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An infinite family of exact solutions of the Einstein vacuum equations 
for the static case with axial symmetry is presented in an explicit form. 
Each solution of this family contains two arbitrary parameters M and Q 
that represent the mass and quadrupole moment of the source. In addi- 
tion, each solution can be interpreted physically as the pure relativistic 
quadrupole correction to the Schwarzschild solution at a given multipole 
order. 

1. I N T R O D U C T I O N  

In Newtonian  grav i ta t ion ,  the  field crea ted  by  a celest ial  body  of  mass  M 
with  axial  s y m m e t r y  is de t e rmined  at  each poin t  of  the  exter ior  space by  
the following po ten t ia l :  

oo 

(I) --  - G  E ~ P . ( c o s  0), (1) 
r~----0 

where G is the  universa l  g rav i t a t ion  cons tan t ,  (~,0)  are the  rad ia l  and  
po la r  coord ina tes  of  the  po in t  wi th  respect  to  an origin s i tua ted  on the  
s y m m e t r y  axis,  P .  are the  Legendre  po lynomia l s  and  cons tants  Dn are 
the  mul t ipo la r  momen t s  of  the  source, defined as 

D,~ = / p ( ~ . , ~ ) ~ " P . ( c o s ~ ) d S ( ,  Do -- M,  (2) 
J v  
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where p(~,/~) is the density of the object and where the integral is extended 
to the volume of that  object such that ~represents the positional vector of 
the point of integration, and/~ is the corresponding polar angle. It is in- 
teresting to recall that,  assuming that  the source has equatorial symmetry 
(which models a celestial object reasonably well), and taking the origin of 
the coordinates on the symmetry plane, the multipolar moments of odd 
order prove to he null. 

The description of the field through series (1) has the great advan- 
tage of disclosing an important physical characteristic of the source, that  
is its mass distribution. Additionally, since all the summands are solu- 
tions of the Laplace equation, it is possible to cut the whole series at any 
order n, thus obtaining a solution that  admits the two following possible 
interpretations. Either it represents the field at a point sufficiently distant 
from the source to he able to dispense with the terms corresponding to 
moments higher than order n, or the source has a mass distribution suf- 
ficiently close to spherical symmetry for those moments to be considered 
negligible. This second assumption is the most natural one in astrophysics 
since celestial bodies do not differ excessively from spherical distribution. 
Thus, for example, if one considers a homogeneous revolution ellipsoid 
with half-axes (a, a, b), which forms a possible configuration of equilibrium 
[1], the multipolar moments are written as follows: 2 

{ D2n = (-2)n3Ma2n 
(2n + 1)(2n + 3)e"(1 - el2)", a - b 

D2n+l  = 0 , 

(3) 

This formula reveals the progressive decrease in the importance of the mo- 
ments for small deviations from sphericity since the parameter e measures 
this deviation and appears elevated to ever higher powers (note that this 
parameter will be positive or negative, depending on whether the ellipsoid 
is flattened or elongated, respectively). 

Generalization of all the foregoing to general relativity, as is known, 
has serious problems even in the static case, which is the simplest one. The 
main reason for this stems from the fact that the general solution of the 
corresponding Einstein equations (vacuum, staticity and axial symmetry) 
are not known in ~erms of the source, since there is no Green function 
available for these equations; this however, does happen for the Poisson 

2 It is obtained by simple calculation making use of integral 7.226/3 defined on p.822 
of Ref. 2. 
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equation. Accordingly, for the time being it is not possible to develop a 
completely coherent program aimed a t  searching for solutions character- 
ized by physical properties of the source linked to its mass distribution. 

However, within the relativistic community there is consensus that a 
set of relativistic ~nultipole moments can be associated to all static vacuum 
solutions; these were initially defined for this case by Geroch [3], later 
generalized to the stationary case by Hansen, Beig, Simon and others [4], 
and finally generalized to the general case by Thorne [5]. These moments 
characterize the mass distribution of the source, although they do not have 
integral expression of the type of (2). It should be noted, however, that  
attempts have been made [6] to connect the Geroch moments with the 
source using Tulczijew skeleton-sources [7]. 

In recent years, several methods have been developed to find exact 
solutions to the Einstein-Maxwell equations based on the work of Ernst 
[8]. These have led to an surfeit of works dealing with the topic. These 
solutions are interpreted a posteriori in physical terms, calculating their 
relativistic moments without these having played any role in the search 
process, such that  some of the solutions are of doubtful value. 

Our aim here is to invert this procedure by searching for solutions 
that  will have preset multipole moments thus guaranteeing their physical 
interpretation from the very start. In this work we shall focus on the 
simple case of the static metrics with axial symmetry since in this case 
the general Weyl [9] solution is already known; this will allow us to set up 
the method we shall use. More explicitly, we shall search for and find the 
pure monopole-quadrupole solution (with equatorial symmetry), i.e. that  
all its multipole moments will be null with the exception of mass and the 
quadrupole moment, such that its classic equiwlent will be the solution 
formed by the first two terms of series (1). As a result, it will be possible 
to consider it as a small deviation from the spherically symmetric solution; 
that is, from the Schwarzs'child solution. With this, we generalize previous 
work [10] in which a solution containing two parameters representing the 
aforementioned moments was found. 

In Section 2 we review the three known ways of representing the gen- 
eral Weyl solution, demonstrating directly and for the first time the equiv- 
alence between them as regards the component g00 of the metric, which 
is the one intervening in later calculation of the Geroch moments. This 
proof allows us to formulate explicitly the relationship among the three 
families of parameters involved, hitherto unsolved. 

In Section 3 we offer a succinct description of the method employed 
to calculate the Geroch moments of the general Weyl solution, limiting 
ourselves to giving explicitly the first twelve since their extension becomes 
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excessive for the following ones. The method is no more than that resulting 
from the definition of Thorne [5] of the relativistic moments for the sta- 
tionaxy case. As has been demonstrated by Gursel [11], this is equivalent 
to that of Geroch. Owing to their extreme lengthiness the final explicit 
calculations were performed using the MATHEMATICA software program. 

In Section 4, the results of the previous section are used to obtain the 
general structure of the pure monopole-quadrupole solution by means of 
an inductive process. 

Finally, in Section 5, that solution is written explicitly in the form of 
an infinite series of powers of a certain dimensionless parameter q. How- 
ever, this series features a major property in the sense that it is possible 
to cut off at any order n, giving rise to an exact solution whose multipole 
moments of order less or equal to 2(n + 1) are all null with the exception of 
the mass and the quadrupole moment and such that  the higher moments 
are of order qn+Z. This allows us to give a concrete meaning to the small 
deviations from the Schwarzschild solution. 

In Appendix A we offer 4 Lemmas used in Sections 2 and 5. Finally, 
in Appendix B we list the packages used for performing the corresponding 
calculations with MATHEMATICA. 

