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Abstract.  Digital signal processing algorithms are repetitive in nature. These algorithms are described by 
iterative data-flow graphs where nodes represent computations and edges represent communications. For all data- 
flow graphs, there exists a fundamental lower bound on the iteration period referred to as the iteration bound. 
Determining the iteration bound for signal processing algorithms described by iterative data-flow graphs is an 
important problem. In this paper we review two existing algorithms for determination of the iteration bound. 
Then we propose another novel method based on the minimum cycle mean algorithm to determine the iteration 
bound with a lower polynomial time complexity than the two existing techniques. It is convenient to represent 
many multi-rate signal processing algorithms by multi-rate data-flow graphs. The iteration bound of a multi-rate 
data-flow graph (MRDFG) can be determined by considering the single-rate data-flow graph (SRDFG) equivalent 
of the MRDFG. However, the equivalent single-rate data-flow graph contains many redundant nodes and edges. 
The iteration bound of the MRDFG can be determined faster if these redundancies in the equivalent SRDFG are 
first removed. A previous approach has considered elimination of edge redundancy. In this paper we present an 
approach to eliminate node redundancy in the MRDFG. We combine elimination of node and edge redundancies 
to propose a novel algorithm for faster determination of the iteration bound of the MRDFG. 

1 I n t r o d u c t i o n  

Digital signal processing algorithms are repetitive in 
nature. These algorithms are described by iterative 
data-flow graphs (DFGs) where nodes represent tasks 
and edges represent communication [ 1], [2]. Execution 
of all nodes of the DFG once completes an iteration. 
Successive iterations of any node are executed with a 
time displacement referred to as the iteration period. 
For all recursive signal processing algorithms, there 
exists an inherent fundamental lower bound on the it- 
eration period referred to as the iteration period bound 
or simply the iteration bound [3]-[5]. This bound is 
fundamental to an algorithm and is independent of the 
implementation architecture. In other words, it is im- 
possible to achieve an iteration period less than the 
bound even when infinite processors are available to 
execute the recursive algorithm. 

Determination of the iteration bound of the data-flow 
graph is an important problem. First it discourages the 
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designer to attempt to design an architecture with an 
iteration period less than the iteration bound. Second, 
the iteration bound needs to be determined in rate- 
optimal scheduling of iterative data-flow graphs. A 
schedule is said to be rate-optimal if the iteration pe- 
riod is same as the iteration bound, i.e., the schedule 
achieves the highest possible rate of operation of the 
algorithm. 

The iteration bound determination may have to be 
performed repeatedly in the scheduling phase of high- 
level synthesis. In resource-constrained scheduling, 
a given processing algorithm is scheduled to achieve 
the minimum iteration period using the given hardware 
resources. In order to execute operations of the pro- 
cessing algorithm in parallel, the required number of 
processors or functional units required to execute the 
operations in parallel may be larger than the number of 
available resources. In that case, we must give the order 
of executions, or the precedence, to these operations to 
reduce the parallelism. Generally the precedence to 
be assigned is not unique. Hence the iteration bound 
should be determined for every possible precedence 
to check which precedence leads to the final sched- 
ule with the minimum iteration period. Consequently, 
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the iteration bound may have to be computed many 
times and hence it is important to determine the itera- 
tion bound in minimum possible time. 

Two algorithms have been recently proposed to de- 
termine the iteration bound. A method based on 
the negative cycle detection was reported in [6] to 
determine the iteration bound with polynomial time 
complexity with respect to the number of nodes in 
the processing algorithm. Another method based on 
the first-order longest path matrix was proposed in [7] 
to determine the lower bound with polynomial time 
complexity with respect to the number of delays in 
the processing algorithm. In this paper, based on [8], 
we propose yet another method based on the minimum 
cycle mean algorithm [9] to determine the iteration 
bound with lower polynomial time complexity than in 
[6] and [7]. 

Several multi-rate signal processing algorithms can 
be conveniently represented by multi-rate data-flow 
graphs [2]. To balance production and consumption 
of data on communicating edges between computa- 
tions, the nodes of the multi-rate data-flow graph need 
to be executed different number of times in any iter- 
ation of the MRDFG. Sufficient theory to determine 
how many times a node in the MRDFG needs to be 
executed in an iteration has been developed in [2]. All 
MRDFGs can be expanded to equivalent uniform or 
single-rate DFGs (SRDFGs). Thus, the iteration bound 
of the MRDFG can be determined by considering the 
equivalent SRDFG. However, the equivalent SRDFG 
contains many redundancies with respect to nodes and 
edges. The iteration bound of the MRDFG can be 
determined faster if these redundancies are first elim- 
inated. An approach to determine the iteration bound 
by eliminating the edge degeneracy has been proposed 
in [10]. In this paper we propose an approach to elim- 
inate node redundancies. Then we present an algo- 
rithm to determine the iteration bound in the MRDFGs 
in a faster manner by eliminating both edge and node 
redundancies. 

