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It is shown that the inverse scattering method applies to both the classical and 

the quantum Goryachexr--Chaplygin top. A new method, based on the ~ -matrix for- 

malism, is proposed for deriving the equations determining the spectrum of the 

quantum integrals of motion. This method is of a rather general nature and may 

serve as an alternative to the so-called algebraic Bethe Ansatz. 

INTRODUCTION 

The Goryachev-Chaplygin (GC) top is the name given to the following Hamiltonian system. 

Consider the six-dimensional phase space with dynamical variables ~,~(~-4,2,$) that gener- 

ate the Lie algebra 6(3) with respect to the Poisson bracket 

I :J~,:~} - .  ~ |  

I ~ , = . l  - -  0 .  

For fixed values of the Casimir operators 

r  = ~ t  + =,3.+ ~a~j - - 0  , 

(1) 

(2) 

we obtain a four-dimensional manifold on which the Poisson bracket (i) is nondegenerate. 

The Hamiltonian of the GC top has the form 

where ~.= ~+ ~+ ~ and ~ is a parameter. For the physical interpretation of the quanti- 

ties ~m,~m , and of the Hamiltonian (3) see, e.g., [i]. 

As Chaplygin showed [2], for r the Hamiltonian (3) commutes relative to the Poisson 

bracket (i) with the integral of motion 

and hence, the considered Hamiltonian system is completely integrable in the sense of Liou- 

ville. Chaplygin also established [2] that the equations of motions with Hamiltonian (3) 

can be integrated by quadratures by passing to the variables 

-- ~= �9 4~, (5) 

-O r 
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In paper [3] it was shown that, along with the GC top, the so-called GC gyrostat [i] with 

the Hamiltonian 

'Hp == H + PJa (6) 

is also completely integrable. 

with the integral of motion 

Hamiltonian (6) commutes relative to the Poisson bracket (i) 

(7) 

The GC gyrostat is integrated in the same variables (5) as the GC top. It is clear that the 

GC gyrostat degenerates into the GC top for p--0 

In the quantum case the Poisson brackets (i) are replaced by the corresponding commuta- 

tion relations 

[%, ~ ]_  - -  ~%r~r ,  (8) 
[~,,  ~,]_ - o 

(hereafter we use the notation [A,B]•177 ). The Casimir operators (2) and the Hamil- 

tonians (3) and (6) preserve their form. As in the classical case, we shall assume that S -I 

and ~-=0 . 

Henceforth, we will denote the quantum operators by the same symbols as their classical 

counterparts and use the symbol ^ to indicate those quantum quantities whose expression dif- 

fers from the corresponding classical expression by the order of factors or the presence of 

quantum corrections. 

Komarov showed [4] that in the quantum case Hamiltonian (3) commutes with the operator 

.~ = ~ , ( ~  ~f.  � 8 8  6 [~, ,~]+ , (9) 

provided 'r--0 . Moreover, he succeeded in reducing the problem of finding the spectrum of 

H to two independent one-dimensional spectral problems, which obviously corresponds to sep- 

aration of variables in classical mechanics. 

The results listed above were generalized to the quantum GC gyrostat in [5]. In partic- 

ular, the quantum analog of the integral of motion (7) has the form 

~,= ~ ~ r(~ '~ 77+ § (lO) 

This paper has two goals. The first is to show that the GC top (gyrostat), both classi- 

cal and quantum, can be systematically investigated in the framework of the classical, re- 

spectively quantum inverse scattering method (ISM); the latter is perhaps the only universal 

method for studying complete integrable systems available previously. Actually, we refer 

to a modified ISM developed recently and known as the method of the R -matrix [6, 7]. Al- 

though the complete integrability of the GC top (gyrostat) was established earlier by dif- 

ferent methods, such a result is nevertheless of methodological importance, as another proof 

of the universality of the ISM. 

The second goal of this paper is to demonstrate, on the example of the quantum GC top 

(gyrostat), a new method for deriving the equation for the spectrum of H , which could 
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serve as an alternative to the algebraic Bethe Ansatz [6] in those situations in which there 

is no local vacuum for the ~ -operator. The method proposed here generalizes the device 

used in [8] to investigate the quantum periodic Toda lattice. We emphasize that this general- 

ization became available thanks to the formalism of the ~ -matrix. 