2. THE WEYL METRICS 

The simplest way to describe the general solution to the Einstein 
vacuum equations for the static case with axial symmetry is to use the 
Weyl line element [9] 

ds2 = -e2* dt2 + e-2$ [e2~(dp2 + dz2) + p2d~2], (4) 

where the metric functions ~ and 7, which depend only on the cylindrical 
coordinates {p, z}, are solutions of the differential set 

Ar _= ~pp + ~ p + ~ , ,  = 0, (5) 

= P(% - (6) 
Tz 2p~p~z �9 

These equations lead to the following asymptotically fiat general solution: 

oo 
arg 

n.~.O 
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~ . .  ( n + l ) ( k + l )  a n a k  
n + k -{- 2 r,~+k+-------- ~ (P .+ ,Pk+I  - P n P k ) ,  (8) 7 

n,k----O 

where r = (/)2 -Jr Z2)1/2, COS0 : z /r  and Pn(cos@) are the Legendre poly- 
nomials. On the other hand, an are arbitrary real constants which will 
be called "Weyl's moments" since evidently they cannot be identified with 
the relativistic moments despite the formal equality between expression 
(7) and the classical potential (1). Indeed, as is known, the Schwarzschild 
solution, which defines a pure monopole, is defined in the Weyl structure 
as follows: 

M2n+l 
azn - 2 n  + 1 ' a2n+l  = 0, (9) 

which is very different from the "Weyl monopole" defined by the only non- 
null coefficient a0 corresponding to the well-known Curzon solution [12]. 

Another interesting way of writing the general solution (7),(8) was 
obtained by Erez-Rosen [13] (see also Ref. 14) by integrating eqs. (5),(6) 
in prolate spheroidal coordinates z, y, defined by 

r+ -1- r_ r+ r 
z = 2M ' Y = 2M 

r4- ~- Lo 2 -~- ( z - i -  M ) 2 ]  1/2 ~ r() t2-4 - 2)t cos0-1-  1) 1/2 (10) 

x ~ l ,  - - 1 < y < 1 ,  

where M is a constant that  is identified with the mass (expressed in di- 
mensions of length) of the body generating the field and where the variable 
A - -  M / r  has been introduced. In these coordinates, the expression for the 
metric function ~I, adopts the following simple form: 

CO 

= (11) 
r i c o  

where Q n ( x )  are the second type Legendre functions and where qn are 
arbitrary constants which, as indicated in [10], are related to the Weyl 
moments an as follows: 

T n! 
an = ~ _ ~ ( - - M )  "+I  

j=0 (n + k + 1)!!(n - k)!! qk 

I n even : k = 2 j ,  T = n / 2  

n o d d  : k = 2 j + l ,  T = ( n - 1 ) / 2 .  

(12) 
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The expression of 7, obtained by Quevedo [14], proves to be highly com- 
plicated and as a result will not be explicitly given here. 

It is possible to make a direct demonstration of the equivalence be- 
tween series (7) and (11) by substituting expression (12) in (7), then re- 
arranging the sums and finally taking into account Lemma 3 of Appendix 
A. Indeed, limiting ourselves to the case of equatorial symmetry, for which 
odd-order coefficients are null, according to (12) one has that 

" (2.)!  __M2r~=~l (13) a2n z . ,  (2 .  + 2k + 1)!!(2. - 2k).  q2k- 
k=O "" 

However, through the usual technique of decomposition into simple frac- 
tions the following relationship can readily be proved: 

(2.)! = ~ L2~,~ (14) 
2n -/- 2j q- 1 (2 ,  + 2k + 1 ) ! ! ( 2 . -  2k)!! .= 

where the coefficients L2k,2j are defined as follows: 

L2k,2j -- (--l)~-J2 j-k (2k -I- 2j - 1)[[ (k - j)!(2j)! (15) 

and represent the coefficients of the Legendre polynomials; that is, 

k 

P ~ ( r  = ~ L~k,~jr v .  (16) 
j=0 

Substituting these results in (7), one obtains the following: 

co n k L 2 k , 2 . i  (17) 
zn§176176 q'k v + 1" 

n=0 k=0 j = 0  

Now taking into account that by virtue of Lemma 1 the upper limit of the 
second summatory can be made infinite, one can rearrange the sums in 
the form 

~176 [j__~ 0 ~'~ ~2n+1 1P2~(c~ 1 2 n  + 2j + : -- E q2k L2k,2j 0) , (18)  
k=0 n=0  
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with which one can use Lemma 3 to add the series in powers of A, thus 
obtaining the expression 

oo n k 

'~ = - F_. q2. ~_L2. .~  ~ C~.2~Q~5(~)P~j(y). (19) 
n = O  k=O 5=0 

where coefficients C2k,2j are defined by the expression 

c2k,25 - 25(4j + 1) k!(2k - 1)!! (k - j ) ! (2k  + 2j + 1)[[' C0,0 -- 1 (20) 

and represent the coefficients that appear on writing the powers of an ar- 
bitrary variable as a function of the Legendre polynomials of that variable, 
i.e., 

r = ~ c ~  ~(r (21) 
5=0 

Now rearranging the sums in (19) and grouping the Legendre polynomials 
and the functions of the second species of the same degree, one has 

co ~ k 

= - ~ Q2.(x)P2.(y) ~ q~ ~_, L~.~jC25.~.. (22) 
n = 0  k=n j=n  

Again, by virtue of Lemma 1 one can consider the last summatory in (22) 
from j = 0 without altering the sum on doing so, taking into account the 
definition of the coefficients C2k,25. Now applying the results of Lemma 2, 
one ends with 

no 

= - ~_. q~kQ~(x)P~(y). (23) 
k----0 

A similar proof demonstrates the equivalence between series (7) and (11) 
for the case of odd n. 

A striking property of the Erez-Rosen-Quevedo representation is that 
the first two contributions of series (11) are directly connected with the 
solutions of Schwarzschild and Erez-Rosen [13]. We shall now analyze this 
property within the context of the equivalence between the Weyl and Erez-  
Rosen-Quevedo representations. From formula (12) it is easy to obtain the 
inverse relationship that expresses parameters q. as a function of the Weyl 
moments a .  (in what follows we shall always assume equatorial symmetry): 

n 

q2. = - ( 4 n  + 1) ~ a2k M2k+ I L2n,2~ �9 (24) 
k = 0  
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As is known, the Weyl moments of the Schwarzschild solution are given by 
(9), such that according to (24) the qn parameters corresponding to that 
equation will be as follows: 

q2n = (4n + 1) ~ L2.,2k (25) 
k=0 2k + 1 

and since the Legendre polynomials fu]fiU the property proved in Lemma I, 
one has that 

-~ L2"'2k -- 6On, (26) 
2k+  1 

k=O 

and hence 
q 0 = l ,  q 2 , = 0  V n _ > l .  (27) 

As is well known, the Schwarzschild solution is defined by the first sum- 
mand of the Erez-Rosen-Ouevedo representation 

1. { z  - i ~  
IIISch = -q0Q0(x)P0(~/) ~- ~ In L ~ ) "  (28) 

In a similar way, one sees that the Erez-Rosen solution [13] is defined 
by 

q0--1, q2~t0, q2n--0 Vn_>2.  (29) 

In order to obtain this result from the Weyl representation (7) the following 
expression [10], which gives the Weyls moments a .  of the Erez-R.osen 
solution, must be taken into account: 

. 2 .  = + q2 (2n + 1 ) ( 2 .  + 3) ' a . 2 . + i  = 0, (30) 

together with the following property of the Legendre polynomials, proved 
in Lemma 2: 

n ! 