This paper is organized as follows. In Section 2, 
the iteration bound is defined. The two existing algo- 
rithms to determine the iteration bound are reviewed 
in Section 3. Section 4 presents our new algorithm to 
determine the iteration bound based on the minimum 
cycle-mean algorithm. The multi-rate DFG model is 
reviewed in Section 5 and an algorithm to determine the 
iteration bound in MRDFGs is introduced in Section 
6. The execution times of existing and proposed algo- 
rithms to determine the iteration bound are compared 
in Section 7 for a few benchmark algorithms. 

2 Data-Flow Graph and the Iteration Bound 

A data-flow graph (DFG) is denoted as G = 
(N, E, q, d) where N is the set of nodes, E is the set 
of directed edges, q is the set of execution times of the 
nodes, and d is the set of delay counts associated with 
the edges. A directed path in a DFG contains a series 
of connected edges. If the start node and the end node 
of a directed path are identical and no node except the 
start node appears more than once in the path, the di- 
rected path is called a cycle (also often referred to as 
a loop). Let C denote the set of all cycles of the DFG 
and Nc be the set of nodes which belong to the cycle c. 
The computation time of a cycle is defined as the sum 
of computation times of the nodes in the cycle. The 
delay count of a cycle is defined as the sum of delay 
counts of the edges of the cycle. Let Mc and Dc denote 
the computation time and the delay count of cycle c, 
respectively. These are calculated as 

= E q(i), Mc 
iENc 

(1) 

d(e). (2) Dc 
eEc 

Let T denote the iteration period of the DFG. The 
DFG receives new data samples every T units of time 
and the computation of each node is executed repeti- 
tively and periodically every T units of time. Smaller 
iteration period implies faster processing. However, 
there exists a lower bound on the iteration period. It 
depends on the computation time of nodes which be- 
long to cycles and the data dependencies among them. 
For each cycle c, Mc must be smaller than or equal 
to DcT since all the computations of the nodes in c 
must be completed within DcT units of time. There- 
fore, there exists a lower bound on the iteration period 
T due to cycle c. It is called the cycle bound and the 
cycle bound Tc is calculated as 

Mc 
~rc = O---~" (3) 

The lower bound on the iteration period is the maxi- 
mum of the cycle bounds. This is referred to as the 
iteration bound, Ti, and is calculated as 

M~ 
T / =  max T~ = max . (4) 

c~C c~C Dc 

A critical cycle is defined as the cycle c whose cycle 
bound equals the iteration bound. 

We assume that the DFG is a strongly connected 
graph. A strongly connected graph is a graph such 



that there exists a directed path between any pair of 
nodes. If the DFG is not strongly connected, we can 
derive strongly connected components with the com- 
putational complexity O(INI + IEI) [11], where INI 
and I EI are the number of nodes and the number of 
edges, respectively, and determine the iteration bound 
for each component. Then, the maximum of these it- 
eration bounds is the iteration bound of the DFG. 

3 Previous Work  on Iteration Bound 
Determinat ion  

In this section, two previously proposed methods of 
determination of the iteration bound for a given DFG 
are reviewed. 

3.1 The Negative Cycle Detection Method 

An algorithm to determine the iteration bound based 
on the negative cycle detection method [12] has been 
recently proposed in [6], [10]. A negative cycle is a 
cycle where the sum of weights of edges on the cycle 
is negative. 

Given the DFG, G = (N, E, q, d), and the guess 
value of the iteration bound To, an edge-weighted di- 
graph G = (N, E, w) is constructed. The node set 
and the edge set of G are exactly the same as N and 
E, respectively, and the weight w(e) of edge e = 
(u, o)(~ E) is given by w(e) = d(e)To - q(u). A 
shortest path algorithm can be executed on this graph 
to check presence of any negative cycle. We can use 
the well-known shortest path algorithm such as Floyd 
method which requires the time complexity O(IN[ 3) 
or Bellman-Ford method which requires the time com- 
plexity O(INIIEI) in the case when IEI is smaller than 
INI 2. 

If the shortest path algorithm terminates without 
finding a solution, then there exists a negative cycle 
c where 

w(e) = DcTo - Mc < 0. (5) 
e E c  

It means that the guess iteration bound To is smaller 
than the cycle bound Tc = Mc/Dc and therefore than 
the true iteration bound T/. On the other hand, if the 
shortest path algorithm terminates with a solution, then 
To is greater than or equal to T/. 

Thus, we increase the guess iteration period To if 
a negative cycle is detected or decrease it otherwise 
and re-evaluate the weight of edges of G and repeat the 
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shortest path algorithm. By using a binary-search tech- 
nique to determine the amount by which To is increased 
or decreased, the above procedure terminates with the 
result To = T/after O(log INI) repetitions [12]. 

