
Journal of VLSI Signal Processing, l l, 229-244 (1995)
�9 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Determining the Minimum Iteration Period of an Algorithm*

KAZUHITO ITO
Department of Electrical and Electronic System Engineering, Saitama University, Saitama 338, Japan

KESHAB K. PARHI
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455

Received June 10, [994; Revised April 24, 1995

Abstract. Digital signal processing algorithms are repetitive in nature. These algorithms are described by
iterative data-flow graphs where nodes represent computations and edges represent communications. For all data-
flow graphs, there exists a fundamental lower bound on the iteration period referred to as the iteration bound.
Determining the iteration bound for signal processing algorithms described by iterative data-flow graphs is an
important problem. In this paper we review two existing algorithms for determination of the iteration bound.
Then we propose another novel method based on the minimum cycle mean algorithm to determine the iteration
bound with a lower polynomial time complexity than the two existing techniques. It is convenient to represent
many multi-rate signal processing algorithms by multi-rate data-flow graphs. The iteration bound of a multi-rate
data-flow graph (MRDFG) can be determined by considering the single-rate data-flow graph (SRDFG) equivalent
of the MRDFG. However, the equivalent single-rate data-flow graph contains many redundant nodes and edges.
The iteration bound of the MRDFG can be determined faster if these redundancies in the equivalent SRDFG are
first removed. A previous approach has considered elimination of edge redundancy. In this paper we present an
approach to eliminate node redundancy in the MRDFG. We combine elimination of node and edge redundancies
to propose a novel algorithm for faster determination of the iteration bound of the MRDFG.

1 I n t r o d u c t i o n

Digital signal processing algorithms are repetitive in
nature. These algorithms are described by iterative
data-flow graphs (DFGs) where nodes represent tasks
and edges represent communication [1], [2]. Execution
of all nodes of the DFG once completes an iteration.
Successive iterations of any node are executed with a
time displacement referred to as the iteration period.
For all recursive signal processing algorithms, there
exists an inherent fundamental lower bound on the it-
eration period referred to as the iteration period bound
or simply the iteration bound [3]-[5]. This bound is
fundamental to an algorithm and is independent of the
implementation architecture. In other words, it is im-
possible to achieve an iteration period less than the
bound even when infinite processors are available to
execute the recursive algorithm.

Determination of the iteration bound of the data-flow
graph is an important problem. First it discourages the

*This research was supported by the Advanced Research Projects
Agency and monitored by Wright--Patterson AFB under contract
number F33615-93-C-1309.

designer to attempt to design an architecture with an
iteration period less than the iteration bound. Second,
the iteration bound needs to be determined in rate-
optimal scheduling of iterative data-flow graphs. A
schedule is said to be rate-optimal if the iteration pe-
riod is same as the iteration bound, i.e., the schedule
achieves the highest possible rate of operation of the
algorithm.

The iteration bound determination may have to be
performed repeatedly in the scheduling phase of high-
level synthesis. In resource-constrained scheduling,
a given processing algorithm is scheduled to achieve
the minimum iteration period using the given hardware
resources. In order to execute operations of the pro-
cessing algorithm in parallel, the required number of
processors or functional units required to execute the
operations in parallel may be larger than the number of
available resources. In that case, we must give the order
of executions, or the precedence, to these operations to
reduce the parallelism. Generally the precedence to
be assigned is not unique. Hence the iteration bound
should be determined for every possible precedence
to check which precedence leads to the final sched-
ule with the minimum iteration period. Consequently,

230 Ito and Parhi

the iteration bound may have to be computed many
times and hence it is important to determine the itera-
tion bound in minimum possible time.

Two algorithms have been recently proposed to de-
termine the iteration bound. A method based on
the negative cycle detection was reported in [6] to
determine the iteration bound with polynomial time
complexity with respect to the number of nodes in
the processing algorithm. Another method based on
the first-order longest path matrix was proposed in [7]
to determine the lower bound with polynomial time
complexity with respect to the number of delays in
the processing algorithm. In this paper, based on [8],
we propose yet another method based on the minimum
cycle mean algorithm [9] to determine the iteration
bound with lower polynomial time complexity than in
[6] and [7].

Several multi-rate signal processing algorithms can
be conveniently represented by multi-rate data-flow
graphs [2]. To balance production and consumption
of data on communicating edges between computa-
tions, the nodes of the multi-rate data-flow graph need
to be executed different number of times in any iter-
ation of the MRDFG. Sufficient theory to determine
how many times a node in the MRDFG needs to be
executed in an iteration has been developed in [2]. All
MRDFGs can be expanded to equivalent uniform or
single-rate DFGs (SRDFGs). Thus, the iteration bound
of the MRDFG can be determined by considering the
equivalent SRDFG. However, the equivalent SRDFG
contains many redundancies with respect to nodes and
edges. The iteration bound of the MRDFG can be
determined faster if these redundancies are first elim-
inated. An approach to determine the iteration bound
by eliminating the edge degeneracy has been proposed
in [10]. In this paper we propose an approach to elim-
inate node redundancies. Then we present an algo-
rithm to determine the iteration bound in the MRDFGs
in a faster manner by eliminating both edge and node
redundancies.

This paper is organized as follows. In Section 2,
the iteration bound is defined. The two existing algo-
rithms to determine the iteration bound are reviewed
in Section 3. Section 4 presents our new algorithm to
determine the iteration bound based on the minimum
cycle-mean algorithm. The multi-rate DFG model is
reviewed in Section 5 and an algorithm to determine the
iteration bound in MRDFGs is introduced in Section
6. The execution times of existing and proposed algo-
rithms to determine the iteration bound are compared
in Section 7 for a few benchmark algorithms.

2 Data-Flow Graph and the Iteration Bound

A data-flow graph (DFG) is denoted as G =
(N, E, q, d) where N is the set of nodes, E is the set
of directed edges, q is the set of execution times of the
nodes, and d is the set of delay counts associated with
the edges. A directed path in a DFG contains a series
of connected edges. If the start node and the end node
of a directed path are identical and no node except the
start node appears more than once in the path, the di-
rected path is called a cycle (also often referred to as
a loop). Let C denote the set of all cycles of the DFG
and Nc be the set of nodes which belong to the cycle c.
The computation time of a cycle is defined as the sum
of computation times of the nodes in the cycle. The
delay count of a cycle is defined as the sum of delay
counts of the edges of the cycle. Let Mc and Dc denote
the computation time and the delay count of cycle c,
respectively. These are calculated as

= E q(i), Mc
iENc

(1)

d(e). (2) Dc
eEc

Let T denote the iteration period of the DFG. The
DFG receives new data samples every T units of time
and the computation of each node is executed repeti-
tively and periodically every T units of time. Smaller
iteration period implies faster processing. However,
there exists a lower bound on the iteration period. It
depends on the computation time of nodes which be-
long to cycles and the data dependencies among them.
For each cycle c, Mc must be smaller than or equal
to DcT since all the computations of the nodes in c
must be completed within DcT units of time. There-
fore, there exists a lower bound on the iteration period
T due to cycle c. It is called the cycle bound and the
cycle bound Tc is calculated as

Mc
~rc = O---~" (3)

The lower bound on the iteration period is the maxi-
mum of the cycle bounds. This is referred to as the
iteration bound, Ti, and is calculated as

M~
T / = max T~ = max . (4)

c~C c~C Dc

A critical cycle is defined as the cycle c whose cycle
bound equals the iteration bound.