L2z,2h - 6at. (31) (4n + 1) ~ L~.,~k ~ 2k + 2h + 1 
k----I h----0 

Finally, a third representation of the solution (7),(8) was obtained by 
Gutsunaev and Manko [15,16] generating, by a simple procedure, succes- 
sive solutions from the Schwarzschild solution. In this representation one 
has, also using prolate spheroidal coordinates {z, y), that 

I z - I  ~176 [ P+ Ebn+t P~ ] (32) 9 =  ~ In ~-~-~ + (x $~5.+, (x_ y).+, 
n-~--O 
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where b. are arbitrary real constants and P~ are the following Legendre 
polynomials: 

( z y  4- 1 ~ (33) = P "  / " 

The corresponding 3' function proves to be considerably more compact [17] 
than the ease of the Erez-Rosen-Quevedo representation. 

Direct proof of the equivalence between the above series and the (7) 
series of Weyl is obtained using Lemma 4 and considering the following 
relationship between the constants bn and the Weyl moments a . :  

M ~n+l 2M..+1~( 2n )b2. 
a2n -- 2n -{- 1 k----1 2k - 1 

(34) 

a2n+l -- _2m2n+2 L (2n-t-1 ) 
~=0 ~' 2k b2k+l �9 

Indeed, limiting ourselves as before to the case of equatorial symmetry and 
substituting (34) in (7), one obtains 

oo n 2 k - 1  

r162176 b2k E SkjnJ (35) 
n=O k = l  j = l  

where coefficients St j  are defined by the expression 

( 2n ) 2t~-I 
2k -  1 = E Sk,/nJ' (36) 

j = l  

and are therefore only non-null for k _< n. It is for this reason that the up- 
per limit of the second summatory in expression (35) can be made infinite; 
that is, it is not necessary to constrain the index k since this is already 
done by the combinatory number. In this way, it is possible to rearrange 
expression (35) to give 

c o  2k--X cr 

~ = ~ S c h - - 2 E b ~ k  E SklE njA2n+lP2"(cosO)' (37) 
k=l j=l n=O 

with which, bearing in mind Lemma 4, one has 
co 

k = l  

+ _ y ) . + l  
• 

j = l  n = l  
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where coefficients Ajn are defined by the expression 

A j n  : n h j - 1  -- ~-4y ~--~.(-1) h . (39) 
h----1 

Again reordering the sums in (38), one has 

oo 

= ~Sch -- 2 ~ b2k x 
k----I 

2 k - 1  

• ~ L(x + (-1)" ~;~.+1 (x_ y).+l ~ s~iA~.. (40) 
- -  - j ~T ) .  

Now then, the relationship 

2k- -1  

- 2  ~ S k j A j n  = 6n,~k-1 (41) 
j=n 

is easy to prove, such that (40) finally leads to the following: 

" l * = ~soh + ~2 b2k [ P~-~ P~-I (42) 
k=l  t ( ~ ; T ~ ) 2 k  (~  - y)2k ' 

which is expression (32) of the Gutsunaev-Manko representation for the 
case of equatorial symmetry. 

To end this section, we should like to underscore an important aspect 
of the works of Quevedo [14] and Manko [16] that could lead to confusion 
regarding the families of {qk} and {bk} parameters. In these works the 
Newtonian limit is calculated, by Ehler's procedure, of representations (11) 
and (32) respectively, concluding in both works that the corresponding 
Newtonian moments Dk are proportional in one case to the parameters qk 
and, in the other, to the parameters bk. In fact, if that  Newtonian limit is 
applied to representation (7) of Weyl, one will also find that the moments 
Dk are proportional to parameters ak. From this it could be deduced that 
the three families of parameters are proportional to one another which, as 
we have seen through formulas (12) and (34), is not true. The explanation 
to this apparent contradiction, as we shall see in Section 3, lies in the fact 
that each of the three families of parameters can be written in a non-trivial 
manner as a function of the Geroch moments such that  in the limit they 
coincide with these with the exception of factors. As a result, there is no 
point in attempting to interpret any of the three parameter families as 
Newtonian moments. 
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3. MULTIPOLE MOMENTS OF THE WEYL METRICS 

In this section we shall make explicit use of the procedure proposed 
by Thorne [5] for the calculation of the multipole moments of a stationary 
metric, consi-deriiig the particular case of the Weyl solution (7),(8). As 
will be seen, this affords the expressions of the Geroch moments Mn of 
that metric in terms of the parameters ak. The procedure is reduced to 
determining a system of Thorne AOMO coordinates [5] at each order of the 
development of the metric in the inverse powers of the corresponding radial 
coordinate. 

As is known, a system of Thorne AOMO coordinates is formed of a 
system (~a} of harmonic coordinates with good asymptotic behaviour, 
such that one should obtain:: 

[] ~(a) _ 1 
_ v/=~ ax[V~gX~0,~ (a)] = 0, (43) 

where 17 represents the D'Alembert operator associated with the metric, 
and g is its determinant. The simplest way of solving eq. (43) for the case 
under consideration is to introduce spherical coordinates {2, 0, ~} associ- 
ated with the {~a} coordinates; that is 

{; =~+if/=~eic~sinO=~e'~~ cos 0. (44) 

However, taking into account (4), one readily sees that the time coordinate 
t is already harmonic and that the azimuth coordinate ~ is a good har- 
monic spherical coordinate and hence eqs. (43) are reduced after a short 
calculation to the following: 

Or(r 2 sin OOrt~) + Oe(sin OOet~) = .1 ,e2~t3 
sin ~ (45) 

ar(~2 sin 00~)  + O,(sin 0a,~) = 0, 

the unknown functions being the cylindrical coordinate # and the coordi- 
nate ~, respectively, both of them as functions of the variables (r, 8). From 
(45), it is easy to see that the solutions displaying good behaviour are the 
following: 

co 

~=o (46) 

~(r, 0) = rcos0 - z, 
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where the functions Ht(w) are the solutions of the following linear second 
order differential equation (w =_ cos 0): 

(1 - w ~) { l(l - 3)HI(w) -- 4w H; (w) + (1 - w2)H[' (w) } = 

O, 1 < 1 
= E~.+n=t-2Bk(w)Hn(w), I ~ 2 (47) 

and where the functions Bk(w) are defined by the following set of expres- 
sions: 

(k--6k)/2 2J+l B 0+1)- ~6k = 0 : k even 
Bt(w) = E (j-Ti)! k-2i (w) i. Sk 1 k odd 

j=0 

it+...+i~=k 

k+n=/ 

(48) 

(49) 

(50) 