Therefore, the overall time complexity to deter- 
mine the iteration bound is O(INI 3 log INI) [6] or 
O(INIIEI log IN I). (However, it is claimed in [ 10] that 
O(IEI) = O(INI) in ordinary DFGs and therefore the 
time complexity is O(INI 2 log INI).) The memory re- 
quirement is O(INI 2) when Floyd method is used, or 
C9(INI + IEI) when Bellman-Ford method is used as 
the shortest path algorithm. 

3.2 The Longest Path Matrix Method 

Another technique to determine the iteration bound of 
the given DFG by using the first-order longest path 
matrix was proposed in [7]. 

From the DFG G = (N, E, q, d), an edge-weighted 
digraph Gd = (D, Ed, w) is constructed. Figure 1 
illustrates an original DFG and the constructed graph 
corresponding to the DFG. 

D is the set of nodes which is a delay in the original 
graph G. Therefore, a delay in the graph G corre- 
sponds to a node in the graph Ga. If a directed path in 
G consists of edges with no delay except the first and 
last edges, an edge spanning a pair of nodes in D cor- 
responding to these two delays is included in the edge 
set Ed. There is such a directed path (k, h), (h, i), (i, l) 
in Fig. l(a) and an edge (8, ~6) is included in Ed, since 
8 and ~ are delays on the first edge (k, h) and the last 
edge (i, l), respectively. 

We define path length in this paper as the sum of 
computation time of the intermediate nodes on the path. 
The length of the path stated above is the sum of com- 
putation time of the nodes h and i. The weight of the 
edge e ~ Ed, w(e), is equal to the length of the path 
corresponding to the edge e. In Fig. 1 (a), there is a path 
from the delay labeled as o~ to itself, with the interme- 
diate nodes j and h. The weight w(ot, or) is the sum 
of computation times of j and h, i.e., 3. In this case, 
the edge forms a self cycle as shown in Fig. l(b). In 
general, multiple paths may exist between two delays. 
In that case, the weight of the edge is set to the longest 
path length among these paths. For example, between 
delays labeled as t~ and 8 in Fig. l(a), there are two di- 
rected paths which go through nodes j ,  m, k and j ,  l, m, 
k. The lengths of these paths are 5 and 6, respectively. 
Thus, the weight w(t~, 8) is set to 6. 

If more than one delay elements exist on an edge in 
G, then more than one node is included in the node 
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Fig. 1. 

T"' 

G=(N,E,q,d) 

N={h,i,j,k,l,m} 

Gd=(D,Ed, w) 

D=(a,[J,T,8) 
Gd=(D,Ed, ffO 

D=(a,~,T,8) 

(a) (b) (c) 

The DFG G and the corresponding edge-weighted digraph Gd. In parenthesis in G are the computation times of nodes. 

set D. The weight of the edge between the nodes cor- 
responding to these delays is 0 since there exists no 
computation node between these delays. In Fig. 1, 
there are two delays on the edge (i, j )  in G and these 
correspond to the two nodes fl and y in Gd. The edge 
(/5, y') is included in Ea and the weight w(fl, y) is 0. 

The first-order longest path matrix L 1 is a I DI x I D I 
matrix and its element l~j is equal to the weight w(i, j )  
of the edge (i, j )  of Gd or --c~ if such an edge does 
not exist. The e l e m e n t  lik? 1 of the longest path matrix 
of the order k(> 0) is recursively defined as 

l~. +' = max {l]n + 1,kj}. (6) 
nED 

The diagonal element l~. of L k is the longest computa- 
tion time among cycles which contains exactly k nodes 
including the node i. Since a node in Gd represents a 
delay in G, the maximum of l/~ for all i corresponds 
to the longest cycle in G containing exactly k delays. 
Therefore, 

max/l~i 
T = max (7) 

l_<k_<lDI k 

is the largest cycle bound of all the cycles and is the 
iteration bound of the DFG, G. 

From the DFG G = (N, E, q, d), the weighted di- 
graph Gd = (D, Ed, w) and L 1 are constructed in 
O(IDIIEI) computational time. The time complexi- 
ties to compute maxi l~. and L k+I from L k are O(IDI) 
and O(I D 13), respectively. These computations are re- 
peated IDI times for 1 < k < IDI. Hence, the to- 
tal computational complexity is O((IDI + IDI3)IDI -t- 
IDIIEI) = O(IOI 4 -k-IDIIEI) [7]. 

If we construct an edge-weighted digraph Ga = 
(D, Ed, CO) where the weight of an edge e 6 Ed is 
given by Co(e) = To - w(e) where To is a guess iter- 
ation bound, then the technique mentioned in the pre- 
vious section can be used to determine the iteration 
bound. From the DFG G = (N, E, q, d), construct- 
ing Gd = (D, Ed, w) requires the computation time 
of O(IDIIEI) complexity. The computation time to 
determine the iteration bound of Gd by using Gd is 
the complexity of O(IDI 3 log IDI). Hence, the total 
time complexity is O(IOI 3 log IDI + IDIIEI) [7]. The 
memory requirement is O(I N I + I D 12) for calculating 
L 1 and storing L k. 