The main text is divided into two sections: the first deals with the classical GC top 

(gyrostat), whereas the second is devoted to the quantum analogs. 

I am deeply grateful to I. V. Komarov for fruitful discussion that stimulated the elabora- 

tion of this paper. 

i. Classical Case 

For the integration of the classical GC top (gyrostat) we appeal to the method of the 

classical ~ -matrix [7], which is essentially a version of the ISM. This method is applied 

to discrete completely integrable systems as follows. We attach to the given system a square 

(N~N) -matrix ~(~) , called the L -operator, which depends on the dynamical variables and 

an auxiliary parameter U referred to as the spectral parameter. It is required that an 

(N~x N~) -matrix ~(~) exist, depending on the spectral parameter ~ , such that the fol- 

lowing identity holds: 

It is readily verified [7] that (ii) implies the involutiveness of the functions ~(~)='~(~) 

~ t i . ~ ,  $c~)I - - - -  0 . (12) 

If the Hamiltonian H of the given system and ~(~) are functionally dependent, then, by (12), 

~(~) may be regarded as a generating function for commuting integrals of motion. 

Now we have only to guess an ~ -operator and an ~-matrix satisfying the above require- 

ments for the GC top (gyrostat). To this end, it is convenient to enlarge the phase space by 

adding variables p and ~ with Poisson brackets 

{ P, ~=~, 
| P, J-} -=  1 ~,3,}  = O, (13) 

{ p , |  o.  
Now set 

and 

where 

A,. , , , ) :  ('~+ p..,-~,3a)X(.).-,-'6c=-',,- o:.., 3_ ) ,  

C(,=,) == ~=~ Kt ~), 

K(~,) = d ' -  20',~, - ~- ~ )  =(',,,- ' . , . ,)r - ~ ) �9 

(14) 

(15a) 

(15b) 

(15c) 

(15d) 

(16) 
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and 

~• " ~ • ~=~ ' ~• === ~ • $@~ " (17) 

One can verify by direct computation that the ~ -operator (14, 15) satisfies identity 

(ii) with the �9 -matrix 

�9 c ~ = T ~ ,  ~ =  ~ . (18) 

A full list of Poisson brackets between entries of ~(~) is given in Appendix i. We empha- 

size that equality (ii) holds only for ~=:0. 

As we have already remarked, identity (ii) implies equality (12), which, in our case, 

holds with ~(~) the following cubic polynomial: 

~(~ = =  A(~)+ ~(m---w~+ p~ ~ ~H~-@~. (19) 

The coefficients Np and ~ in (19) are the Hamiltonian (6) and respectively the in- 

tegral motion (7) of the classical GC gyrostat, previously introduced. From (12) and (19) 

it follows that p, Np , and ~ are in involution. Since ~ is an integral of motion, it 

can serve as a parameter in Hp and ~ . We have thus recovered the results of [2, 3] 

concerning the complete integrability of the GC top (gyrostat). 

According to Chaplygin [2], in order to integrate the equations of motion of the GC 

top by quadratures, it is convenient to use the variables ~,~ (5). Below we shall show 

that variables ~ , together with the canonical conjugate variables ~,~ admit a 

natural interpretation in the setting of the ISM. In our arguments we use the approach of 

papers [9, i0] translated in the language of the �9 -matrix formalism. 

We first note that @~ and ~ are the roots of the quadratic polynomial ~(~) given 

by (15c, 16)* 

C(~)-= 0 , ~ , ~ , ~ ,  �9 

:1: 
~ by the formulas 

(20) 

(21) 

~', it is readily verified that 

(22) 

Define the quantities 

Using formulas (15) and the chosen Casimir operators f and 

do~ I , ~ ) - -  A c ~ c ~  - ~c~) C r  ~. 
Hence, in view of (20.), (21) 

~i~;-- A(~(K,)I ~(~ = ~ "  (23) 

Formulas (AI.I-16) of Appendix 1 and definitions (20), (21)permit us to compute the Pois- 

son brackets between the quantities p,~, and II~, A~: 

| p, %1=l p, A~.I---- { ~ u,,l={ %A~} -= o, 

l ~ . , % 1 - - o  I • * , A., ~} -- o, 
(24) 

�9 • 

�9 We owe t h i s  o b s e r v a t i o n  to  I .  V. Komarov. 
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For example, let us show how to compute the Poisson bracket I~$~I. From (20), (21), 

and (AI.15) it follows that 

The other equalities in (24) are verified in the same manner. 