We assume that the DFG is a strongly connected
graph. A strongly connected graph is a graph such

that there exists a directed path between any pair of
nodes. If the DFG is not strongly connected, we can
derive strongly connected components with the com-
putational complexity O(INI + IEI) [11], where INI
and I EI are the number of nodes and the number of
edges, respectively, and determine the iteration bound
for each component. Then, the maximum of these it-
eration bounds is the iteration bound of the DFG.

3 Previous Work on Iteration Bound
Determinat ion

In this section, two previously proposed methods of
determination of the iteration bound for a given DFG
are reviewed.

3.1 The Negative Cycle Detection Method

An algorithm to determine the iteration bound based
on the negative cycle detection method [12] has been
recently proposed in [6], [10]. A negative cycle is a
cycle where the sum of weights of edges on the cycle
is negative.

Given the DFG, G = (N, E, q, d), and the guess
value of the iteration bound To, an edge-weighted di-
graph G = (N, E, w) is constructed. The node set
and the edge set of G are exactly the same as N and
E, respectively, and the weight w(e) of edge e =
(u, o)(~ E) is given by w(e) = d(e)To - q(u). A
shortest path algorithm can be executed on this graph
to check presence of any negative cycle. We can use
the well-known shortest path algorithm such as Floyd
method which requires the time complexity O(IN[3)
or Bellman-Ford method which requires the time com-
plexity O(INIIEI) in the case when IEI is smaller than
INI 2.

If the shortest path algorithm terminates without
finding a solution, then there exists a negative cycle
c where

w(e) = DcTo - Mc < 0. (5)
e E c

It means that the guess iteration bound To is smaller
than the cycle bound Tc = Mc/Dc and therefore than
the true iteration bound T/. On the other hand, if the
shortest path algorithm terminates with a solution, then
To is greater than or equal to T/.

Thus, we increase the guess iteration period To if
a negative cycle is detected or decrease it otherwise
and re-evaluate the weight of edges of G and repeat the

Minimum Iteration Period of an Algorithm 231

shortest path algorithm. By using a binary-search tech-
nique to determine the amount by which To is increased
or decreased, the above procedure terminates with the
result To = T/after O(log INI) repetitions [12].

Therefore, the overall time complexity to deter-
mine the iteration bound is O(INI 3 log INI) [6] or
O(INIIEI log IN I). (However, it is claimed in [10] that
O(IEI) = O(INI) in ordinary DFGs and therefore the
time complexity is O(INI 2 log INI).) The memory re-
quirement is O(INI 2) when Floyd method is used, or
C9(INI + IEI) when Bellman-Ford method is used as
the shortest path algorithm.

3.2 The Longest Path Matrix Method

Another technique to determine the iteration bound of
the given DFG by using the first-order longest path
matrix was proposed in [7].

From the DFG G = (N, E, q, d), an edge-weighted
digraph Gd = (D, Ed, w) is constructed. Figure 1
illustrates an original DFG and the constructed graph
corresponding to the DFG.

D is the set of nodes which is a delay in the original
graph G. Therefore, a delay in the graph G corre-
sponds to a node in the graph Ga. If a directed path in
G consists of edges with no delay except the first and
last edges, an edge spanning a pair of nodes in D cor-
responding to these two delays is included in the edge
set Ed. There is such a directed path (k, h), (h, i), (i, l)
in Fig. l(a) and an edge (8, ~6) is included in Ed, since
8 and ~ are delays on the first edge (k, h) and the last
edge (i, l), respectively.

We define path length in this paper as the sum of
computation time of the intermediate nodes on the path.
The length of the path stated above is the sum of com-
putation time of the nodes h and i. The weight of the
edge e ~ Ed, w(e), is equal to the length of the path
corresponding to the edge e. In Fig. 1 (a), there is a path
from the delay labeled as o~ to itself, with the interme-
diate nodes j and h. The weight w(ot, or) is the sum
of computation times of j and h, i.e., 3. In this case,
the edge forms a self cycle as shown in Fig. l(b). In
general, multiple paths may exist between two delays.
In that case, the weight of the edge is set to the longest
path length among these paths. For example, between
delays labeled as t~ and 8 in Fig. l(a), there are two di-
rected paths which go through nodes j , m, k and j , l, m,
k. The lengths of these paths are 5 and 6, respectively.
Thus, the weight w(t~, 8) is set to 6.

If more than one delay elements exist on an edge in
G, then more than one node is included in the node

232 lto and Parhi

Fig. 1.

T"'

G=(N,E,q,d)

N={h,i,j,k,l,m}

Gd=(D,Ed, w)

D=(a,[J,T,8)
Gd=(D,Ed, ffO

D=(a,~,T,8)

(a) (b) (c)

The DFG G and the corresponding edge-weighted digraph Gd. In parenthesis in G are the computation times of nodes.

set D. The weight of the edge between the nodes cor-
responding to these delays is 0 since there exists no
computation node between these delays. In Fig. 1,
there are two delays on the edge (i, j) in G and these
correspond to the two nodes fl and y in Gd. The edge
(/5, y') is included in Ea and the weight w(fl, y) is 0.

The first-order longest path matrix L 1 is a I DI x I D I
matrix and its element l~j is equal to the weight w(i, j)
of the edge (i, j) of Gd or --c~ if such an edge does
not exist. The e l e m e n t lik? 1 of the longest path matrix
of the order k(> 0) is recursively defined as

l~. +' = max {l]n + 1,kj}. (6)
nED

The diagonal element l~. of L k is the longest computa-
tion time among cycles which contains exactly k nodes
including the node i. Since a node in Gd represents a
delay in G, the maximum of l/~ for all i corresponds
to the longest cycle in G containing exactly k delays.
Therefore,

max/l~i
T = max (7)

l_<k_<lDI k

is the largest cycle bound of all the cycles and is the
iteration bound of the DFG, G.

From the DFG G = (N, E, q, d), the weighted di-
graph Gd = (D, Ed, w) and L 1 are constructed in
O(IDIIEI) computational time. The time complexi-
ties to compute maxi l~. and L k+I from L k are O(IDI)
and O(I D 13), respectively. These computations are re-
peated IDI times for 1 < k < IDI. Hence, the to-
tal computational complexity is O((IDI + IDI3)IDI -t-
IDIIEI) = O(IOI 4 -k-IDIIEI) [7].

If we construct an edge-weighted digraph Ga =
(D, Ed, CO) where the weight of an edge e 6 Ed is
given by Co(e) = To - w(e) where To is a guess iter-
ation bound, then the technique mentioned in the pre-
vious section can be used to determine the iteration
bound. From the DFG G = (N, E, q, d), construct-
ing Gd = (D, Ed, w) requires the computation time
of O(IDIIEI) complexity. The computation time to
determine the iteration bound of Gd by using Gd is
the complexity of O(IDI 3 log IDI). Hence, the total
time complexity is O(IOI 3 log IDI + IDIIEI) [7]. The
memory requirement is O(I N I + I D 12) for calculating
L 1 and storing L k.

The methods described in this section would be
faster than the method based on the negative cycle de-
tection where the number of delays I Ol is relatively
smaller than the number of nodes INI and the number
of edges I E I.

4 A New Algorithm to Determine
the Iteration Bound

In this section, we propose an algorithm to determine
the iteration bound by using the minimum cycle mean
algorithm.

The cycle mean of a cycle c, m(c), is defined as

Y~'ecc to(e) m(c) - (8)
Pc

where w(e) is the weight of the edge e and Pc is the
number of edges in cycle c. In other words, the cycle
mean of a cycle c is the average weight of the edges
included in c.