The methods described in this section would be 
faster than the method based on the negative cycle de- 
tection where the number of delays I Ol is relatively 
smaller than the number of nodes INI and the number 
of edges I E I. 

4 A New Algorithm to Determine 
the Iteration Bound 

In this section, we propose an algorithm to determine 
the iteration bound by using the minimum cycle mean 
algorithm. 

The cycle mean of a cycle c, m(c), is defined as 

Y~'ecc to(e) m(c) - (8) 
Pc 

where w(e) is the weight of the edge e and Pc is the 
number of edges in cycle c. In other words, the cycle 
mean of a cycle c is the average weight of the edges 
included in c. 



The minimum cycle mean problem involves the de- 
termination of the minimum cycle mean, 3., of all the 
cycles in the given digraph where 

3. = min m(c). (9) 
C 

An efficient algorithm was proposed in [9] to determine 
the minimum cycle mean for a given graph with time 
complexity O(INIIEI), where N and E are the set of 
nodes and the set of edges of the graph, respectively. 

The number of nodes in a cycle is equal to the number 
of edges of the cycle. According to the definition of the 
g r a p h  G d = ( D , E a , w ), each node in G d corresponds 
to a delay in the DFG, G, and the edge weight w (dl, d2) 
of the edge (dl, dE) e Ed is the largest path length 
among all the paths from the delay dl to the delay d2. 
Therefore, the cycle mean of the cycle Cd, containing 
k nodes, dl, d2 . . . . .  dk, is the maximum cycle bound 
of the cycles of G, which contain the delays labeled 
dl, d2 . . . . .  dk. For example, in the graph shown in 
Fig. 2(a), there are two delays labeled t~ and/3, respec- 
tively. There exist two cycles {(l, k), (k, i), (i, l)} and 
{(l, k), (k, j ) ,  (j ,  i), (i, l)}, both of which go through 
delays ot and ft. Their cycle bounds are 4/2 = 2 and 
6/2 -=- 3, respectively, and the maximum of them is 3. 
Figure 2(b) shows the graph Gd = (D, Ed, w) corre- 
sponding to the graph shown in Fig. 2(a). In Fig. 2(b), 
D = {c~, fl}, w(c~,/3) = 1, and w(fl, or) = 5. There 
exists one cycle {(or,/3), (fl, c0} and its cycle mean is 
3. It equals the maximum cycle bound of the cycles in 
the graph shown in Fig. 2(a), which contain the delays 
ot and/3. 

Since the cycle mean of a cycle c in the graph Gd 
equals the maximum cycle bound of the cycles in G 
which contain the delays in cycle c, the maximum cycle 
mean of the graph Gd equals the maximum cycle bound 
of all the cycles in the graph G. Therefore, the iteration 
bound of the graph G can be obtained as the maximum 
cycle mean of the graph Ga. 

Let Ca denote the set of cycles in graph Gd. Then, 
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the maximum cycle mean of the graph Gd is 

max m(c) = max 
c~Ca cECa Pc 

-- y~e~c(--w(e)) = max 
c~C~ Pc 

= -- min ~ ' s c ( - - w ( e ) )  (10) 
c~C, Pc 

It is the negative of the minimum cycle mean of the 
graph Ga = (D, Ed, (o), where tb(e) = - w ( e )  for 
every edge e e Ed. Consequently, the maximum cy- 
cle mean of the graph Gd, i.e., the iteration bound of 
the graph G, can be obtained as the negative of the 
minimum cycle mean of the graph Ga. 

The algorithm to determine the iteration bound of 
the given graph by means of the minimum cycle mean 
is summarized in Fig. 3. 

From the DFG G = (N, E, q, d), constructing 
Gd = (D, Ed, tO) and Gd = (D, Ed, (0) requires the 
computation time of O(I D II E I) complexity. The time 
complexity to calculate the minimum cycle mean for 
the graph Gd = (D, Ed, ~)  is O(IDIIEdl). Hence, the 
total time complexity to determine the iteration bound 
is O(IDIIEal + IDIIEI). This time complexity is bet- 
ter than the (_9(IDI 3 log IDI + IDllEI) complexity of 
the method described in Section 3.2 since IEal < IDI 2 
and therefore IEal < IDI 2 log IDI always holds. The 
memory requirement for calculating the edge weight 
w and determining the minimum cycle mean for the 
graph Gd are O(INI) and O(IDI2), respectively. The 
total memory requirement is O(I N I + I D 12). 