The variables ~ ~, ~ and ~ constitute a complete family of dynamical variables, 

meaning that every function on the phase space, in particular the entries ~(mbB(~,g(~) , and 

~(~) of the ~ -operator, is expressible in terms of these variables. In fact, the polynomials 

are uniquely specified by their values at the points ~ and the asymp- ~(~), Ar , and ~](~) 

totics 

�9 ,.!] c . , )  - -  foe . )  

(25) 

for ~--~,~ Using Lagrange's interpolation formula we find that 

C r  ~ ~ - ~  ( ~ -  ~,,)(~, - % ) ,  

u~- % ~-~ , 
u , - t ~ ,  + ~l,-'v,~ + 

The e x p r e s s i o n  of  ~(m) i s  o b t a i n e d  wi th  the  a i d  of  fo rmula  (22) :  

L tl,,i-l~, ~ I lid,l--t~,l ~J (tl.v-t4~) 

A comparison of (26) and (15) shows that 

(26) 

(27) 

( 2 8 )  

- ~ - ~- ~ - (29) 

and 

where 

-~ q - " l -  - -  

(30a) 

From the relations 

Equalities (23), (24), and (31) allow us to represent ~ in the form 

~ = ~ ~ , 

V~ are the momenta canonically conjugate with the coordinates ~ : 

~,=~_, ~.= 7_ , and (29) we obtain the reality conditions for ~ 

(31) 

(32)  

v~, v~t---- 0,  { ~ ,  ~ . t  = ~ '~ .  
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Since the technique of integration by quadratures of the equations of motion of the GC 

top is described in detail in references [i, 2] (see also papers [9, i0], where the transition 

from the canonical variables ~v~ to action-angle variables is described in the case of the 

periodic Toda lattice), we end here the investigation of the classical GC top and turn to the 

quantum case. 

2. Quantum Case 

In the quantum case, as in the classical one, we must introduce the auxiliary operators 

and ~ which obey the canonical commutation relation [p,~]~ and commute with the 

dynamical variables ~ and ]~ (8). 

The quantum ~ -operator is a matrix L~) of the form 

with entries given by the formulas 

and 

in which 

= - t 4 ] .  

A 

(33) 

(34a) 

(34b) 

(34c) 

(34d) 

By straightforward calculation one verifies that L(~) satisfies the equality [6, 7] 

A A 

l ~ - v R [ , ~ > ~  h(v0 = t l  | h~v))(~(~)~ l~P~o,--v), (36) 

where 

(37) 

The full list of commutation relations for the operators ~,B:~C, and ~ , derived from 

(36), is given in Appendix 2. Equality (36) plays the same role in quantum ISM as equality 

(ii) plays in the classical case, ensuring the commutativity 

A 

o (38) 

of the values of the generating function of the integral of motion 

^ ~ ^ ~-- ^ ( 3 9 )  "~(..,) = - ~ L ( . , ) = =  A(.,)-,-~)(.,) = .,'..,. p'.,'- ~,(.Hp* )~  - ~p , 

and ~ denote respectively the Hamiltonian (6) and the integral of motion (i0) of Hp where 

the quantum GC gyrostat. 

We are now prepared to approach the most interesting problem in the quantum case: the 

determination of the joint spectrum of the commuting self-adjoint operators Hp and ~p �9 

The customary approach to this problem in the setting of the quantum ISM is to use the so-called 

algebraic Bethe Ansatz [6], which in its simplest version can be described as follows. Sup- 
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pose that there is a vector ~ (pseudovacuum) which is annihilated by the operator ~(~) for 

any value of ~ : 
A 

C(~) 0 .-- 0 . (40) 

Then we seek the eigenvectors of the generating function of integrals of motion, ~i~) , in 

the form ~tu~)...~(~#)~ �9 The task of determining the spectrum and constructing the eigen- 

vectors of -~(w) is thus reduced to solving a certain system of equations for the parameters 