The minimum cycle mean problem involves the de-
termination of the minimum cycle mean, 3., of all the
cycles in the given digraph where

3. = min m(c). (9)
C

An efficient algorithm was proposed in [9] to determine
the minimum cycle mean for a given graph with time
complexity O(INIIEI), where N and E are the set of
nodes and the set of edges of the graph, respectively.

The number of nodes in a cycle is equal to the number
of edges of the cycle. According to the definition of the
g r a p h G d = (D , E a , w), each node in G d corresponds
to a delay in the DFG, G, and the edge weight w (dl, d2)
of the edge (dl, dE) e Ed is the largest path length
among all the paths from the delay dl to the delay d2.
Therefore, the cycle mean of the cycle Cd, containing
k nodes, dl, d2 dk, is the maximum cycle bound
of the cycles of G, which contain the delays labeled
dl, d2 dk. For example, in the graph shown in
Fig. 2(a), there are two delays labeled t~ and/3, respec-
tively. There exist two cycles {(l, k), (k, i), (i, l)} and
{(l, k), (k, j) , (j , i), (i, l)}, both of which go through
delays ot and ft. Their cycle bounds are 4/2 = 2 and
6/2 -=- 3, respectively, and the maximum of them is 3.
Figure 2(b) shows the graph Gd = (D, Ed, w) corre-
sponding to the graph shown in Fig. 2(a). In Fig. 2(b),
D = {c~, fl}, w(c~,/3) = 1, and w(fl, or) = 5. There
exists one cycle {(or,/3), (fl, c0} and its cycle mean is
3. It equals the maximum cycle bound of the cycles in
the graph shown in Fig. 2(a), which contain the delays
ot and/3.

Since the cycle mean of a cycle c in the graph Gd
equals the maximum cycle bound of the cycles in G
which contain the delays in cycle c, the maximum cycle
mean of the graph Gd equals the maximum cycle bound
of all the cycles in the graph G. Therefore, the iteration
bound of the graph G can be obtained as the maximum
cycle mean of the graph Ga.

Let Ca denote the set of cycles in graph Gd. Then,

Minimum Iteration Period of an Algorithm 233

the maximum cycle mean of the graph Gd is

max m(c) = max
c~Ca cECa Pc

-- y~e~c(--w(e)) = max
c~C~ Pc

= -- min ~ ' s c (- - w (e)) (10)
c~C, Pc

It is the negative of the minimum cycle mean of the
graph Ga = (D, Ed, (o), where tb(e) = - w (e) for
every edge e e Ed. Consequently, the maximum cy-
cle mean of the graph Gd, i.e., the iteration bound of
the graph G, can be obtained as the negative of the
minimum cycle mean of the graph Ga.

The algorithm to determine the iteration bound of
the given graph by means of the minimum cycle mean
is summarized in Fig. 3.

From the DFG G = (N, E, q, d), constructing
Gd = (D, Ed, tO) and Gd = (D, Ed, (0) requires the
computation time of O(I D II E I) complexity. The time
complexity to calculate the minimum cycle mean for
the graph Gd = (D, Ed, ~) is O(IDIIEdl). Hence, the
total time complexity to determine the iteration bound
is O(IDIIEal + IDIIEI). This time complexity is bet-
ter than the (_9(IDI 3 log IDI + IDllEI) complexity of
the method described in Section 3.2 since IEal < IDI 2
and therefore IEal < IDI 2 log IDI always holds. The
memory requirement for calculating the edge weight
w and determining the minimum cycle mean for the
graph Gd are O(INI) and O(IDI2), respectively. The
total memory requirement is O(I N I + I D 12).

EXAMPLE. From the given DFG G illustrated in
Fig. l(a), the edge-weighted digraph a d and Gd are
constructed as shown in Fig-. l(b) and (c), respec-
tively. If we choose t~ as s used in the minimum
cycle mean algorithm, Fk(v), the minimum weight
of paths consisting of exactly k edges in Ed, and

Fioi(u)-Fk(o) max0<k<lDl-1 IDI-k are calculated as follows:

k
(1) (" ~ 1 Fk(v) 0 1 2 3 4 max P4Cu)- FkCv)

14 o_<k_<3 4 -- k

v fl e~ --7 --11 --14 --18 --3.5
y ~ ~ --7--11-14 --3

(2 (1) 5 - 6 - 9 -13 -3

(a) Co) FIDI(v)-Fk(u)
Then, 3. = minoeomaxo<_k<lOl_ 1 IDI-k =

Fig. 2. The cycle mean and the cycle bound. --3.5 and the iteration bound of the DFG G is 3.5.

234 lto and Parhi

Input:
Output:
1.

2.

.

D F G G = (N, E , q, d).

The iteration bound T/.

Construct the graph Od ---- (D, Ed, ~) f rom the given DFG G = (N, E , q, d).
Run the min imum cycle mean algorithm on Gd-

Minimum cycle mean algorithm

2.0 Choose one node s E D arbitrarily.

2.1 Calculate the minimum weight Fk(v) of an edge progression
of length k f rom s to v as

Fk(v) = min + ~ (u , v) } for k 1 ,2 , . IDI f f i . . ,

with the initial conditions Fo(s) = 0; Fo(v) ffi c~, v • s.

2.2 Calculate the min imum cycle mean A of Gd.

A ffi min max FIDl(V) -- Fk(v)
red 0<k<lD[-I [D] - k

Now, Ti = - A is the iteration bound of the DFG G.

Fig. 3. The algorithm to determine the iteration bound.

The reader may confirm that the critical cycle
is {(h, j) , (j, l), (l, m), (m, k), (k, h)} and its cycle
bound, that is the iteration bound of the DFG, is
3.5 since the sum of computation times of nodes
h, j , l, m, k is 7, the critical cycle contains 2 delays
labeled as ot and 8, and 7/2 = 3.5.

5 Multi-Rate Data-Flow Graph

While every node in a single rate data-flow graph
(SRDFG) is invoked once in an iteration of the execu-
tion, nodes in a multi-rate data-flow graph (MRDFG)
are invoked more than once in an iteration. More-
over, different nodes may be invoked for a different
number of times in an iteration. In other words, one
node is invoked at a different rate from another node
in MRDFGs. The definition of the edge in MRDFGs
also differs from that in SRDFGs.

An MRDFG can be expanded into the equivalent
SRDFG [1]. The 'equivalence' means that theMRDFG
and its expanded SRDFG express identical signal pro-
cessing algorithm. In this section we describe a method
to expand an MRDFG into its equivalent SRDFG which
is similar to unfolding an SRDFG [5].

5.1 The Number of Invocations of Node

In SRDFGs, it is assumed that one invocation of a node
consumes one data from every incoming edge and pro-
duces one data on every outgoing edge. Therefore, the

number of invocations of each node is one in an itera-
tion. In MRDFGs, on the other hand, one invocation
of a node can consume one or more data from each in-
coming edge and produce one or more data onto each
outgoing edge. Let Ouo and luv denote the number of
data produced onto the edge (u, v) by an invocation
of the node u and the number of data consumed from
the edge (u, v) by an invocation of the node v, respec-
tively. They are written near the head and tail of the
edge of the MRDFG as shown in Fig. 4(a). For exam-
ple, 4 data samples are produced onto the edge (a, b)
in every invocation of the node a and 3 data samples
are consumed from the edge (a, b) in every invoca-
tion of the node b. In the case where Ouo and Iuv are
different for the directed edge (u, v), the node u must
be invoked different number of times than the node v
so that the total number of data produced by the in-
vocations of u and the total number of data consumed
by the invocations of v balance within each iteration.
Let ku denote the number of invocations of the node
u in an iteration. Then, k, and ko must satisfy that
O,o * ku = Iuo * ko. These relations must be satis-
fied for every edge in the MRDFG. For example, in the
MRDFG shown in Fig. 4(a), there are four edges. The
number of invocations ka, kb, and kc must satisfy the
following indeterminate equations:

4ka = 3kb (12)

kb = 2kc (13)

3kc = 2k~ (14)

kc = kc. (15)

Minimum Iteration Period of an Algorithm 235

Fig. 4.

