \varphi), \quad L_{\varphi}N - N_z2M + N_{\varphi}L = h_4(z, \varphi),
$$
\n(24)

where the functions h_1 , h_2 , h_3 , and h_4 are bounded on the surface Φ . Consider equalities (24) as a system of equations in the functions L_z, L_{φ}, N_z , and N_{φ} . The determinant Δ of the system equals

$$
\Delta = L^2 G^2 + N^2 E^2 - 4M F L G - 4M F N E - 2E G L N + 4M^2 E G + 4F^2 L N
$$

= $(LG + N E - 2F M)^2 - 4(EG - F^2)(LN - M^2) = \left(\frac{\bar{k}_2 - \bar{k}_1}{2}\right)^2 (EG - F^2)^2.$ (25)

From (25) and (8) we infer that Δ is bounded above on the surface Φ :

$$
\Delta \ge \bar{b} > 0. \tag{26}
$$

But then (24) , (26) , and (20) imply that

$$
L_z = \left(\frac{-f_{zz}f}{\sqrt{f_{\varphi}^2 + f^2(1 + f_z^2)}}\right)_z = h_5(z, \varphi), \tag{27}
$$

where $h_5(x, \varphi)$ is bounded on the surface Φ . Rewrite equality (27) as follows:

$$
-f_{zzz}(z,\varphi)f(z,\varphi)=h_6(z,\varphi),\qquad \qquad (28)
$$

where $h_6(z, \varphi)$ is bounded on the surface Φ . The last claim of Lemma 6 follows from (9) and (28). Lemma 6 is proven.

PROOF OF THEOREM 1. Let us prove that under the conditions of Theorem 1 inf $_{p \in F} k_2(p) = 0$, and thereby in view of Lemma 1 $inf_{p\in F}(k_2(p) - k_1(p)) = 0$. Assume the contrary. Let $inf_{p\in F}(k_2(p) =$ $c_0 > 0$. Then Lemma 4 implies that, in the cylindrical coordinate system introduced in the lemma, the surface F is determined by the equations $r = r(z,\varphi)$, $z = z$, $z > 0$, $0 \le \varphi \le 2\pi$. The function $r(z, \varphi)$ meets the second of equalities (3).

In a standard way we find the components of the normal vector $n(p)$ of the surface F in the Cartesian coordinate system relating to the cylindrical coordinate system:

$$
h(p) = \left(\frac{-(r_{\varphi}\sin\varphi + 2\cos\varphi}{\sqrt{r_{\varphi}^2 + r^2(1+r_z^2)}}, \frac{r_{\varphi}\cos\varphi - r\sin\varphi}{\sqrt{r_{\varphi}^2 + r^2(1+r_z^2)}}, \frac{r_zr}{\sqrt{r_{\varphi}^2 + r^2(1+r_z^2)}}\right).
$$
(29)

It follows from (29) that the spherical image of the surface F coincides with the upper half-sphere. Therefore, by the Gauss theorem on the area of the spherical image, the integral curvature of the surface F equals 2π , contradicting the hypothesis of Theorem 1. The contradiction obtained completes the proof of Theorem 1.

PROOF OF THEOREM 2. Assume, under conditions of Theorem 2, that $inf_{p\in F}(k_2(p) - k_1(p)) =$ $c_0 > 0$. Then the condition

$$
\inf_{q \in \Phi} (\bar{k}_2(q) - \bar{k}_1(q)) = \bar{c}_0 > 0 \tag{30}
$$

too holds on Φ . It follows from (30) that there are no umbilical points on Φ . Hence, on Φ there are two continuous unit vector fields $e_1(q)$ and $e_2(q)$, the fields of principal directions of the surface Φ . Let $r = f(z, \varphi)$, $z = z$, be the equations of the surface Φ in the cylindrical coordinate system introduced in Lemma 5. Were there at least one value $z = z_0$ for which the field $e_1(q)$ has a nonzero angle with the curve $\bar{\gamma}_{z_0}$: $r = f(z_0,\varphi)$, $z = z_0$, we would obtain, in the domain $z \leq z_0$ on the surface Φ homeomorphic to a circle, existence of a continuous vector field of unit vectors which is not tangent to the boundary of the circle and vanish nowhere in the circle, which contradicts the Brauer fixed-point theorem. Consequently, for every $z = c$, $z > -a$, on the curve $\bar{\gamma}_c$ there is a point $q(c)$ at which the vector $e_2(q(c))$ is orthogonal to the curve $\bar{\gamma}_c$. Furthermore, it follows from Lemma 1 and inequality (30) that

$$
\inf_{q\in\Phi}\bar{k}_2(q)=\bar{k}_0(q)>0.\tag{31}
$$

From (31), Euler's formulas, (20), and claim (b) of Lemma 6 we derive that the normal curvature $k(c)$ of the surface Φ at the point $q(c)$ in the direction of the vector (1,0) is not less than $\bar{k}_0/2$ for a sufficiently large c:

$$
k(c) = L/E \ge \bar{k}_0/2. \tag{32}
$$

From (32), (20), and (18) we infer that

$$
-f_{zz} \ge \frac{\bar{k}_0}{2} \sqrt{EG - F^2} \ge \frac{\bar{k}_0}{2} \sqrt{r_0}.
$$
 (33)

We now evaluate the size of the interval in which $-f_{zz} \geq \bar{k}_0 \sqrt{r_0}/4$. Let the point $q(c)$ have coordinates (c, φ_0) . Then \pm

$$
-f_{zz}(z,\varphi_0)=-f_{zz}(c,\varphi_0)-\frac{1}{2}f_{zzz}(\xi,\varphi_0)(z-z_0)\geq \frac{k_0}{4}\sqrt{r_0}.
$$
 (34)

Here ξ lies between c and z. Solving inequality (34), we find

$$
|z - c| \ge \bar{k}_0 \sqrt{r_0} / 4\bar{c}, \tag{35}
$$

where \bar{c} is a constant bounding the modulus of f_{zzz} (see Lemma 6). From (35) and (34) we obtain the inequality

$$
\int_{c}^{\infty} (-f_{zz}) dz \geq \int_{c}^{c+\bar{k}_0 \sqrt{r_0}/4\bar{c}} (-f_{zz}) dz \geq \int_{c}^{c+\bar{k}_0 \sqrt{r_0}/4\bar{c}} \frac{k_0 \sqrt{r_0}}{4} dz = \frac{\bar{k}_0^2 r_0}{16\bar{c}}.
$$
 (36)

On the other hand,

$$
\int_{c}^{\infty} (-f_{zz}) dz = -f_z|_{c}^{\infty} = f_z(c, \varphi_0) < \varepsilon, \qquad (37)
$$

where ε is an arbitrarily small number for c large. Choose c large enough to have $\varepsilon < \frac{1}{32\bar{\varepsilon}}k_0^2r_0$. Then inequality (37) contradicts inequality (36), which completes the proof of Theorem 2.

TRANSLATED BY K. M. UMBETOVA