~7..., u n �9 

Unfortunately, the above method does not apply to the GC top (gyrostat), because Eq. (40) 

does not admit a solution ~ which does not depend on ~ ; indeed, the operator ~-g~ does not 

have zero as an eigenvalue. For this reason, in order to solve the problem formulated above 

we apply a new device, the idea of which is to extend the arguments of the preceding section 

to the quantum case. Proceeding by analogy with the classical case, let us try to decompose 

the polynomial ~(~) into factors linear in ~ : 

~(~)-- ~s �9 (41) 

by (A2.11) operators ~'$~,~ , and ~ must commute. From (34c) and (35) we obtain the fol- 

lowing system of equations for ~I and m~ : 

~4 § ~% •" %J5 (42) 

Since the "momentum" p is an integral of motion, we may always confine our analysis to 

eigenstates corresponding to a fixed eigenvalue of p . For this reason, hereafter we shall 

not distinguish between the operator ~ and its eigenvalues. 

Consider in the state space of the quantum GC top (gyrostat) for a fixed eigenvalue of 

p the basis given by the joint eigenvectors J$~t~> of the operators ~ and ~ : 

I ~| m,>:~(~,+1)l~, /~ ,>,  (431 

where ~ and ~ assume the values 

{} - ~ -  0, t, ~, . . .  
~#;,--- ~,-~ + I,..., 0 ,..., j, . (44) 

We normalize the vectors [~,~t~, by the condition 

= (45) 

From (42) and (43) we obtain the following equations for the eigenvalues ~(~,~t) of the 

operators ~ on the vector I~,~> : 

(46) 

To be s p e c i f i c ,  l e t  us f i x  one of the two s o l u t i o n s  of system (46),  say 

(47) 
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. T . . ' .T~ ,  
-4/~. + + + 

- t  
-aim 

- g  

I I ./ 

(+) ~ ~5. 
+ + + 

-t- + + 

Fig. i 

As (44) and (47) show, the joint spectrum ~ of the commuting self-adjoint operators 
A 

~I and ~ thus defined is simple and is representable as the union ~-=~+U ~- of the 

square lattices ~_. (see Fig. i): 

~• ~ I (~I,~)e~: (~v ~) ~(I ~ + ~ -I ~ - ~), (48) 
, ~ , % = o , L ~ , . . .  J , 

which lie in the lower right quadrant (~1,w~) and correspond to the even (~+) and odd (~_) 

states relative to the involution ~ : 

~ l ~ , ~ >  = ( : - t )  ~ * '~  I ~ , ~ > ,  

~=J~, ~a~---- =, , 

Thus, we can realize the state space of the quantum GC top (gyrostat) as the space ~(~) 

of square-integrable functions on the spectrum ~ : 

The next step is to represent the generating function ~(~) of integrals of motion as 

an operator in ~(~) The most direct way of achieving this is to use the formulas given 

in [ll],which describes explicitly an irreducible representation of the Lie algebra ~(~) 

with the prescribed values (2) of the Casimir operators: 

3•162247 I ~ . . ~ : r  '1 >,  

�9 . I  ~ i - ~ ' ~ "  �9 . . . _ l q - ~ , ~ ( ~ - , ~ f , . .  

S u b s t i t u t i n g  e x p r e s s i o n s  (49) and (34) i n  (39) we o b t a i n  t h e  a c t i o n  of  t he  o p e r a t o r  ~(~) 

on t h e  wave f u n c t i o n  ~ r  

(.~,-'v,,,~ ) ~ / t (  V.l.,. t ) 
(~c= )~ ) (= , , ,%)___ (u . - ,p .~ . , . r%) (= . - ' v~ ) (~ , -u ,= )~F (~ ,%)  + . , , ~ c ~ * ~ , % ~ +  

"~n. _ "~ ( # ~ - ~ ) ( ~ r ' ~ , §  (50) 

~(~-u~,)( l~-u, t -  ~, }" . ~ (u~ -%~(%-%-  g)" ~(~-tc,)(%-u,t  + l~ ' " ' 

where ~(~,) designates the quantum determinant (A2.19) of the L -operator (33). 