(a)

An MRDFG and its equivalent SRDFG.

0a)

By solving the set of equations with a constraint that
at least two of the numbers of invocations are coprime
to each other, the minimum balanced numbers of in-
vocations are 3, 4, and 2 for the nodes a, b, and c,
respectively.

5.2 Edges in the Equivalent Single-Rate DFG

The equivalent SRDFG contains ku nodes which are
the ku copies of node u of the MRDFG. Since every
node is executed once in an iteration of the SRDFG,
the total number of executions of the copies of node u
in an iteration of the equivalent SRDFG is the same as
the number of executions of node u in an iteration of
the MRDFG.

Edges are also copied in the equivalent SRDFG.
Each invocation of the node u produces O,~ data on
the edge (u, v) in the MRDFG. It can be emulated in
the SRDFG by appending O,o copies of the edge (u, o)
outgoing from each copy of the node u. Since the ex-
ecution of a copy of the node u produces one data on
every outgoing edge, the number of data produced by
the execution is O,,o. Similarly, I,,~ copies of the edge
(u, v) are incoming to each copy of the node v and total
number of data consumed by the execution of a copy
of the node v is Iuo. There are koluo(= k~ Our) copies
of the edge (u, v).

To simplify notation, in the remainder of this paper,
let x \y and x %y denote [xj and x - L x] y, respectively,

Y Y
where [z] is the largest integer less than or equal to z
and x % y is x modulo y.

Let u k (k = 0, 1 k,, - 1) denote the node in the
equivalent SRDFG, which corresponds to the kth invo-
cation of the node u of the MRDFG. Since O~o edges

are outgoing from the node U k, U k Can be regarded as
having Our output terminals for the edge (u, v). Sim-
ilarly, the node v k can be regarded as having luv input
terminals for the edge (u, v). There are Ouvku output
terminals on k,, nodes u ~ u I u ku-I and Iuokv(=
Ouvku) input terminals on ko nodes v ~ v 1 v k~-I .
Then, the ith (i = 0, 1 Ouvk, - 1) copy of the
edge connects the ith output terminal of the copies of
the node u (it is the (i%Ou~)th terminal of the node
u i\~ and the ith input terminal of the copies of the
node v (it is the (i%Iuo)th terminal of the node v i\tu~
if there is no delay on the edge (u, v).

The delay on an edge in an SRDFG implies the
inter-iteration data dependency, where the computa-
tion of the current iteration depends on the data gen-
erated in the previous iteration. On the other hand,
in the MRDFG, the delay on an edge does not imply
the inter-iteration data dependency. It is the offset be-
tween the output terminal and t.he input terminal con-
nected by a copy of the edge in the equivalent SRDFG.
If the number of delays on the edge (u, v) is W in the
MRDFG, the ith copy of the edge connects the ith out-
put terminal of the copies ofu with the (i + W)th input
terminal of the copies of v. Therefore, the ith copy
of the edge (u, v) is outgoing from the node u i\~
and incoming to the node v (i+vc~\t"~. In the case that
(i + W)\ Iuv > kv, the edge is incoming to the node
v ~i+W)xt~)~~ and ((i+W) \ l~v)kk~ = (i+W) \ (luokv)
delays are associated with the edge. These delays now
imply inter-iteration data dependencies since they exist
in the SRDFG.

EXAMPLE. Figure 4 shows an MRDFG and its equiv-
alent SRDFG. The numbers of invocations of node a,

236 Ito and Parhi

b, and c are 3, 4, and 2, respectively. There are 12
copies of the edge (a, b) since Oab = 4 and ka = 3.
The edge (a, b) is associated with 3 delays. Therefore,
the 9th, 10th, and 1 lth copies of the edge, all incoming
to b ~ are associated with one delay.

5.3 Constructing the Equivalent SRDFG

The algorithm to construct the equivalent SRDFG for
a given MRDFG is summarized in Fig. 5. In Fig. 5,
Nm and Em are the set of nodes and the set of edges,
respectively, of the MRDFG. qm (u) is the computation
time of node u ~ Nm and dm (u, v) is the number of
delays associated with the edge (u, v) e Era. Similarly,
N~. and Es are the set of nodes and the set of edges,
respectively, of the equivalent SRDFG. qs(u) is the
computation time of node u ~ Ns and ds(u, v) is the
number of delays associated with the edge (u, v)
Es.

Construction of the equivalent SRDFG requires the
computations of O(INm Ik) complexity for generating
Ns and O(IE,,, Ik) complexity for generating Es where
k is the average of k,, for all u ~ Nm. The total compu-
tational complexity to construct the equivalent SRDFG
is O((INml + [Eml)k).

Input: MRDFG Gm -- (Arm, Era, qm, din)
Output: SRDFG Gs = (Ns, Es, qs, ds)
N, -- t3, Es -- 0 ;

Calculate k,, for all u E Nm;

for a l l u E N m d o

for k = 0 t o k ~ , - l d o
Include u k into N~;

qs(u k) ~-- am(U)
enddo

enddo
for all (u, v) E Em do

W ~ d~(u, v).
for i ffi 0 to O~vku -- 1 do

Include (u i \O' ' , v ((i+w)\I'U)%k'~) into Es;
ds(ui\O~, v((i+w)\I,,~)~k.) r

(i + W)\(I~,,k, ,)
enddo

enddo

Fig. 5. An algorithm to construct the equivalent SRDFG.

6 The Iteration Bound of Multi-Rate DFG

The iteration bound of an MRDFG is identical to the it-
eration bound of the equivalent SRDFG since these ex-
press the identical signal processing algorithm. Hence,
the iteration bound of the MRDFG can be determined
by determining the iteration bound of the equivalent
SRDFG. From the viewpoint of determining the itera-
tion bound, however, the equivalent SRDFG is redun-
dant in the number of edges and the number of nodes
in some cases. This kind of redundancy immediately
worsens the computation time to determine the itera-
tion bound since it depends on the number of nodes and
the number of edges. The computation time to deter-
mine the iteration bound of the equivalent SRDFG may
be improved by eliminating these redundancies. In this
section, the technique to eliminate the edge redundancy
of the equivalent SRDFG is discussed. Then, we pro-
pose a technique to eliminate the node redundancy of
the equivalent SRDFG.

6.1 Edge Degeneration

One of the redundancy is the existence of parallel edges
in the equivalent SRDFG. ff we remove all the parallel
edges except one edge with the least delays, a simple
DFG is obtained. Let this edge removal procedure be
called edge degeneration. Although the edge degenera-
tion alters the signal processing algorithm, the iteration
bound is not changed before and after the edge degen-
eration. Figure 6(a) and (b) show a SRDFG equivalent
of the MRDFG in Fig. 4(a) and the edge-degenerated
SRDFG, respectively. For example, there are three
edges from the node a 2 to the node b ~ in the equiva-
lent SRDFG. These edges are degenerated into a single
edge from a 2 to b ~ as shown in Fig. 6(b).