EXAMPLE. From the given DFG G illustrated in 
Fig. l(a), the edge-weighted digraph a d and Gd are 
constructed as shown in Fig-. l(b) and (c), respec- 
tively. If we choose t~ as s used in the minimum 
cycle mean algorithm, Fk(v), the minimum weight 
of paths consisting of exactly k edges in Ed, and 

Fioi(u)-Fk(o) max0<k<lDl-1 IDI-k are calculated as follows: 

k 
( 1 ) ( " ~  1 Fk(v) 0 1 2 3 4 max P4Cu)- FkCv) 

14 o_<k_<3 4 -- k 

v fl e~ --7 --11 --14 --18 --3.5 
y ~ ~ --7--11-14 --3 

(2 (1) 5 - 6  - 9  -13 -3  

(a) Co) FIDI(v)-Fk(u) 
Then, 3. = minoeomaxo<_k<lOl_ 1 IDI-k = 

Fig. 2. The cycle mean and the cycle bound. --3.5 and the iteration bound of the DFG G is 3.5. 
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Input: 
Output: 
1. 

2. 

. 

D F G  G = (N,  E ,  q, d). 

The iteration bound T/. 

Construct the graph Od ---- (D,  Ed, ~ )  f rom the given DFG G = (N,  E ,  q, d). 
Run the min imum cycle mean algorithm on Gd- 

Minimum cycle mean algorithm 

2.0 Choose one node s E D arbitrarily. 

2.1 Calculate the minimum weight Fk(v) of  an edge progression 
of  length k f rom s to v as 

Fk(v)  = min + ~ ( u , v ) }  for k 1 ,2 , .  IDI f f i  . . ,  

with the initial conditions Fo(s) = 0; Fo(v) ffi c~, v • s. 

2.2 Calculate the min imum cycle mean A of  Gd. 

A ffi min max FIDl(V) -- Fk(v)  
red  0<k<lD[-I [D] - k 

Now, Ti = - A  is the iteration bound of  the DFG G. 

Fig. 3. The algorithm to determine the iteration bound. 

The reader may confirm that the critical cycle 
is {(h, j ) ,  (j, l), (l, m), (m, k), (k, h)} and its cycle 
bound, that is the iteration bound of the DFG, is 
3.5 since the sum of computation times of nodes 
h, j ,  l, m, k is 7, the critical cycle contains 2 delays 
labeled as ot and 8, and 7/2 = 3.5. 

5 Multi-Rate Data-Flow Graph 

While every node in a single rate data-flow graph 
(SRDFG) is invoked once in an iteration of the execu- 
tion, nodes in a multi-rate data-flow graph (MRDFG) 
are invoked more than once in an iteration. More- 
over, different nodes may be invoked for a different 
number of times in an iteration. In other words, one 
node is invoked at a different rate from another node 
in MRDFGs. The definition of the edge in MRDFGs 
also differs from that in SRDFGs. 

An MRDFG can be expanded into the equivalent 
SRDFG [1]. The 'equivalence' means that theMRDFG 
and its expanded SRDFG express identical signal pro- 
cessing algorithm. In this section we describe a method 
to expand an MRDFG into its equivalent SRDFG which 
is similar to unfolding an SRDFG [5]. 

5.1 The Number of  Invocations of  Node 

In SRDFGs, it is assumed that one invocation of a node 
consumes one data from every incoming edge and pro- 
duces one data on every outgoing edge. Therefore, the 

number of invocations of each node is one in an itera- 
tion. In MRDFGs, on the other hand, one invocation 
of a node can consume one or more data from each in- 
coming edge and produce one or more data onto each 
outgoing edge. Let Ouo and luv denote the number of 
data produced onto the edge (u, v) by an invocation 
of the node u and the number of data consumed from 
the edge (u, v) by an invocation of the node v, respec- 
tively. They are written near the head and tail of the 
edge of the MRDFG as shown in Fig. 4(a). For exam- 
ple, 4 data samples are produced onto the edge (a, b) 
in every invocation of the node a and 3 data samples 
are consumed from the edge (a, b) in every invoca- 
tion of the node b. In the case where Ouo and Iuv are 
different for the directed edge (u, v), the node u must 
be invoked different number of times than the node v 
so that the total number of data produced by the in- 
vocations of u and the total number of data consumed 
by the invocations of v balance within each iteration. 
Let ku denote the number of invocations of the node 
u in an iteration. Then, k, and ko must satisfy that 
O,o * ku = Iuo * ko. These relations must be satis- 
fied for every edge in the MRDFG. For example, in the 
MRDFG shown in Fig. 4(a), there are four edges. The 
number of invocations ka, kb, and kc must satisfy the 
following indeterminate equations: 

4ka = 3kb (12) 

kb = 2kc (13) 

3kc = 2k~ (14) 

kc = kc. (15) 
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Fig. 4. 

(a) 

An MRDFG and its equivalent SRDFG. 

0a) 

By solving the set of equations with a constraint that 
at least two of the numbers of invocations are coprime 
to each other, the minimum balanced numbers of in- 
vocations are 3, 4, and 2 for the nodes a, b, and c, 
respectively. 