It is convenient to make the substitution 
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and thus simplify considerably formulas (50): 

('~(~) ~o)(~,~, % ) ~  ( u,.p +u4+%)(~,-ul) . (u,-~,)  9 (~,~, u,~,) § 

" - ' "  ( . , ,-  
* u,_-~;:-~-L | ~.~.t)~(~,r * (51) 

For the wave function ~Oiv,~,i~) the inner product has the form 

< ~1(,o~,= ~] (~-%)T(v,~,~)q~(%,%). (52) 

Note that (~,~)~ whenever ~-~;>0 We also remark that although the support of func- 

tion ~(~i,~) lies in the square {~i>0, ~,~0J , by shifting the arguments ~ by • in 

formula (51) we do not take @(~,~) out of the indicated state space because the factor 

~'V(.,I~• vanishes for i&~==~ ,~...~- Hereafter it will be convenient to assume 

that ~(~,%)=0 for (~,~)~ ~. 

We derive the equations for the determination of the spectrum of ~(~) by the following 

simple argument (cf. [8]). Let ~(=~)Ir be an eigenfunction of t(~) corresponding to the 

eigenvalue ~(m)=m~+~m~-~p*+)i&-~, where k~ and ~p are eigenvalues of the operators ~p 

(6) and ~p (i0). Then in formula (51) the left-hand side becomes ~(~)~(~,~) Let- 

ting in (51) ~=~ and then ~+=~ , we get for ~(~,~) the system of equations 

~'(:~'~,) ~0 ( 'l+~, P'~, ) = ~'~/~C %.+ '[ ) ~0 ( "a'. '16~. * ~)+ ~//~'r ~ -  I) ~ ( ~ '  ~ -  ~ ) ' (53) 

which is equivalent to the original system (51): indeed, the cubic polynomial ~t~) is uniquely 

specified by its values at the points I&~ , ~ and the asymptotics ~(~)----%~.~. @(~), as 

~.--~oo via Lagrange interpolation. 

Now consider the following spectral problem: 

n;iu') } ( (~ )=  d~/~(16+'~) % ( ~,-t-~,)+ ~'~/~'('.(.--'] ) ~ (1(- ~) (54) 

which runs through the lattice ~,~+-~, +-~ • .... and for function ~ of the variable ~ , 

with the boundary conditions for ~(~ 

~1 ~(~)1%~, (55) 

The three-term recursion relation (54) with boundary conditions (55) is studied in detail 

in [4] (for p=0 ) and [5] (in the general case). It is shown there that for ~=~0 the 

eigenvalues ~p and ~p ( ~ fixed), for which problem (54), (55) has a solution, form a 

discrete set, and that each point of the spectrum (~p,~) has multiplicity one. 

It is readily verified that the one-dimensional spectral problem (54), (55) is equivalent 

to the two-dimensional problem (51). In fact, to every solution ~(~) of (54), (55) there 

corresponds an eigenfunction ~(~,~m) of operator ,~(m) (51) of the form 

~1 ~ ,~1=  ~(~) ~(-~) (56) 
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and conversely, every eigenfunction of problem (51), (53) is necessarily of the form (56) be- 

cause the spectrum of problem (54), (55) is simple.* 

Thus we achieved separation of variables for the quantum GC top (gyrostat), that is, we 

have reduced the problem of determining the joint spectrum of the integrals of motion to a 

set of independent one-dimensional spectral problems, which may be subsequently investigated, 

say, by numerical methods [4, 5]. 

The tactic used above to derive formula (51) has, however, the drawback of resting too 

heavily on the explicit form (34) of the operators ~,~,C, and ~ We conclude this section 

by describing a different tactic which uses only the fundamental relation (36) and hence may 

work for other models that can be treated by the inverse scattering method. 