O,,~ edges outgoing from the node U k a r e input to the
(Ouvu k + W)th to (Ouk(U k + 1) -- 1 + W)th termi-
nals where W is the number of delays associated with
the edge (u, v). The edges incoming to the same node
v j are degenerated into a single edge. Therefore, there
exist the degenerated edges outgoing from u k and in-
coming to vJ~~ j = ((Ouou k + W)\Iuu), ((Ouou k +
W)\I~o) + 1 (Ouo(u k + 1) - 1 + W)\Iuo, with
j \ko delays for each j . The algorithm to construct
the edge-degenerated SRDFG directly from the given
MRDFG is summarized in Fig. 7. The time complexity
of the algorithm is O((INml + [Eml)k) where k is the
average of ku for all u ~ Nm. The edge degeneration
technique was also reported in [10] 1.

Minimum Iteration Period of an Algorithm 237

(a) (b) (c)

Fig. 6. Degeneration of the equivalent SRDFG. (a) The equivalent SRDFG. (b) The edge-degenerated equivalent SRDFG. (c) The node-
degenerated equivalent SRDFG.

Input: M R D F G Gm = (Nm, E ~ , q~, din)

Output: the edge-degenerated SRDFG

Gs = (N~, E , , qs, ds)

N8 -- 0 , E8 = 0 ;
Calculate k~, for all u 6 Nm;
for all u E N ~ do

for k ffi 0 t o k , , - 1 do
Include u j' into _hrs.
q,(u k) , - q~Cu).

enddo
enddo
for all (u, v) E E ~ do

W ,-- din(u, v).
for k ~ O t o k ~ - 1 do

for j .. (O,,,k + W)\I , ,~ to
(O,~,,(k + 1) - 1 + W)\I, , , , do

Include (u k, v j~t'~) into E~;
ds(u k, v j~k') ",- j \ k v

enddo
enddo

enddo

Fig. Z An algorithm to construct the edge-degenerated equivalent
SRDFG.

6.2 Node Degeneration

Another redundancy in the equivalent SRDFG is the ex-
istence of nodes which could be degenerated into one
node without altering the iteration bound. For example

in edge-degenerated SRDFG illustrated in Fig. 6(b), the
edges outgoing from the nodes b ~ and b I are incoming
to an identical node c I and these edges are the only
edges outgoing from b ~ and b I . In this case, as shown
in Fig. 6(c), we can merge b ~ and b I into a single node
/~0 with the computation time identical to b ~ (also iden-
tical to bl). Such a node/70 is called the degenerated
node. The edges connected to either b ~ or b I in the orig-
inal SRDFG are connected to the degenerated node/~o
without changing the number of delays on these edges.
Furthermore, newly introduced parallel edges in the
SRDFG are also degenerated. This procedure is called
node degeneration.

The node degeneration is carried out such that the
iteration bound of the node-degenerated SRDFG is
identical to that of the original SRDFG. The node de-
generation is proper if the iteration bound is unchanged
before and after the node degeneration. The node de-
generation is proper in the case.that either the conver-
gence condition or the divergence condition is satisfied.
These conditions are defined as follows:

�9 Convergence condition (Fig. 8(a))

- - The nodes to be degenerated into one degener-
ated node are the copies of a node of the MRDFG.

- - The nodes have outgoing edges which are incom-
ing to an identical node and are the only edges
outgoing from these nodes.

- - The number of delays on the outgoing edges are
the same.

�9 Divergence condition (Fig. 9(a))

- - The nodes to be degenerated into one degener-
ated node are the copies of a node of the MRDFG.

238 lto and Parhi

(a)

dD Q

Co)

Fig. 8. The node degeneration with the convergence condition.
(a) Convergence condition for node u k. (b) The node degeneration
for node u k.

Fig. 9(a) is degenerated as illustrated in Fig. 9(b). For
example in the SRDFG shown in Fig. 6(b), the nodes
b ~ and b I are the copies of the node b of the MRDFG
shown in Fig. 4(a), and all of their outgoing edges are
incoming to the identical node c I . Therefore, the con-
vergence condition is satisfied and degenerating b ~ and
b I into a degenerated node/~o is a proper node degener-
ation. The legitimacy of the proper node degeneration
is ensured by the following theorem.

THEOREM. The iteration bound o f the properly node-
degenerated SRDFG is the same as the original
SRDFG.

dD

dD

(a)

Q dD = ~

(b)

Fig. 9. The node degeneration with the divergence condition.
(a) Divergence condition for node u k. (b) The node degeneration
for node u k.

- - The nodes have incoming edges which are out-
going from an identical node and are the only
edges incoming to these nodes.

- - The number of delays on the incoming edges are
the same.

By the node degeneration with the convergence con-
dition, the graph shown in Fig. 8(a) is degenerated as
illustrated in Fig. 8(b). Similarly, by the node degener-
ation with the divergence condition, the graph shown in

PROOF. Suppose a set of nodes is degenerated into
a single node. By the condition of the proper node
degeneration, all the outgoing edges from these nodes
must be incoming to an identical node, or all the in-
coming edges to these nodes must be outgoing from
an identical node. We prove the theorem for the first
case only. However, the theorem can be proven for the
second case similarly.

Without loss of generality, we consider that two
nodes u ~ and u I are degenerated into a single degen-
erated node t7 ~ as illustrated in Fig. 10. Note that no
cycle contains the same node more than once. If a path
contains both u ~ and u I as intermediate nodes, it must
contain o twice. Such a path can never be a cycle.
Therefore, there exists no cycle which contains both
u ~ and u I in the original SRDFG and merging u ~ and
u I into a single node t7 ~ does not eliminate any cycle.

All the edges either incoming to or outgoing from
u ~ or u 1 in the original SRDFG are substituted by the
edges either incoming to or outgoing from ~0 in the de-
generated SRDFG. Therefore, the degenerated SRDFG
has the same set of cycles as the original SRDFG ex-
cept that either the edges (x, u ~ and (u ~ v) or the
edges (x', u 1) and (u 1, v) for any node x and x ' of a
cycle are substituted by the edges (x, t7 ~ and (~0, o) or

(a) (b)

Fig. 10. Node degeneration. (a) A part of the original SRDFG. (b) The reduced SRDFG with u ~ and u I merged into ~o.

(x', r ~ and (r ~ v), respectively. Since r ~ has the same
computation time as u ~ (and as u l) and the number of
delays on (rio, v) is the same as (u ~ v) and (u I , v), the
maximum cycle bound of the degenerated SRDFG is
identical to that of the original SRDFG. []

6.3 Algorithm o f Node Degeneration

By the node degeneration, the set of nodes u k (k =
0, 1 k,, - 1) is degenerated into one or more nodes.
Let r J (j = 0, I) denote such degenerated nodes.
The node degeneration is represented by the node de-
generation function, fu (k) = j , which indicates that
the node u k is degenerated into the node rJ .

Suppose that node u kt is degenerated into the node
r j~ and node uk2(k2 > kl) is degenerated into the
node r h (j 2 > j l) by the node-degeneration proce-
dure mentioned above. Then, node u k3 (k3 > k2) is
degenerated either into the node r h or into another
node r h (j 3 > j2) by the node-degeneration proce-
dure. It is important to note that the node u k3 is never
degenerated into the node r j~ if the node u k2 is not de-
generated into r j~ . Consequently, the node degenera-
tion function is monotonically increasing function, i.e.,
f , (k) < fu (k + 1) for any node u and 0 < k < k,, - 1.

Deriving the node degeneration functions which
lead to a properly node-degenerated SRDFG with the
least number of nodes is the main task in the node
degeneration.