~/(r, w) = 
~ (k+l)(n§ aka, 

k + n + 2 - k,n=O 
CO 

E Ekn (W)'rk+l~+2 " (51) 
k,n=O 

The solution to eq. (47) has been found using the usual procedure 
of adding the general solution of the homogeneous equation to a paxticu- 
lax solution of the complete equation. The homogeneous equation has as 
its general solution, at each order, a linear combination of a Gegenbauer 
polynomial and of a rational function in the w variable with undesired 
behaviour, a function that will be ignored by considering the second in- 
tegration constant equal to zero. As regards the complete equation, the 
procedure is to search for polynomial solutions of the type (we limit our- 
selves, as usual, to the case of equatorial symmetry) 

n--1 
H2n({g) ~ E C2kt~2k' 

k=0 
(52) 

where the upper limit of the sum is determined by the degree of the poly- 
nomial in w that appears in the non-homogeneous part of the differential 
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equation at each order and that  proves to be equal to 2n - 2. As is evi- 
dent from formulas (48)-(51), calculation of the polynomial (52) becomes 
progressively longer as n increases and its final expression becomes hard 
to handle. Fortunately, the use of computer programs for symbolic calcu- 
lations allows one to reach relatively high orders with ease, which, as we 
shall see, is extremely useful for the purposes of this work. However, to 
determine the Geroch moments of the Weyl solution up to a given order 
it does not suffice simply to calculate the harmonic coordinates up to that 
order; rather one must invert the corresponding formulas (46) up to that 
order to be able to express the {r, 0} coordinates as a function of the {~, 0} 
coordinates, 

r = 
,,, = (53) 

Thus, substituting (53) in (7) it is possible to obtain the expression g00 
of the metric as a function of the harmonic coordinates, with which the 
Geroch M2~ coordinates will be fixed by the following Thorne structure [5]: 

goo = -1 + 7 I T  + 

(54) 

where P,~-a represents a polynomial of degree n - 1. 
All this process, even though elementary, becomes impracticable when 

n increases. We performed the calculation up to order 21 in the develop- 
ment in 1/~ using the MATHZMATICA V.2.1 software package, running on 
an IBM RS6000 machine. In this way it was possible to calculate the 
first 20 Geroch moments of the general Weyl solution, although explicit 
inclusion of these would probably demand a whole issue of the journal for 
this article alone. Nevertheless , we now offer the first 12 (let us remember 
that  the odd numbers are null) for the reader to appreciate the type of 
compfication involved, together with the truth in the words of Thorne [5] 
when he qualified these calculations as "horrendous". 

Mo = - a o  

M2 : I a~ - a2 
3 
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19 8 2 
M4 = - 105 a~ + -~ aoa2 - a4 

M6 = 3-~389 a~ 7 _ 2321 a4~ + -~60 aoa~ + 1711 a~a4 - -  

M s -  

M 1 0  - m 

M 1 2  = 

a 6  

257 44312 a~a2 -- 5204 s 2 40 a3 58 a~a4 
3465 
226 

+-i-~aoa2a4 + 2a~a6 - -  as 

443699 a~ 1 17389 a~a2 + 226580 aSa2 4 5 9 7 0 0 2  s 
8729721 -- 2034------9 ~ 0 2  323323 a~ 
+7---~-12902 a~a4 193130~ a3ao 2a4§ ~ 3 9 1 5 0 2  30870 aoa] 

2624 a4 a 566 47 a~as - 
- ~  o 6 +-~aoa2a6  +--~ al0 

1253390771 a~ 3 + 1703959024 a~Oa 2 15070540 7 2 
35137127025 2342475135 4732273 a~ 
182660360 4 s 4259400 aoa~ - 186209501 a~a4 

+ 52055003 a ~ 7436429 111546435 
4756282 a~a2a4 34924620 a~a~a4 2192292 3 2 

+ 67603"''"~ 7436429 1062347 a~ 
2417306 14888 6600 

+ 96--'6~79650 a2a~ + --780045 a~a6 -- --2737 a~a2a6 + ~ a~a6 
9774 11995 a~a8 + 6060 

+ 7 - ~  a~ 3059 3--~ a~ 

+ a al0 - (55)  

4. STRUCTURE 
SOLUTION 

OF A PURE MONOPOLE-QUADRUPOLE 

As was stated in the introduction, the main aim of the present work 
is to search for the pure monopole-quadrupole solution of the Einstein 
vacuum equations for the static case with axial symmetry. This means 
that from among all the Weyl solutions defined by formulas (7) , (8)  we 
must discover the one that  has all the Geroch multipole moments null 
with the exception of mass and the quadrupole moment. 

To achieve this aim, one must first obtain the Weyl a n constants as 
a function of the moments Mn, which can readily be done from formulas 
(55) owing to their triangular structure; that is, because each moment 
Mn only contains the Weyl ak constants with k ~ n, and is also linear 
in the constant an. Following this it is necesary to nullify all moments 
of order greater than 2 to obtain, thus, the constants a n as functions of 
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the two unique parameters  M =_ M0 and Q = M2. The result obtained 
in this process, which once again was done with MATItEMATIOA, is as fol- 
lows: (coherent with the previous section, we only write the expressions 
corresponding to the first 12 Weyl constants, although the set is now much 
lighter): 

a 0 ~ - M  0 

1 
a2 = --~ M3o - Mz 

1 5 8 M~M2 a4 = --g Mo - 

1 r 25 M4 M 60 MoM~ a 6 = - - ~ M ( ~ - - ~  o 2 - ~  

1 9 820 3 2 a s - - ~ M o  40 M g M 2 -  ~043 M ~ = - 33 "~'9 M~M2 - 

1 M2 175 M t M 2 -  460 M2M~- 300 ~ , , ~ , ~  
alo = - - f i -  - ~ ~ ~ , " , o - , ~  

1 M~o s ~ M~OM~ _ ~0 M~oM~ _ 1000 Mr 

19800 MoM~. 
29393 

(56) 

From formulas (56) it is concluded trivially that  the generic struc- 
ture of the constants an as a function of the mass M and the quadrupole 
moment Q is as follows: (this structure was already mentioned in Ref. 10): 

M2n+l a 2 n = -  ~"~qaF(a,n), a 2 , + 1 = 0  (57) 
a ~ 0  

where the dimensionless parameter  q =_ Q/M z has been introduced and 
where the upper limit ~n depends on each value of n as follows: 

~ .=~(2 .+h . ) ,  (58) 

where hn is a discrete function of n defined in terms of the classes of 
remains modulo ~ in the following way: 

0 : h e [ O ]  

hn = 1 : n E [1] 

- 1  : n e [2]. 

(59) 
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The main difficulty lies in determining the numerical function F (a ,  n), 
for which there is no canonical procedure. In reference [10] we were able to 
deduce from (56) the expressions of this function for the first four values of 
a and n arbitrary, a circumstance which allowed us to find an Erez-Rosen 
type  solution [13] or a Gutsunaev-Manko [15] type solution, although with 
more interesting properties than these. Currently, thanks to the help of a 
powerful computer, we have obtained formulas (56) up to order 20, which 
has allowed us to deduce a generic expression for the F(a, n) function, 
which was also proved to be correct for some higher order. Accordingly, 
in our opinion one is dealing with the ezact expression that  sets the pure 
monopole-quadrupole expresion, which is as follows: 

n](2n - 1)[! k~k ~ 3=-k5k(4Oc -- 3k 4- 1) (60) 
F(a,n)  = ( 2 n + 2 a 4 -  1)![ = (n-a---Zk-~.1(a---~)T.-~/~:L~4- 1)! 

where the lower limit k~ of the sum is defined as 

( o r -  1)/2, ~ odd 
ka ---- ~t/2, O~ even . 