The idea used below in deriving formula (51) is to construct a quantum analog of the 

variables ~ (20) and ~ (21): as we have seen, these variables are quite useful in in- 

vestigating the classical GC top. The quantum operators ~ were already defined in (41) 

and (47). We now introduce the operators ~: by the formulas 

A A 

where --~ indicates the operators ~ are substituted in the operator polynomials a(~) and 

~(~ from the ;eft: for example, the polynomial ~( ~K~ becomes the operator ~(~---~ 
$ A ^ 

..~K �9 This convention is important since, generally, speaking, the operators A(u) and 

~{~) do not commute with ~ 

Using formulas (A2.1-16) and definitions (41) and (57) we can write the commutation rela- 

tions between the operators p,~,~, and %m : 

^ , (Dab) 

Moreover, relations (A2.20-27) yield the following equalities: 

^ ^+ A ^ ~ ^ ^ 

A~ A~ = ~(~1 ) =- ~ (-~- �88 ~), (59a) 

9* ^^ ~^ ^ ) = ~  (~e ~)(~+ ~) (59b) 

Let us show, for example, how to obtain the commutation relation (58c) between ~ and 
^ 
~ First, rewrite equality (A2.3) in the form 

^ ^ ^ A 

(~-V) ~(~ ~(v)~---- (~-v-~) ~(v)A (~) + ~ ~(~)A (V}. (60) 

Using definition (57) and the fact that, in view of (41), [~(v), ̂ Now set here ~+=~. 

0 , and 

A 

6(~ ~ ~) ----- 0 (61) 

*Note that the condition that the spectrum be simple is not essential. If the eigenvalue 
(~,~p) of problem (54), (55) has multiplicity ~ , then it obviously has multiplicity ~ ~ 
as an eigenvalue of problem (51), (53). 
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we find that 
A A A .(*,,,-v~ ~T,,+ C(v~" = (,,,,,+-" v-z) ~,cv,A-,,,.  

(62) 

Suppose, to take a specific case, that ~+=i. Then, upon inserting in (62) the expression 

(41) for ~(v} and simplifying at left by ~-~(v-~) (which is always possible when v does 

not belong to the spectrum of ~ ), we get 

( v -  1$~) ( V -  t~,)___~ ^ ^ O_ (v_~.~.  ~ ) ( v_~ , )  ~4 . (63) 

This equality immediately yields 

A ~ A A 

~ ~( i~,~, ~ ) :  0 (~r %; i~,~.) A'~ (64) 

for any s~n~P~o function ~(~,~)=~(~, ~ ~ because, as it is known, every such function ~,~ is 

Uniquely expressible in terms of the symmetric polynomials ~-~ and ~ . But since the 

joint spectrum ~ of the operators ~ and ~ lies, as we observed earlier, in the right- 

lower quadrant of the plane ~$ equality (64) is actually valid for a~ function ~($~, I~) , 

in particular, for ~(H,~,l~,~,)=~.~ and ' ~ (~ ,~ ,~ , )= t t . ,  The proof is complete. 

Similarly, the substitution i& ~- i~ in equality (A2.12) yields the commutation rela- 
^~ ^ 

tion (58c) between ~ and i~. 

The proof of equality (59a) is more tedious. We first remark that, as in the classical 

case, definitions (57) and asymptotics (25) yield the equalities 

(65) 

in which, unlike formulas (26), the order of the operator factors is important. 

Now consider the equality 
A 

~ ~.,-~ - ~(~,~ 1~ ( ~ - ~ ,  = ~ ( , - t  ) .  

The second left-hand term vanishes on substituting U ~  in view of (61). To evaluate the 

first term, replace in it X(W) and ~(~) by their expressions in terms of ~ and ~ , 

which yields: ~(b) ~(~-D----(~§ +~)(~-~)(~-~)~(~-~) 

~- Z ^ ^ ^ ^ ~ _ ~  - ^§ ~ ' -  f+ ~ - ~ ,  ~- ~ -~ -~ ,  ~, ~ - ~ ,  ~- ~,-~,-~, ^+ 
~ , -  ~,~, ~..-tz~ ~l,~-~, "'~ t~r ~,~ U~ ~1,~ ~ ~ - ~ ,  ~,~.-~,. '~,~,- 1$~ 

Next, use relations (58c) to move the operators ~ to the right: 
A A A A s'~ A A 

A A ~ I% A /~ A 

(14,-1.1.~){1t-~m.-~) ~-7+ (~_~i,)(1{.--~,~) ^ ^+ . (I~,-~,)(~l,-~) ^ ^+ (U-~,)(~-14.~-%) ^ ^+ 

Substituting here ~ we get ~- ~+ as claimed. Proceeding similarly with equality 

(A2.27) one gets (59b). 