5.2 Edges in the Equivalent Single-Rate DFG 

The equivalent SRDFG contains ku nodes which are 
the ku copies of node u of the MRDFG. Since every 
node is executed once in an iteration of the SRDFG, 
the total number of executions of the copies of node u 
in an iteration of the equivalent SRDFG is the same as 
the number of executions of node u in an iteration of 
the MRDFG. 

Edges are also copied in the equivalent SRDFG. 
Each invocation of the node u produces O,~ data on 
the edge (u, v) in the MRDFG. It can be emulated in 
the SRDFG by appending O,o copies of the edge (u, o) 
outgoing from each copy of the node u. Since the ex- 
ecution of a copy of the node u produces one data on 
every outgoing edge, the number of data produced by 
the execution is O,,o. Similarly, I,,~ copies of the edge 
(u, v) are incoming to each copy of the node v and total 
number of data consumed by the execution of a copy 
of the node v is Iuo. There are koluo(= k~ Our) copies 
of the edge (u, v). 

To simplify notation, in the remainder of this paper, 
let x \y  and x %y denote [ xj and x -  L x] y, respectively, 

Y Y 
where [z] is the largest integer less than or equal to z 
and x % y  is x modulo y. 

Let u k (k = 0, 1 . . . . .  k,, - 1) denote the node in the 
equivalent SRDFG, which corresponds to the kth invo- 
cation of the node u of the MRDFG. Since O~o edges 

are outgoing from the node U k, U k Can be regarded as 
having Our output terminals for the edge (u, v). Sim- 
ilarly, the node v k can be regarded as having luv input 
terminals for the edge (u, v). There are Ouvku output 
terminals on k,, nodes u ~ u I . . . . .  u ku-I and Iuokv(= 
Ouvku) input terminals on ko nodes v ~ v 1 . . . . .  v k~-I . 
Then, the ith (i = 0, 1 . . . . .  Ouvk, - 1) copy of the 
edge connects the ith output terminal of the copies of 
the node u (it is the (i%Ou~)th terminal of the node 
u i\~ and the ith input terminal of the copies of the 
node v (it is the (i%Iuo)th terminal of the node v i\tu~ 
if there is no delay on the edge (u, v). 

The delay on an edge in an SRDFG implies the 
inter-iteration data dependency, where the computa- 
tion of the current iteration depends on the data gen- 
erated in the previous iteration. On the other hand, 
in the MRDFG, the delay on an edge does not imply 
the inter-iteration data dependency. It is the offset be- 
tween the output terminal and t.he input terminal con- 
nected by a copy of the edge in the equivalent SRDFG. 
If  the number of delays on the edge (u, v) is W in the 
MRDFG, the ith copy of the edge connects the ith out- 
put terminal of the copies ofu with the (i + W)th input 
terminal of the copies of v. Therefore, the ith copy 
of the edge (u, v) is outgoing from the node u i\~ 
and incoming to the node v (i+vc~\t"~. In the case that 
(i + W)\ Iuv  > kv, the edge is incoming to the node 
v ~i+W)xt~)~~ and ( ( i+W) \ l~v )kk~  = ( i+W) \ ( luokv )  
delays are associated with the edge. These delays now 
imply inter-iteration data dependencies since they exist 
in the SRDFG. 

EXAMPLE. Figure 4 shows an MRDFG and its equiv- 
alent SRDFG. The numbers of invocations of node a, 
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b, and c are 3, 4, and 2, respectively. There are 12 
copies of the edge (a, b) since Oab = 4 and ka = 3. 
The edge (a, b) is associated with 3 delays. Therefore, 
the 9th, 10th, and 1 lth copies of the edge, all incoming 
to b ~ are associated with one delay. 

5.3 Constructing the Equivalent SRDFG 

The algorithm to construct the equivalent SRDFG for 
a given MRDFG is summarized in Fig. 5. In Fig. 5, 
Nm and Em are the set of nodes and the set of edges, 
respectively, of the MRDFG. qm (u) is the computation 
time of node u ~ Nm and dm (u, v) is the number of 
delays associated with the edge (u, v) e Era. Similarly, 
N~. and Es are the set of nodes and the set of edges, 
respectively, of the equivalent SRDFG. qs(u) is the 
computation time of node u ~ Ns and ds(u, v) is the 
number of delays associated with the edge (u, v) 
Es. 

Construction of the equivalent SRDFG requires the 
computations of O(INm Ik) complexity for generating 
Ns and O(IE,,, Ik) complexity for generating Es where 
k is the average of k,, for all u ~ Nm. The total compu- 
tational complexity to construct the equivalent SRDFG 
is O((INml + [Eml)k). 