(61) 

In order to show the structure of expression (60) for different values of 
arbitrary c~ and n we wrote the formulas corresponding to first five values 
of ~: 

1 
F(0, n) -- 2n + 1 

F(1, n) ---- 5 n(n 4- 2) 
(2. + 1)(2. + 3) 

5 n(n - l ) (n  - 2)(5n 4- 21) 
F(2, n) -- 

2 (2n 4- 1)(2n + 3)(2n 4- 5) 

F(3, n) : 25 n(n - 1)(n - 2)(n - 3)(5n 2 4- 18n - 98) 
6 (2. + 1)(2. + 3)(2. + 5)(2. + 7) 

F(4, n) -- 25 n ( n - 1 ) ( n - 2 ) ( n - 3 ) ( n - 4 ) ( n - 5 ) ( 2 5 ,  2 4- 155n-642) .  (62) 
24 (2. + 1)(2. + 3)(2n + 5)(2. + 7)(2. + 9) 

The interest in these formulas lies firstly in the fact that they show us 
for which value of n the function F (a ,  n) begins to be different from zero 
when ot increases. Secondly, they suggest a considerable simplification of 
that function, consisting in decomposing into simple fractions the part 
that depends on n, after having made the division of the corresponding 
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polynomials in n when the degree of the numerator is greater than that 
of the denominator. This operation is not very difficult to carry out and 
finally leads to the following interesting expression for the F(a ,  n) function, 
an expression that, as we shall see in the next section, is of great use for 
the aims of this ~vork: 

. -1  ~ hi(a) (63) 
F ( a , . ) =  ~ g ~ ( a ) . i +  2 n + 2 j + l '  

j = o  i =o  

where coefficients gj(a) y hi(a ) are defined by the following expressions: 

gi(a) = ~ 3("-~)5k(4a--3k+ 1) 

hi(a) = (2a + 2j  - 1)!! x 

~ ( 5 ) k ( 4 a - - 3 k + l ) ( 2 a § 1 6 2  '' 
• - ( , ~  - k)!(2k - a + i ) !  ~=~(.) 

(64) 

with the functions J ~ j ( a )  defined recurrently, as follows: 

k - i  

(65) 

where the lower limits of the sums (64) are the following: 

(a - -1) /2 ,  a o d d  
k(a) = a/2, a even. 

k(a), j < k ( a ) - I  
ki(a) = j + 1, j >__ k(a). 

(66) 

5. EXACT SOLUTIONS 

Once the expression of the "Weyl moments" is known as a function 
of the mass M and the quadrupole moment Q, it is possible to analyze 
the pure monopole-quadrupole solution we are searching for. To do this 
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it suffices to substitute result (57) in formula (7), thus obtaining the cor- 
responding ~I, function that is (let us remember the hypothesis of axial 
symmetry) 

oo . .  , P~. (cos e)  
~1 = -  Z M S " + '  ~-,q~'F(~ ~ . (67) 

n=O ~r=O 

A first observation of the above series gives us an interesting decomposition 
of it. Indeed, if one takes into account the form of the F(~, n) function, 
it is possible to separate the part that depends only on mass M and the 
part that depends only on the quadrupole moment Q, thus giving rise to 
the following three summands: 

(68) 

where the following definitions have been used: 

-~ M 2'~+1 P~,~(w) (69) 
~ M = - -  2 n + l  r 2~+1 

n----O 

, , ,  P ~ + 2 ( ~ )  
~lq = - Z Q2k+lF(2k § 1, 3k -,- 1} 

k----0 

(70) 

~MQ = -- E ~ Z Q"M6J-a"+2v+3 F(a,  3j + v + 1) P6/+2~+2(w) (71) 
r 6 j + 2 v + 3  �9 

v=Oj=O a=l 

The r function is well known since it provides the Schwarzschild 
solution, which can be termed the pure monopole solution. On the other 
hand the ~I,q function is a solution, written in series form, that represents 
the pure quadrupole. Finally, @MQ should be considered as the monopole- 
quadrupole interaction, which points to the non-linear nature of the theory. 

The expression for the F(~, n) function, ~ being odd and n = 3k + 1, 
proves to be 

15k+ 1 2}+I /-,4k+2,2j 
F ( 2 }  + 1, 3k + 1) _ 2 ~ + ,  ~ 6k + 2.] + 3 

j=O 

_ 15 k+l (6k + 2)!  

22k+1 (10k + 5)![(2k)![ ' 
(72) 
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that is, in the same way that  choice (9) of the "Weyl moments" affords the 
Schwarzschild solution, which described spherical symmetry, the following 
choice of these parameters, 

15 k+i (6k + 2)! 
a6k+2 = 22k+ i (10k + 5)[[(2k)!! ' 

(73) 

leads to a solution that represents the pure quadrupole, whose interest lies 
in the possibility of being able to write static vacuum solutions as the sum 
of multipole contributions, as happens in Newtonian gravitation. 

A much more interesting view of solution (67) is obtained by inverting 
the order of the sums and grouping the terms in powers of the dimensionless 
parameter q, that  is, 

f i  co = - q "  

a=O n=O 

(74)  

The ~ function thus obtained shows that the solution sought can be un- 
derstood as an infinite sum of the following contributions: 

where 

OO 

~I/M_ q -- ~qO "4- qq~q~ + q2fflq2 "4- . . .  : ~ qC~qlq,, , 
a : o  

CO 

~q~ = - Z F(c~'n)A2n+tP2'~(c~ (76) 
n=0 

and where order zero is no more than the Schwarzschild solution, 

oo ~ 2 n + l  

q/qo ---- - - ~  2n + 1 P2n(cos 0), (77) 
n=0 

such that each power in q adds a quadrupole correction to the solution 
with spherical symmetry. Now then, it should be born in mind that as a 
result of the linearity of the Laplace equation, these corrections give rise to 
successive exact solutions. That  is, the series in powers of q is susceptible 
to being cut off at any order, giving rise to an exact solution that represents 
a certain quadrupo]e correction of the Schwarzschild solution. 

The interest in the result obtained would only be formal if we limited 
ourselves to presenting solution (74) in the form of a double series; that is, if 
it were not possible to add series (76) that determine the summands of the 
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main series (75). Fortunately, owing to the structure of F(a,  n) defined 
by (63), this series (76) can be added, thus obtaining finite expressions 
for each of the contributions ~q~. Indeed, substituting (63) in (76) and 
rearranging the sums, one has 

a - - 1  c o  

j=O n=O 

co ,~2n+l 

- h'/(a) E 2 n +  2 j +  1P2n(cos 0). 
j = 0  n=0  

(78) 

Now making use of Lemmas 3 and 4, one arrives at the following finite 
expression: 

�9 q o = - ~ g j ( c  0 ~ Aj. +(-1)'* 

a j 

j = 0  n=O 

(79) 

Rearranging these finite sums one finally obtains the following interesting 
expression: 

~-1 [ p~+ +(_1)~ pi- ] 
�9 , .  = - ~ b~(~) (x + y)~+l (x :~)~+1 

k=0 

- ~ q,,(,:,,)Q~k(x)P.~k(y) 
k=O 

(80) 

where the coefficients 

(~-l)(l-6ko) 
bk(a) = E gi(~ 

i=k 

j=k 

(81) 

have been defined. Thus, with expression (80) one has that contributions 
(76) to the pure monopole-quadrupole solution (75) can be written as the 
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sum of finite solutions of the type of Gutsunaev-Manko [16] and Erez- 
Rosen [13]. 