Next we need the representations of relations (58b, c) and (59) in the space of func- 

tions ~(~,~) on ~ (we leave open for the moment the problem of specifying the metric in 

this space). As we already know, ~m are realized as the multiplication operators 
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A 

(u,~kO)(  %, ~.~,) : ll, m~O (tl,,~, ~I,~). (66) 

It is readily verified that the operators ~ defined by the rules 

'%4 

s a t i s f y ,  t o g e t h e r  w i t h  t h e  o p e r a t o r s  ~ ( 6 6 ) ,  a l l  r e l a t i o n s  (58) and ( 5 9 ) ,  Mo reo v e r ,  one 

can show t h a t  r e p r e s e n t a t i o n  (67) f o r  ~ ,  i s  u n i q u e  to  w i t h i n  s i m i l a r i t y  t r a n s f o r m a t i o n s  
~ •  - h i = l ? §  ---~'~ AT+ W w i t h  o p e r a t o r s  W of  t he  form 

We omit the easy proof of this fact, which repeats the proof of the uniqueness of the irreduc- 

ible representation of the Heisenberg group. 

To obtain representation (51) for the operator ~(~)=~(~)+~(~ it remains to substitute 

expression (67) in formula (65). 

The last aspect that should be considered is the form of the metric in the space of func- 

tions ~ Comparing expressions (65) and (41) with (34), we see that 

^ ^ ^ ^ - .~  ~m, ._~ % + % = ~ , %  , % ' , ~ = ~ -  - , 

^ ^ ~ ,~ ^+ (68) (%-%F ( ~ - A i ) = ~  oo+, 

For reader's convenience we give also the expressions for the integrals of motion 
^~ ^ ^ ^~ ^ ~ ^  ^ + ^  + 

, 

^ ^ ^ ^ ^ ^ ^ 

G=-u(~t~+%)*(%-%) ^ + - ^ * - 

(The order of the operator factors is again essential!) 

From the equalities ~.:~_, ~:Z, ~:$~, J;: ~ and commutations relations (58c) we 

obtain the conjugation relation for the operators ~ and ~ : 

A A 
= ^ ^ , 

(69a) 

(69b) 

, which leads to the metric 

We look for the inner product for the functions ~(~4,m;) in the form 

such that the operators ~ (66) and ~: (67) satisfy relations (69). Relation (69a) is 

automatically satisfied, whereas (69b) gives for function 2(~i,m~) the equations 

y~4+%, %)---- ~"-%"~. , f1%,%),  

. t ' (%,%,~)=  ~'-%-% .t'(~,u,| , . u,,-% 

whose unique (modulo equivalence) solution is 9(~l,~,u,,1,) ~ - - -~ . , -~  

(52). 

CONCLUSIONS 

We list a number of open problems related to the results discussed above. 

(70) 

3428 



For the moment the relationship between the GC top and the other completely integrable 

models possessing the same ~($~ -invariant R -matrix (37) is still not clear. Very likely, 

the GC top is a degenerate case of some model of a lattice ferromagnet on chain with three 

sites. 

It would be also interesting to generalize the GC top for Lie algebras of dynamical var- 

iables other than ~(3) (8) or for the N -dimensional rigid body. 

We wish to emphasize that the method proposed here for reducing the determination of the 

joint spectrum of the integrals of motion of the quantum GC top to a one-dimensional spectral 

of the form (54) is based almost exclusively on relations (36). For this reason its domain 

of applicability extends far beyond the specific model of the GC top considered here. At the 

present time the author is working on the application of this method to completely integrable 

models such as the Toda lattice and the ~-Gordon equation [6, 7], the ~ -operators of which 

do not possess a local vacuum. 

APPENDIX i 

Below we give a full list of the matrix entries of relation (ii), which in view of for- 

mula (18) for the ~-matrix can be rewritten in the form 

I~ [[~.(u}[~.~ (v,-~,~)[~ (v)], I ~ , ~ l , b ~ v ~ I  u-v 

where, according to (14), 

For each relation we indicate, at left, the values of the indices ( ~ $ ~ ) .  