Input: MRDFG Gm -- (Arm, Era, qm, din) 
Output: SRDFG Gs = (Ns, Es, qs, ds) 
N, -- t3, Es -- 0 ;  

Calculate k,, for  all u E Nm; 

for a l l u  E N m d o  

for k = 0 t o k ~ , -  l d o  
Include u k into N~; 

qs(u k) ~-- am(U) 
enddo 

enddo 
for all (u, v) E Em do 

W ~ d~(u, v). 
for i ffi 0 to O~vku -- 1 do 

Include (u  i \O' '  , v ((i+w)\I'U)%k'~ ) into Es; 
ds(ui\O~, v((i+w)\I,,~)~k.) r 

(i + W)\(I~,,k, ,)  
enddo 

enddo 

Fig. 5. An algorithm to construct the equivalent SRDFG. 

6 The Iteration Bound of Multi-Rate DFG 

The iteration bound of an MRDFG is identical to the it- 
eration bound of the equivalent SRDFG since these ex- 
press the identical signal processing algorithm. Hence, 
the iteration bound of the MRDFG can be determined 
by determining the iteration bound of the equivalent 
SRDFG. From the viewpoint of determining the itera- 
tion bound, however, the equivalent SRDFG is redun- 
dant in the number of edges and the number of nodes 
in some cases. This kind of redundancy immediately 
worsens the computation time to determine the itera- 
tion bound since it depends on the number of nodes and 
the number of edges. The computation time to deter- 
mine the iteration bound of the equivalent SRDFG may 
be improved by eliminating these redundancies. In this 
section, the technique to eliminate the edge redundancy 
of the equivalent SRDFG is discussed. Then, we pro- 
pose a technique to eliminate the node redundancy of 
the equivalent SRDFG. 

6.1 Edge Degeneration 

One of the redundancy is the existence of parallel edges 
in the equivalent SRDFG. ff we remove all the parallel 
edges except one edge with the least delays, a simple 
DFG is obtained. Let this edge removal procedure be 
called edge degeneration. Although the edge degenera- 
tion alters the signal processing algorithm, the iteration 
bound is not changed before and after the edge degen- 
eration. Figure 6(a) and (b) show a SRDFG equivalent 
of the MRDFG in Fig. 4(a) and the edge-degenerated 
SRDFG, respectively. For example, there are three 
edges from the node a 2 to the node b ~ in the equiva- 
lent SRDFG. These edges are degenerated into a single 
edge from a 2 to b ~ as shown in Fig. 6(b). 

O,,~ edges outgoing from the node U k a r e  input to the 
(Ouvu k + W)th to (Ouk(U k + 1) -- 1 + W)th termi- 
nals where W is the number of delays associated with 
the edge (u, v). The edges incoming to the same node 
v j are degenerated into a single edge. Therefore, there 
exist the degenerated edges outgoing from u k and in- 
coming to vJ~~ j = ((Ouou k + W)\Iuu), ((Ouou k + 
W)\I~o) + 1 . . . . .  (Ouo(u k + 1) - 1 + W)\Iuo, with 
j \ko delays for each j .  The algorithm to construct 
the edge-degenerated SRDFG directly from the given 
MRDFG is summarized in Fig. 7. The time complexity 
of the algorithm is O((INml + [Eml)k) where k is the 
average of ku for all u ~ Nm. The edge degeneration 
technique was also reported in [10] 1. 



Minimum Iteration Period of an Algorithm 237 

(a) (b) (c) 

Fig. 6. Degeneration of the equivalent SRDFG. (a) The equivalent SRDFG. (b) The edge-degenerated equivalent SRDFG. (c) The node- 
degenerated equivalent SRDFG. 

Input: M R D F G  Gm = (Nm, E ~ ,  q~, din) 

Output: the edge-degenerated SRDFG 

Gs = (N~, E , ,  qs, ds) 

N8 -- 0 ,  E8 = 0 ;  
Calculate k~, for  all u 6 Nm; 
for all u E N ~  do 

for k ffi 0 t o k , , -  1 do 
Include u j' into _hrs. 
q,(u k) , -  q~Cu). 

enddo 
enddo 
for all (u, v) E E ~  do 

W ,-- din(u, v). 
for k ~ O t o k ~ -  1 do 

for j .. (O,,,k + W)\I , ,~ to 
(O,~,,(k + 1) - 1 + W)\I, , , ,  do 

Include (u k, v j~t'~) into E~; 
ds(u k, v j~k') ",- j \ k v  

enddo 
enddo 

enddo 

Fig. Z An algorithm to construct the edge-degenerated equivalent 
SRDFG. 

6.2 Node Degeneration 

Another redundancy in the equivalent SRDFG is the ex- 
istence of nodes which could be degenerated into one 
node without altering the iteration bound. For example 

in edge-degenerated SRDFG illustrated in Fig. 6(b), the 
edges outgoing from the nodes b ~ and b I are incoming 
to an identical node c I and these edges are the only 
edges outgoing from b ~ and b I . In this case, as shown 
in Fig. 6(c), we can merge b ~ and b I into a single node 
/~0 with the computation time identical to b ~ (also iden- 
tical to bl). Such a node/70 is called the degenerated 
node. The edges connected to either b ~ or b I in the orig- 
inal SRDFG are connected to the degenerated node/~o 
without changing the number of delays on these edges. 
Furthermore, newly introduced parallel edges in the 
SRDFG are also degenerated. This procedure is called 
node degeneration. 