The most elementary way of physically interpreting the exact solu- 
tions derived from the above quadrupole corrections consists of analyzing 
the correspondin~ multipole moments. To this effect, using expressions 
(55) it is possible, cutting off solution (75) at a certain order, to obtain an 
exact solution with the following properties: the monopole and quadrupole 
moments are different from zero; all the following moments are null up to 
order 3a (a is even) and 3a + 1 (a is odd), whereas all higher moments 
are of order qa+l. Accordingly, one is dealing with the pure quadrupole 
correction to the Schwarzschild solution up to the preset multipole order. 
In our opinion, these are the first realistic attempts to describe small de- 
viations from spherical symmetry since the static solutions obtained up to 
now, such as that  of Erez-Rosen [13] and that of Gutsunaev-Manko [15], 
with the same arbitrary parameters M and Q, have a multipole structure 
in which moments above the quadrupole are of the same order in this. 

Below we give simplest explicit example of the solution, first obtained 
in [10], which describes correctly the quadrupole deformation of a massive 
source and is defined by the functions ~/and 7 of the form 

1 ( z - l ) 5 , 3  2 ~M-q,=~In ~ +~qty-1)• 

x 3y 2 - 1 \ z  + 1)  

- ( x  2 - y 2 ) ( 3 y 2  - 1 )  + ' ( 8 2 a )  

225 -2) 
15 8 q z ( l - y 2 ) [ 1 -  15 {'z2 q t  Jr7y 2 - 9 z 2 y  2 

+, ( , - , )  3 ~-y2)/ In 
z- -1  

4 6"4 q( + 4y2 - 9zlY2 + 4)] 

75 q2z2 1 - y2 5 2 1 - y2 
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6- 1 -Y ~- . (82b) 25 q2(2z6_x 4 + 3x4y2_6z2y 2 + 4x2y4_y4_y  ) . (x2_~)4  
64 

From the expressions of its first twelve relativistic multipole moments 
which were found to be (M1 = M3 = Ms - M7 =/14"9 = M n  = O) 

60 M 7  2 Mo = M, M2 = M3q, M4 = O, Ms = --~-~ , q 

1060 M9q~. 40 M9_3 19880 Mnq2 + 146500 M n  3 
Ms = -300---3 - ~ q , M10 = 138567 ~ q 

23600 Mt3q 2 + 517600 M13q 3 + 4259400 M13q 4 (83) 
M12 = 437437 106234------~ 743642-----~ 
it can be clearly seen that  the parameter Q representing the mass-quadru- 
pole moment is contained in the moments M2,, n > 2, only in the second 
and higher orders, so that  the solution (82) with a small Q describes the 
exterior field of a static source possessing only the mass monopole and 
quadrupole moments, in contradistinction to the solutions [13,15] which 
cannot be interpreted as describing smM1 qua.drupole deformation of a 
spferically symmetric source in the perturbation theory. 

In conclusion we would like to write down the function @ for the 
second solution of the family discussed in this paper which can be shown 
to have the form 

~TIM_Q'~ = ~ M _ Q X  

675 xP2(y) + 765 55x - 105z 3 P4(Y) 
- 32 32 24 

165 x 25 - - 3 x 3 y  2 - -  x y  4 -I- x 3 't- 3z2y ~ 
+ 3-Y - + 32 ( s4 )  

with the multipole moments defined by the following expressions (M2k+l = 
O, k = O, 1 , . . . )  

Mo = M, M2 = MSq, M4 = O, /14.6 = 0 

40 42140  /14.11q3 
Ms = - 1 4 3  Mgq3, M 1 0 -  46189 

MI~ = 38800 M13q ~ 888600 
55913 7436429 M13q4" (85) 

From (85) one can see that the parameter Q enters into/14.2,, n > 2, 
already in the third and higher orders, the solution (84) providing a more 
correct version of the monopole-quadrupole solution than the previous one. 
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6. CONCLUSION 

We have succeeded in finding an infinite family of static vacuum solu- 
tions of the Einstein equations which have a clear physical interpretation 
as describing the exterior field of a massive source possessing an arbitrary 
quadrupole moment. The principal difference of our family of solutions 
from the already known Erez-Rosen and Gutsunaev-Manko metrics lies 
in the possibility of using our solution in the perturbation theory, which 
suggests that they could be more appropriate for the description of the 
exterior gravitational fields of the deformed astrophysical objects than the 
aforementioned metrics. 

We also have been able to establish the interrelation between different 
representations of the general Weyl solution obtained up to now, thus 
providing a procedure for the interpretation of the results obtained with 
the aid of each representation from the point of view of the original Weyl 
solution. 

As a final remark we would like to say that it seems likely to extend 
our approach to the stationary case what, as we believe, could bring an 
additional insight into the nature and physical interpretation of the sta- 
tionary metrics. 

A P P E N D I X  A 

We shall now prove the Lemmas used in Sections 2 and 5. 
L e m m a  1. For all pairs of non-negative whole numbers n and k such 
that n < k, the following equivalence is fulfilled: 

k 
L2k,2j -- 0, (A.1) 

~ 2 n + 2 j + l  j=O 

where L2k,2j are the coefficients of the Legendre polynomials defined by 
(15) and (16). 
Proof. Let us consider expression (21) of the power of an arbitrary variable 
as a function of the Legendre polynomials in this variable: 

(2n ___ f i  C2n,2kP2k((), (A.2) 
k=0 

from which the following expression may be deduced for the coefficients 
C2n,~k, taking into account the orthogonality of the polynomials: 

/_ 2n C2n,2k 4k + 1 1 = P2k (r162 de. (A.3)  
2 1 
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If we now employ expression (16) of the Legendre polynomials in powers 
of their argument, we shall have 

4k + 1 / .1  k 
C~.,2k = j_ ~ L 2k,2j r +~-j dr (A.4) 

2 l j=0 

with which we obtain trivially 

k 
L2k,2j (A.5) C2.,2k (4k + 1) y" 

2n + 2j + 1 '  
j=O 

from which one deduces what was stated in the Lemma if one bears in 
mind that 

C2.,2k =O V k > n. w (A.6) 