Determining Node Degeneration Function. The node
degeneration function for the case of the convergence
condition is derived as follows. Deriving the node de-
generation function for the case of the divergence con-
dition can be described in a similar way.

Suppose that the edge (u, v) with W delays is the
only outgoing edge from the node u in the MRDFG.
Furthermore, the nodes u and v are invoked k, times
and kv times, respectively. Hence, Ouoku = luoko.
Assume that (Ouok ~ + W)\Iuo = (O,,o(k ~ + 1) -
1 + W) \ Iuv for a node u k~ In other words, all the
edges outgoing from u k~ are incoming to a single node
v ((~176 Let j = (O,ok ~ + W) \ l , o . Thus,
all the edges outgoing from u k~ are incoming to the
node v j~~

I f (O , , o (k + 1) - 1 + W)\I,,o = j for a k (> k ~ 1),
that is, all the edges outgoing from the node u k are also
incoming to the node v j~~ then the nodes u k~ and u k
can be degenerated into the same node. Hence, f , (k)
is set as f,, (k ~ to indicate that the nodes u k~ and u k are
degenerated into an identical degenerated node fi f.Ck~

Minimum Iteration Period of an Algorithm 239

On the other hand, if (Ou ~ (k + 1) - 1 + W) \ lu o ~ j ,
then u k has an outgoing edge incoming to the node vJ'
other then vJ. In this case, fu (k) is set as fu (k ~ + 1 to
indicate that the nodes u k cannot be degenerated into
the same degenerated node as u k~

More generally, the set of nodes v k may have been
degenerated. In that case, it is checked whether out-
going edges are incoming to an identical degenerated
node. First, k ~ is chosen as the smallest number to sat-
isfy fo((Ouok ~ + W)\Iuo) = fo((Ouo(k ~ + 1) - 1 +
W)\Iuo), i.e., all the outgoing edges from u k~ are in-
coming to the degenerated node~ fo(((~

Let fv(((O,,ok, + W)\ luo)%ko) = j . I f fo ((O,o(k +
1) - 1 + W)kluo = j for a k > k ~ 1, then let
fu(k) = fu(k ~ since all the edges outgoing from u k
are incoming to fiJ and therefore u k can be degenerated
into the same degenerated node as u k~ Otherwise, let
fu (k) = fu (k ~ + 1.

It must be noted that there can be the case where the
convergence condition and/or the divergence condition
is not satisfied for some node u. In that case, node u k is
degenerated into the node fik for k = 0, 1 ku - 1
by the node-degeneration procedure and no node de-
generation is performed.

The Order of Deriving Node Degeneration Functions.
Although the node degeneration function can be de-
rived for each node independent of the processing order
of the nodes, one order of the nodes to be processed may
result in a node-degenerated SRDFG with less nodes
than another. If the set of nodes u k is degenerated
into the degenerated node r k, more copies of the edge
(u, v) may be outgoing from an identical degenerated
node r k. In that case, the possibility of degenerating
the set of nodes v k would be increased and they could
be degenerated into less number of degenerated nodes.

Figure 11 shows an example. Let Fig. 1 l(a) be the
equivalent SRDFG to be node-degenerated by the di-
vergence condition. The nodes b ~ and b 1 satisfy the
divergence condition since all the incoming edges to
nodes b ~ and b t are outgoing from an identical node a ~
and there are no other edges incoming to nodes b ~ and
b t. By applying the node degeneration procedure on
the node b, nodes b ~ and b I are degenerated into a sin-
gle degenerated node/~o as shown in Fig. 1 l(b). Then,
nodes c o and c I can be degenerated into a single degen-
erated node ~o since all the incoming edges to nodes
c o and c I are outgoing from an identical node/~o and
there are no other edges incoming to nodes c o and c t .
Hence, the equivalent SRDFG shown in Fig. l l (a) is
node-degenerated into the SRDFG shown in Fig. 1 l(c)

240 Ito and Parhi

(a)

(b) (d)

(e) (e)

Fig. 11. The order of degenerating nodes. (a) An example SRDFG. Degenerating the node b first (b) and then the node c (c) results in 3-node
degenerated SRDFG. Another order of the node c first (d) and then the node b results in the degenerated SRDFG with more nodes.

by applying the node degeneration procedure first on
the node b and then on the node c.

If the node generation procedure is applied first
on the node c, on the other hand, no actual node-
degeneration is performed on the nodes c o and c I
since the convergence condition is not satisfied for the
nodes c o and c l. The resultant SRDFG is illustrated
in Fig. 1 l(d) and is identical to the original equivalent
SRDFG. Then, applying the node degeneration pro-
cedure on the node b results in the node-degenerated
SRDFG shown in Fig. 1 l(e).

Consequently, applying the node degeneration pro-
cedure on the node b first and then the node c results in
the node-degenerated SRDFG with 3 nodes as shown
in Fig. 1 l(c) and is better than applying the node de-
generation procedure on the node c first and then the
node b which leads to the node-degenerated SRDFG
with 4 nodes as shown in Fig. ll(e).

One good order is to derive the node degeneration
function for the ancestor node first in the case of the
divergence condition. Such an order is achieved by
the depth first search (DFS) with an appropriate root
node. Similarly, processing the successor node first
may be used in the case of the convergence condi-
tion. This order is also achieved by DFS by assuming
the directions of edges are reversed. According to the
discussion above, a node which could be degenerated
should not be the root node of the DFS so as to derive
the node-degenerated graph with the least number of
nodes. Therefore, we choose a node with incoming
edges outgoing from more than one ancestor nodes for
the case of the divergence condition and a node with
outgoing edges incoming to more than one successor
nodes for the case of the convergence condition. In the
case there is no such node, we may choose a node with
the smallest number of invocations for the maximal
node degeneration.

Node Degeneration During Expanding the MRDFG.
Instead of degenerating the equivalent SRDFG, we
can expand the MRDFG directly into the node-
degenerated SRDFG by determining and utilizing the
node degeneration function during the expansion of
the MRDFG. The overall algorithm to construct the
node-degenerated and the edge-degenerated equivalent
SRDFG is summarized in Fig. 12.

At first, fu(k) = k for every node u as an ini-
tial proper node degeneration function. It means
no node degeneration is performed at the beginning.
DFSconv(u) updates the node degeneration functions
for the node v if the convergence condition is satisfied
for an edge (u, v). Similarly, DFSdiv(v) updates the
node degeneration functions for the node u if the diver-
gence condition is satisfied for an edge (u, v). After de-
riving the proper node degeneration functions by these
DFSs, degenerated nodes and edges between them are
included into the node set Ns and the edge set E~, re-
spectively.

The DFS procedures require time complexity
O(IEmlk) where k is the average of ku for all u E
Nm. Including the node fit requires time complexity
O(INmlk). Including edges between these nodes re-
quires time complexity of O(I E,, Ik) since O(k) copies
are included for each edge in Era. Therefore, the total
time complexity of the algorithm is O(IN,. I k + I E,. I k).
The memory requirement is O([Nm Ik) for storing the
node degeneration function fu (k).

EXAMPLES. By the node degeneration, we can re-
duce the number of nodes and the number of edges.
From the SRDFG shown in Fig. 6(b), we can degener-
ate the node b ~ and b I into one node and the node b 2
and b 3 into another node. Figure 6(c) shows the maxi-
mally node-degenerated SRDFG. In this example, the
number of nodes is reduced from 9 to 7, and the num-

M i n i m u m I tera t ion Pe r iod o f an A l g o r i t h m 241

Fig. 12.