(Illl): {A~,~, A~,~I} ---- 0 

(12II): {A(~,),C(v)}= ~-~_~v [-A(~,~G(v)+ G(~)A(v~] 

(I212).: { A {~), ~ (v)~ = ~ [C(u)~ (v) - B (Is) C(v)] 

(IIPm): { B(~,),B~Y~} = 0 

(PPII): { C(~,), G(V)} = 0 

(AI.I) 

(AI.2) 

(AI.3) 

(AI.4) 

(AI.5) 

(AI.6) 

(AI.7) 

(AI.8) 

(AI.9) 

(AI.10) 

(AI.II) 

(AI.12) 

(AI.I3) 

(AI.14) 
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I&-V" (A I . 15 )  

( A l . 1 6 )  

APPENDIX 2 

Using formula (37) we write relation (36) in the form 

( ( ~) 

A complete list of the matrix entries of relation (36) is given below, where, as in 

Appendix i, we indicate at left the values of the indices ( % ~ )  . 

A A 

A . A A ^ A 

( I I I 2 )  : (i~,-v-g)A(ulB(V}~ (~-v)B( v)A(u}-gA(v)B(~ 
. A A A A ^ A 

( IRI I ) :  (~,-v) A(~) C(v)- m c(~) A(v)-- (u-v- ~) g(v)A(,~) 
A A A A ~ ~ A 

(I212) : (,,-v~A(,~)~ (v~- ~ C(m ]3(v)=(~- vi~(vlAmi-~c(v~g(u) 
/~ A A A ~ A 

( I I 2 I )  : (Ix.-v-%)B (~)A(v)=(u,- v) A (vJ B(g)- ;~Blv) A(~,) 

(I122): ]~(i~,)B(v) = Blv)B(u) 

( 1221 ) : ($~- v)]~(u,) Clv) - %~('~,)h(v )~[4,-v) ~(v)g (sc)-g ~(v) A 1~) 

(zP.P~): (v,-v)Bc~,)~}(v{ - 9,~)(~,)]~(vl---.~-(,,u-v-Z)~(v}]~(~,) 

('211I) : (~-v) C(~)A(v}- SA(~)G(v)= (w,-v-~)A (v } ~($H 

( 2112 ): (u., - v ) c(w,) R Iv) - ~A 114,) ~ (v) ~-- ( 1& -v)R (v) 0(~) - ~ (v) ~ (141 
A A A A 

(22111: C(~,)glV)~- Clv) C(i~) 
A A ~' ^ ^ 

(~z~): 1~- v- ~ 6(m~lv)=(~,--v) ~(v} G(~,)- ~G(v)~(,~) 
,~ A A ~ ~ A A A 

(212I) : (i~-v] ~(u~)A(V)- %B(mC(v)~v)A(v)3(~)-~,B(v)C(=) 
(2 I~ ) :  (u,- v} ~)(~)B(v)- $]~(~,)~(v)= (~,-v-~{B(v) ~ ( ~ )  

(2221): (~,-v- ~ )~(UIG(v)= (w-v)~(v)~](Ir ~,~ (v) ~(i~) 
A A A A 

( ~ 2 ) :  (,~,-v- Z) {](~)~ (v )~  (~,-v-~),~ (v),~ (~,) 

(A2 i) 

(A2 2) 

(A2 3) 

(A2 4) 

(A2 5) 

(A2 6) 

(A2 7) 

(A2 8) 

(A2 9) 

(A2 i0) 

(A2 ii) 

(A2 12) 

(A2 13) 

(A2 14) 

(A2 15) 

(A2 16) 

of quantum determinant [7]. With the aid of the explicit form (34) of the quantum 

tor we may verify the relation 

^ A 

as well as the equivalent relation 

where 

In the main text of the paper we have used a number of formulas related to the notion 

L -opera- 

(A2.17) 

(A2.18) 

(A2.19) 
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The quantity r is called the quantum determinant [7] of the {'-operator. 

Finally, we write down the matrix entries of the relation (A2.17): 

o. 
= 

and of relation (A2.18) 

- ~+I~ =- 0 ,  

A A A A 

C(u),{l(,,+Z)- ~(,~) 0~,,+~)~ O, 
A A 

(A2.20) 

(A2.21) 

(A2.22) 

(A2.23) 

(A2.24) 

(A2.25) 

(A2.26) 

(A2.27) 
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