Lemma 2. The following orthogonMity relationship is fulfilled: 

k 

E L2k,2jC2j,2. = 6k.. (A.7) 
/=0 

Proof. The above relation is a direct result of the orthogonality of the 
Legendre polynomials. Indeed, using expression (A.3) for the coefficients 
C2j,2., one has that 

k k 1 
E L2k,2jC2j 2. _ 4n +_____1 E n2k,2 j /_  p2.(r d r (A.8) 
j = 0  ' 2 i _ 0  1 

and, commuting the integral and the sum, one obtains 

k 4 n ~  1 f '  
Z L2k,2jC2j,2n -- - P2n(~)P2~(~)d~,  (A.9)  
j=o 1 

a relation that is equivalent to the statement of the Lemma if one takes 
into account the orthogonality of the Legendre polynomials. | 

Lemma  3. For all non-negative whole numbers j the following equalities 
are fulfilled: 

co A2n+ i j 
~-~2_. 2n + 2j + 1 P2.(cos 0) = v "  .-~ .~ , , , w2j,~.~c2.[x)p2.~y ) (A.10a) 
n=O n=O 

co ~2n+2 J 

E 2n + 2j + 3 P2"+l(c~ = E C'J+l,2"+tQ2~+l(z)P2n+l(Y)' (A.10b) 
n=O n=O 
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where the notations of Section 2 and the equivalent ones for odd subindices 
have been used. 
Proof. Detailed proof of this Lemma is long and laborious, such that we 
shall only indicate the main steps involved. In this sense, and as a previous 
step, let us consider the generating function of the Legendre polynomials: 

1 = ~ AnP,~(cos 0) (A.11) 
(A 2 - 2A cos 0 + i)II 2 .=0 

and also, by carrying out the transformation A --* -A, 

1 co 

(A 2 -t- 2A cos0 + 1)1/2 -- ~-~.(-1)'*AsPn(cos(~), (A.12) 
n ~ 0  

with which by adding and subtracting both expressions, one obtains 

oo 

2 ~ A2"P2. (cos 0) = ~ 1  -{- A+ (A-----~I (A.13a) 
n ~ 0  

c o  

2 ~ A2"+lP2.+l(cos 0) = 1 1 (A.13b) ' 

where A• = r• having used definitions (10). Let us now define the 
following integrals: 

Ij(A) - A~_(/~) d/~ + (-1)J A+-(/~) d#. (A.14) 

It therefore becomes evident, multiplying both terms of expressions (A.13) 
by A 2j and by A 2j+1, respectively, and integrating the series term by term, 
that expressions (A.10) of the Len~na are equal to the following: 

Y 
I2j(A) -- 2A • ~ C2j,2.Q2n(z)P2.(y) (A.15a) 

n ~ 0  

J 
I2j+I(A) = 2A 2j+l ~ C~j+l,2n+lQ2,~+l(x)e2.+l(y). (A.15b) 

n ~ 0  

Proof of these latter equalities is done simply, although it is time-consum- 
ing, by using the procedure of complete induction; that is, checking first 
that both are fulfilled for j = 0, 1 and then demonstrating that if they 
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hold for j = I then they also hold for j = I + 1. For this last step it is 
necessary to use the following recurrence relations among the Ij integrals 
(see formula 2.263/1, p. 82, Ref. 2): 

2 . 2 j - 1  j - 1  
Ij = - ] M ( e j _ l x - e j y ) +  cos0 I j_ l  - - -  I j -2 ,  (A.16) 

J 

where 
0 : j even 

= (A.17) 
1 : j odd 

and where, in agreement with (10), 

a~  = x(~ + y), 
A-2 = x2 + y 2 _  1 

(A.lS) 
A -1 cos0 = zy 

has been taken into account. It is also necessary to use the usual recurrence 
relations for the Legendre polynomials and the Legendre functions of the 
second type; that is, 

(2 .  + 1)~Q.(~) = (,~ + 1)Q.+I(~) + nQ._l(~)  
(2n + 1)yP.(y) = (n + 1)P.+I(y) + nP,~-l(y) 

I (A.19) 

L e m m a  4. For every non-negative whole number j the following equality 
is fulfilled: 

o o  

ni ~2-+lp,, ,(cos e) 
n----0 

= ~ A~. + ( - 1 )  ~ 
.=l-~jo (x + v)-+l (x -~ .+1  

(A.20) 

where, as in the previous Lemma, the notations of Sections 2 and 6 have 
been used. 
Proof. Taking the derivative of the two terms of (A.13a) with respect to 
the variable A and then multiplying by A2/4, one obtains the following 
equivalence: 

o o  

~-~nA~.+ip2.(cos/~)_ A 2 a (A~I_I_/N__I)" (A.21) 
4 0 A  

n = O  
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From this expression, one proceeds recurrently, dividhlg first by A, then 
taking derivative with respect to A and finally nmltiplying by A2/2. One 
thus obtains the following result: 

2J+l gika~+lg~-k- (,xu + A=I), (A.22) 
n=O k=l--6io 

where the numbers Ni t  fulfill the following properties (similar to those of 
combinatoriM numbers): 

gil=g~i=l,  N ~ , j - I  --  j _ _ ~  

N jk  = / c N j - l , k  + N j - l , k - I  �9 

(A.23) 

Now taking into account the well known rclation [16] 

0 k A_ z (q:l)k k! (~cy4-1~ (A.24) 
• ,Xk+l (= 4- y)k+~ Pk \ = 4- V } 

one has, by substituting in (A.22), 

~.~ A2"+IP2. (cos e) 
rt=O 

�9 p: 
k = l  

P; 
( z - - ~ k + f ] "  (A.25) 

Finally, the coefficients Nik are determined as follows. By the rules of 
recurrence, (A.23) proves to be 

j-2 
Nj 2  = E 2r 

r=0 
j - a  j - 3 - r  

N.=E3r E 2' 
r=0 s=0 
$-4 j -4 - r  

  ,:E4r E 3. 
r=0  $=0 

j-4-r-a 
~'  2 ~ 
h=0 

(A.26) 
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and adding up these geometric successions, one readily obtains 

Njk = (k -- l)l ~(--l)r+krJ-1 - ' 
r = l  

j > k. (A.27) 

APPENDIX B 

We now detail the programs used in MATItEMATIOA to perform each of 
the tasks listed. 
1. Search for particular solutions H~, a~ each order, of the differential 
equation (47). 

The non-homogeneous part of this equation involves, at each order, 
solutions Hi of lower order. This information is read in H A  CHES[w],  the 
archive where each solution must later be stored. 

The command Timing[hm'monic[n]]  affords, together with the cal- 
culation time employed, the coefficients of the particular solution of order 
n of type (52). 

The functions B[a, j_]  defined below must be included in successive 
orders of a depending on the order n of the solution one is searching for. 
In particular, the solution H12 only requires the first six B[a, j_]  functions 

A[m_,n_] :: ((m + I) * (. + 1)l(m + n + 2)) * aim] * a[n]. 