Input: MRDFG G., - (N , , , , E . ~ , q . , , d , , ,)
Output: the node- and edge-degenerated SRDFG

G. - (N o , E o , q o , d ,)
N. - O , E . - 0 ;
Calculate ku for all u E N.~;
for all u E N,= do

for k - 0 t o k u - l d o
f~(k) ,-- k

enddo
enddo
/* Node degeneration for the convergence condition */
for all u E Nm do

Label u as 'not processed'
enddo
Choose the root node s for the convergence condition;
call DFSconv(s);
/* Node degeneration for the divergence condition */
for all ~ E N., do

Label u as 'not processed'
enddo
Choose the root node s for the divergence condition;
call DFSdiv(s);
for all u E Nm do

for k - O t o f~,(k, , - l)do
Include ~h into N. ;
qoff?) ~ q. ,(u)

enddo
euddo
for all (u, v) E E,,~ do

W ~-- d,~ (u, v);
fO ~__ --1;
for k - 0 to k~ - 1.~o

i f f~(((O,,~(k + I) - 1 + W)\L ,~)%k~) y fo then
fo ,.._ f~(((Ou~(k + 1) - 1 + W)\ l~ ,)%k~);
j *-- f~(((O~,k + W)\I~)%k~) ;
W ~ . - (O~uk + W)\(I=~k~);
i f fo _> j then f l ,_ fo

else f t *- f ~ + f~(k~ - 1)+ 1;
f o r t - j t o f t do

Include (~l~tk), 0/) into E~
d.(,~ y~ck~, ~/) 4-- W~
j * - - j + 1;
i f j > f~(k~ - I) t h e n j ~ 0, W ~ +-- W ~ + 1

enddo
endif

enddo
enddo.

procedure DFSconv(u)
for all (u, v) E E,~ do

if v is labeled as 'processed' Skip to the enddo;
if (u, v) is not the only incoming edge to v

then goto desceng
W *-- d,~(u, v), k ~ *-- 0;
while f , , (((Iuvk ~ -- W) \ O , , v) % k .) u

f . (((1 . . (k ~ + l) - l - W) \ O , , ,) ~ k u) do
k~ +.- k~ 1

enddo
jo 4__ f, ,(((i , ,u(k o + I) - 1 - W)\Ouv)%ku);
k 4-- k~ I;
while k _< k~ do

i f fuC((lu,~(k + 1) - 1 - W)\O. , ,)%k , ,) - jo then

f . (k) +-- f.Ck ~
else

f~(k) .-- f~(k ~ + 1, k ~ ,-- k;
jo ,_. fu (((Iu . (k + l) -- 1 -- W)\Ou=)%ku)

eadif
k * - - k + l

enddo
descent:

Label v as 'processed';
call DFSconv(v)

euddo.

procedure DFSdiv(v)
for all (u, v) E E.,. do

if v is labeled as 'processed' then Skip to the enddo;
ff (u, v) is not the only outgoing edge from u then

then goto descent;,
W ~-- dr~(u,v), k ~ *-- O;
while f~(((O,~k ~ + W) \ I ~) % k ~) u

y~(((O~Ck ~ + i) - t + W) \ l ~) % k ~) do
k ~ +-- k ~ + 1

enddo
jo ,._ f~(C(O~(kO 4. 1) -- 1 4- W)\Iuv)%kv);
k * - k~ 1;
while k < ku do

if fe(((O~,,,(k + 1) - I + W)\Iu~)%ku) . jo then

f~(k) . - f~(k ~
else

fu(k) 4-" fa (k ~ + I, k ~ *--- k; "
jo ,_ f~(((ouu(k + l) - l + w) \ I ~) % k ~)

endif
k ~ " k + l

euddo
descent:

Label u as 'processed';
call DFSdiv(u)

enddo.

An algorithm to construct the node-degenerated equivalent SRDFG.

ber o f edges is r educed f r o m 16 to 13. T h e n u m b e r o f

de lays is also r e d u c e d f rom 4 to 3.

T h e n u m b e r o f i nvoca t ions o f nodes V, W, X, Y,

and Z in the M R D F G i l lus t ra ted in Fig. 13(a) are 1, 10,

2, 20, and 20, r espec t ive ly [13]. The re fo re , the equ iv-

a len t S R D F G cons is t s o f 53 nodes , 122 edges , and 65

delays. T h e edge d e g e n e r a t i o n p r o c e d u r e c a n n o t re-

duce any edges f r o m this e q u i v a l e n t S R D F G s ince the re

242 Ito and Parhi

25D

oo i
.9,

(a) (b)

Fig. 13. An example of the node degeneration. (a) The given MRDFG. (b) The node-degenerated equivalent SRDFG.

exist no parallel edges. However, the node-degenerated
SRDFG as shown in Fig. 13(b) is constructed by the
node degeneration procedure. This graph consists of
only 9 nodes, 18 edges, and 10 delays.

7 Exper imenta l Results

The CPU time to determine the iteration bound for prac-
tical SRDFGs are compared. We chose the 5th order
elliptic wave filter (EWF) [14] and the recursive part of
the 4-level pipelined lattice filter (PLF) [15] as bench-
marks. EWF which consists of 34 nodes, 56 edges,
and 7 delays is an SRDFG where the number of delays,
I DI, is relatively smaller than the number of nodes, IN I,
and the number of edges, IEI. On the other hand, PLF
which consists of 8 nodes, 10 edges, and 8 delays is an
SRDFG where IDI is comparable to INI and IEI.

Table 1 shows the comparison of time complexity,
memory requirement, and CPU time to determine each
iteration bound of EWF and PLE In this table, NCD is
the negative cycle detection method by using Bellman-
Ford shortest path algorithm to detect negative cycles,
LPM is the longest path matrix method, LPM' is the
mixture of LPM and NCD methods by using Floyd
shortest path algorithm to detect negative cycles, and
MCM is the minimum cycle mean based method. The
computation time of node i, q (i) , is assumed 1 if node

i is an addition or 2 if it is a multiplication. All the
CPU times are measured on a SparcStation 2 and do
not include the time consumed in reading the DFG
from a file.

In NCD and LPM' methods, the calculation of
the iteration bound is terminated when the difference
between successive guess iteration bounds becomes
smaller than 1/[Nl2y 2 where INI is the number of
nodes in the DFG and y is the longest computation
time of nodes [6]. While LPM and MCM derive the
exact iteration bound, NCD and LPM' derive only an
approximate iteration bound. Some post-calculations
may be necessary to identify the exact iteration bound
from the approximate.

Table 2 shows CPU times to determine the iteration
bounds of the equivalent and node-degenerated SRD-

Table 2. Iteration bound determination of DFG in Fig. 13.

CPU [mS]
Method Equivalent Node-degen.

NCD 52.7 a 1.45 e
LPM 4350 b 3.02 b
LPM t 442 a 4.10 e
MCM 40.7 b 0.767 b

aThe obtained iteration bound = 4.0003128.
hThe obtained iteration bound = 4.0000000.
eThe obtained iteration bound = 3.9902344.

Table 1. Comparison of iteration bound determination algorithms.

CPU [mS]

Method Time complexity Memory requirement EWF PLF

NCD O(INIIEI log IN[) O(INI + lED 25.2 a 1.00 c
LPM O(IDIIEI 4- IDI 4) O(INI 4- IDI 2) 1.92 b 2.97 d
LPM' O(IDIIEI 4- IDI 3 log IDI) O(INI 4- IDI 2) 3.58 a 6.38 c
MCM O(IDIIEI + IDIIEal) O(INI + 1912) 0.717 b 0.650 d

aThe obtained iteration bound = 16.0002594. eThe obtained iteration bound = 1.50439453.
bThe obtained iteration bound = 16.0000000. dThe obtained iteration bound = 1.50000000.

Minimum Iteration Period of an Algorithm 243

FGs of the MRDFG in Fig. 13(a). All the computation
time of nodes are assumed to be 1. We can see that the
node degeneration greatly improves CPU time in any
iteration bound methods and that our proposed iteration
bound determination method is the fastest.

8 Conclusions

In this paper we proposed a new method to determine

the iteration bound of SRDFGs. Its time complexity is
better than the previously reported methods in the case
where the number of delays is relatively smaller than
the number of nodes in the SRDFG. If the number of
delays is much larger than the number of nodes, then
the NCD method would be the fastest; however, most
digital signal processing algorithms do not fall into this
category.

The node degeneration technique to reduce the num-
ber of nodes and the number of edges of the equiv-
alent SRDFG of an MRDFG is also proposed. In
some cases, node degeneration may not be applica-
ble. However, if the node-degeneration is applicable,

then it is shown that the iteration bound of the node-
degenerated SRDFG can be computed faster than the
approach where either only edge degeneration or no

degeneration is applied.
In rate-optimal scheduling, the iteration bound is

computed many times. Therefore, the node degenera-
tion technique would play an important role in speeding
up the scheduling by minimizing the iteration bound
determination time. In the case of further combining
the node degeneration technique into scheduling, care-
ful attention should be paid since some nodes may have
been removed from the node-degenerated SRDFG and
operations of those nodes have to be scheduled as well

as the nodes in the node-degenerated SRSFG.

2. E.A. Lee and D.G. Messerschmitt, "Static Scheduling of Syn-
chronous Data Flow Program for Digital Signal Processing,"
IEEE Trans. Computers, Vol. C-36, pp. 24-35, Jan. 1987.

3. M. Renfors and Y. Neuvo, "The Maximum Sampling Rate of
Digital Filters under Speed Constraints," IEEE Trans. Circuits
Syst., Vol. CAS-28, pp. 196-202, Mar. 1981.

4. D.A. Schwartz and T.P. Bamwell, III, "A Graph Theoretic Tech-
nique for the Generation of Systolic Implementations for Shift
Invariant Flow Graphs," in Proc. of the 1984 IEEE ICASSP, San
Diego, CA, Mar. 1984.

5. K.K. Parhi and D.G. Messerschmitt, "Static Rate-Optimal
Scheduling of Iterative Data-Flow Programs via Optimum Un-
folding," IEEE Trans. Computers, Vol. C-40, pp. 178-195, Feb.
1991.

6. D.Y. Chao and D.Y. Wang, "Iteration Bounds of Single-Rate
Data Flow Graphs for Concurrent Processing;' IEEE Trans. Cir-
cuits Syst.-l, Vol. CAS-40, pp. 629-634, Sept. 1993.

7. S.H. Gerez, S.M. Heemstra de Groot, and O.E. Herrmann,
"A Polynomial-Time Algorithm for the Computation of the
Iteration-Period Bound in Recursive Data-Flow Graphs," IEEE
Trans. Circuits Syst.-l, Vol. CAS-39, pp. 49-52, Jan. 1992.

8. K. Ito and K.K. Parhi, "Determining the Iteration Bounds of
Single-Rate and Multi-Rate Data-Flow Graphs," in Proc. of
1994 IEEE Asia-Pacific Conf. on Circuits and Systems, Taipei,
Taiwan, Dec. 1994, pp. 6A.l.I-6A.1.6.

9. R.M. Karp, "A Characterization of the Minimum Cycle Mean in
a Digraph," Discrete Mathematics, Vol. 23, pp. 309-311, 1978.

10. R. Govindarajan and G.R. Gao, "A Novel Framework for Multi-
Rate Scheduling in DSP Applications;' in Proc. 1993 Int. Conf.
Application-Specific Array Processors, pp. 77-88, IEEE Com-
puter Society Press, 1993.

11. E.M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Al-
gorithms: Theory and Practice, Englewood Cliffs, NJ: Prentice
Hall, 1977.

12. E.L. Lawler, Combinatorial Optimization: Networks and Ma-
troids. New York: Holt, Rinehart and Winston, 1976.

13. S.S. Bhattacharyya, J.T. Buck, S. Ha, and E.A. Lee, "A Schedul-
ing Framework for Minimizing Memory Requirements of Mul-
tirate DSP Systems Represented as Datafiow Graphs," in VLSI
Signal Processing, VI, pp. 188-196, 1993.

14. S.Y. Kung, H.J. Whitehouse, and T. Kailath, VLSI and Modern
Signal Processing, Englewood Cliffs, NJ: Prentice Hail, 1985.

15. J.-G. Chung and K.K. Parhi, "Pipelining of Lattice IIR Digital
Filters," IEEE Trans. Signal Processing, Vol. SP-42, pp. 751-
761, Apr. 1994.

Note

1. The technique described in [10] can also eliminate some tran-
sitive edges and hence derives a reduced SRDFG with the less
number of edges than the edge-degenerated SRDFG.

References

1. K.K. Parhi, "Algorithm Transformation Techniques for Concur-
rent Processors," Proc. of the IEEE, Vol. 77, pp. 1879-1895,
Dec. 1989.

Kazuhito Ito received the BS, the MS, and the Ph.D. degrees in
Electrical Engineering from Tokyo Institute of Technology, Tokyo

2 4 4 Ito and Parhi

(Japan), in 1987, 1989, and 1992, respectively. He was with the
Tokyo Institute of Technology from 1992 and visited the University
of Minnesota from April 1993 to July 1994. He is now an associate
professor of the Department of Electrical and Electronic System En-
gineering, Saitama University, Urawa (Japan). His research interests
include high-level synthesis in digital signal processing, VLSI signal
processing, and asynchronous systems.
kazuhito @etc.ees.saitama-u.ac.jp

Keshab K. Parhi received the B. Tech. (Honors) degree from
the Indian Institute of Technology, Kharagpur (India), in 1982, the
M.S.E.E. degree from the University of Pennsylvania, Philadelphia,

in 1984, and the Ph.D. degree from the University of California,
Berkeley in 1988.

He has been with the University of Minnesota since 1988 where
he is currently a Professor of Electrical Engineering. He has held
short term positions in several industries. His research interests
include concurrent algorithm and architecture designs for commu-
nications, signal and image processing systems, digital integrated
circuits, VLSI digital filters, computer arithmetic, high-level DSP
synthesis, and multiprocessor prototyping and task scheduling for
programmable software systems.

Dr. Parhi received the 1994 Darlington and 1993 Guillemin-Cauer
best paper awards from the IEEE Circuits and Systems society, the
1992 Young Investigator Award of the National Science Foundation,
the 1992-1994 McKnight-Land Grant professorship of the Univer-
sity of Minnesota, the 1991 best paper award from the IEEE signal
processing society, the 1991 Browder Thompson prize paper award
of the IEEE, the 1989 research initiation award of the National Sci-
ence Foundation, and the 1987 U.C. Berkeley Eliahu Jury award for
excellence in systems research. He is a former associate editor of the
IEEE Transactions on Circuits and Systems, an associate editor of
the IEEE Transactions on Signal Processing, an editor of the Journal
of VLSI Signal Processivg, an associate editor of the IEEE Transac-
tions on Circuits and Systems--Part II, and is a senior member of
IEEE and a member of the Eta Kappu Nu.
parhi @ee.umn.edu