(LegendreP[m + 1, w] * LegendreP[n + 1, w]- 

LegendreP[m, w] * LegendreP[n, w]); 

Bl[s_]  := Sum[A[mm,  s - nun],  {ram, O, s}]; 

B[1,j_] := BI[j]; 
B[2, j_]  := Sum[Bl [v ]  �9 BI[ j  - v], {v, 0,j}]; 

B[3, j_]  := Sum[Bl [v ]  �9 Bl[i]  �9 BI[ j  - v - i], {v, 0,5}, {i, 0, j  - v}]; 

B[4, j_]  := Sum[Bl [v ]  �9 Bl[i]  �9 Bl[k]  * BI[ j  - v - i - k], 

{v, o,5}, {i, o,j : v}, {k, 03 - ~ - i}]; 

B[5, j_]  := Sum[Bl [v ]  *Bl [ i ]  * Bl[k]  * Bl[l]  �9 BI[ j  - v - i - k - 1], 

{v, 0,j}, {i, 0,j - v}, {k, 0,j - v - i}, {l, 0,j - v - i - k}]; 

B[6, j_]  := Suln[Bl[v]  * Bl[i]  * Bl[k]  * Bl[1] �9 Bl[ t ]*  

BI[j - v - i - k - I - t], {v, 0,j}, {i, 0,j - v}, {k, 0,j - v - i}, 

{I, 0,j - v - i - k}, {t, 0,j - v - i - k - I}]; 

top[If_] := Switch[Mod[ll, 2], 0, II/2, 1, (II - 1)/2]; 

BG[I_] :-- Sum[((2^(k + 1)) / ( (k  + 1)0 ) 
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�9 B[k + 1 , 1 -  2 �9 k], {k, 0, top[1]}]; 

Needs  ~' H A C H E S  [w]'"]; 

Inhomog[e_]  := Collect[Sum[His]  �9 BG[e  - 2 - s], {s, 0, e - 2}], w] 

g r . d o ~ _ ]  := Z ~ p o n e n t [ ~ h o ~ o g ~ ] ,  w] 

Solu[a_] := Sum[eoef[a,  2i] * w^(21), {i, 0, (grado[a] - 2)/2}]  

Ecua[b_] := Collect[(1 - w^2) �9 ((1 - w^2)D[Solu[b], w,  2 ] -  

4 * w * D[So lu~] ,  w] + b(b - 3) * Solu[b]), w] 

vari[t_] := Table[coef[t ,  i], {i, 0, t - 2}] 

a r m o n i c ~ _ ]  := Solve[Eeua[p] = =  Inhomog[p],  vari[p], w] 

Timlng[armonic[12]  ] 

2. Definition of fi = 1/§ as a series of terms in powers of u = 1/r. 

Coef in izu  := Block[{1, k}, 
s u m a  = Sum[uA(21)H[21], {1,1, o rden/2}] ;  
rt2 = 1 + 2(1 - w ' 2 ) s u m a  + (1 - w'2)(suma^2 + O[u]A(orden + 1)); 

i nv r t  = r t 2 ~ ( - 1 / 2 )  + O[u] ' (o rden  + 1); 
Do[ciut[2k] = Coeff ic lent [ invr t ,  u, 2k], {k, 0, o rden/2}] ;  ] 

3. Inversion of the previous series invr t ,  to obtain 1/r  as a series of 
powers of 1/ f .  

C o e f i n v u n a v a r  := Block[{i,  1, k , j} ,  

fu  = Sum[b[2  * l] * u^(2 * 1), {1, 0, o rden /2 ) ] ;  
de sa  = E x p a n d [ f u  �9 (Sum[c[2 * k] * (u * fu)^(2 * k) 

+ O[u]~(orden + 1), {k, 0, orden/2}])] ;  

c[0] = (1/510]); 

Do[c[2i] = E x p a n d [ - C o e f f l c i e n t [ d e s a ,  u, 2i]/ 
5[0]~(2i + 1) + c[2i]], {i, 1, o rden /2 ) ] ;  

Do[cflv[2j]  = e[2j], (j, 0, o rden/2}] ;  ] 

4. Definition of 05 =cosO as a series of powers in w =eosO,  where each 
power 1/r has been substituted by the previous series cf lv[  ]. 

Coef in lzw := Block[Ii , j  , k, 1}, 
Do[c~v~[2j] - ~nv[2j] Lib[0]--* 1}, {j, 0, ord~n/2]]; 
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o m g  = Sum[b[21] * (ut  * Sum[uC(2k)  �9 cflvu[2k],  
{k, 0, orden/2}]) '(21),  {1, 0, orden/2}]  + O[u t l ' (o rden  + 1); 

Needs~' HACHES [w]'"]; 
Do[b[2i] = ciut[2i], {i, 0, orden/2}];  
o m g f  = Col lec t [Normal[omg] ,  w]; 
Do[eiwt[2k] = Coeff lclent[omgf,  w, 2k], {k, 0, orden/2)] ;  ] 

5. Inversion of the series da, to obtain w as a series of powers in 1If  with 
dependent coefficients in Co. Definitive obtention of l /~  as a function of w 
and 1/r. 

Sustrinal := Block[{i,j ,  k, 1}, 
Clear[b]; 
Do[b[2k] = ciwt[2k], {k, 0, orden/2}];  
wfinal  = wt  * Sum[cflv[21]wt^(21), {l, 0, orden/2}]  

+ O[ut]^(orden + 1); 
Clear[b]; 
Do[b[2i] = ciut[2i], {i, 0, orden/2}];  
uc f  = u t  * Sum[cflv[2j]ut^(2j) ,  {j, 0, orden/2}]  + O[ut]^(orden + 1); 
ucfpw = Collect[ucf ,  w]; 
urinal  = Sum[(Coeff ic lent[ucfpw,  w, 21] * wrinar(21)) 

+ O[ut ] ' (orden  + 1), {1, 0 ,orden/2}] ;  ] 

6. Calculation of the time component of the metric, goo = -ezp(2U),  
where U is the solution (7) of Weyl, substituting the expressions w and 
1/r by their corresponding series in powers of 1/§ wi*h dependence on &. 

C o m p u t e E x p o 2 U  := Block[i , j ,  k, l, 
Uf  = Sum[a[21]u^(2i + 1)LegendreP[2i ,  w], {i, 0, (o rden  - 1)/2}]; 
expo2U = -Sum[(1 / ( j ! ) ) (2  �9 Uf) ' j  + O[u]^(orden + 1), {j, 0, orden}]; ,  
expcf = Col lect [Sum[(Coeff lc ient[expo2U,  u, 1]urinal^(1)) 

+ O[ut ] ' (orden  + 1), {1, 0, orden}], w]; 
exp2Uf  = Sum[(Coeff lc ient[expcf ,  w, k]wfinaF(k)) 

+ O[ut]^(orden + 1), {k, 0, orden}]; ] 
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Z Joint execution of each task at the order considered and reading of the 
Muitipole Moments in the expression obtained for goo. 

Timing[ 
orden = 13; 
Coefinizu; 
C oefinvunavar; 
Coefinlzw; 
Sustfinal; 
ComputeExpo2U; ] 

Do[MM[2k] -- Expand[Coefflcient[Coefflcient[exp2Uf,  ut,  2k + 1], 

wt,  2k]/(2 * Coefficient [LegendreP [2k, x], x, 2k])], 

{k, 0, orden/2}];  
Do[Prlnt["M~',  2z, "] = ", MM[2z]], {z, 0, orden/2}] 
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