The node degeneration is carried out such that the 
iteration bound of the node-degenerated SRDFG is 
identical to that of the original SRDFG. The node de- 
generation is proper if the iteration bound is unchanged 
before and after the node degeneration. The node de- 
generation is proper in the case.that either the conver- 
gence condition or the divergence condition is satisfied. 
These conditions are defined as follows: 

�9 Convergence condition (Fig. 8(a)) 

- -  The nodes to be degenerated into one degener- 
ated node are the copies of a node of the MRDFG. 

- -  The nodes have outgoing edges which are incom- 
ing to an identical node and are the only edges 
outgoing from these nodes. 

- -  The number of delays on the outgoing edges are 
the same. 

�9 Divergence condition (Fig. 9(a)) 

- -  The nodes to be degenerated into one degener- 
ated node are the copies of a node of the MRDFG. 
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(a) 

dD Q 

Co) 

Fig. 8. The node degeneration with the convergence condition. 
(a) Convergence condition for node u k. (b) The node degeneration 
for node u k. 

Fig. 9(a) is degenerated as illustrated in Fig. 9(b). For 
example in the SRDFG shown in Fig. 6(b), the nodes 
b ~ and b I are the copies of  the node b of  the MRDFG 
shown in Fig. 4(a), and all of  their outgoing edges are 
incoming to the identical node c I . Therefore, the con- 
vergence condition is satisfied and degenerating b ~ and 
b I into a degenerated node/~o is a proper node degener- 
ation. The legitimacy of  the proper node degeneration 
is ensured by the following theorem. 

THEOREM. The iteration bound o f  the properly node- 
degenerated SRDFG is the same as the original 
SRDFG. 

dD 

dD 

(a) 

Q dD = ~  

(b) 

Fig. 9. The node degeneration with the divergence condition. 
(a) Divergence condition for node u k. (b) The node degeneration 
for node u k. 

- -  The nodes have incoming edges which are out- 
going from an identical node and are the only 
edges incoming to these nodes. 

- -  The number of delays on the incoming edges are 
the same. 

By the node degeneration with the convergence con- 
dition, the graph shown in Fig. 8(a) is degenerated as 
illustrated in Fig. 8(b). Similarly, by the node degener- 
ation with the divergence condition, the graph shown in 

PROOF. Suppose a set of  nodes is degenerated into 
a single node. By the condition of  the proper node 
degeneration, all the outgoing edges from these nodes 
must be incoming to an identical node, or all the in- 
coming edges to these nodes must be outgoing from 
an identical node. We prove the theorem for the first 
case only. However, the theorem can be proven for the 
second case similarly. 

Without loss of  generality, we consider that two 
nodes u ~ and u I are degenerated into a single degen- 
erated node t7 ~ as illustrated in Fig. 10. Note that no 
cycle contains the same node more than once. If  a path 
contains both u ~ and u I as intermediate nodes, it must 
contain o twice. Such a path can never be a cycle. 
Therefore, there exists no cycle which contains both 
u ~ and u I in the original SRDFG and merging u ~ and 
u I into a single node t7 ~ does not eliminate any cycle. 

All the edges either incoming to or outgoing from 
u ~ or u 1 in the original SRDFG are substituted by the 
edges either incoming to or outgoing from ~0 in the de- 
generated SRDFG. Therefore, the degenerated SRDFG 
has the same set of cycles as the original SRDFG ex- 
cept that either the edges (x, u ~ and (u ~ v) or the 
edges (x', u 1) and (u 1, v) for any node x and x '  of  a 
cycle are substituted by the edges (x, t7 ~ and (~0, o) or 

(a) (b) 

Fig. 10. Node degeneration. (a) A part of the original SRDFG. (b) The reduced SRDFG with u ~ and u I merged into ~o. 



(x', r ~ and ( r  ~ v), respectively. Since r ~ has the same 
computation time as u ~ (and as u l) and the number of 
delays on (rio, v) is the same as (u ~ v) and (u I , v), the 
maximum cycle bound of the degenerated SRDFG is 
identical to that of  the original SRDFG. [] 

6.3 Algorithm o f  Node Degeneration 

By the node degeneration, the set of  nodes u k (k = 
0, 1 . . . . .  k,, - 1) is degenerated into one or more nodes. 
Let r J  ( j  = 0, I . . . .  ) denote such degenerated nodes. 
The node degeneration is represented by the node de- 
generation function, fu (k) = j ,  which indicates that 
the node u k is degenerated into the node rJ .  

Suppose that node u kt is degenerated into the node 
r j~ and node uk2(k2 > kl) is degenerated into the 
node r h ( j 2  > j l )  by the node-degeneration proce- 
dure mentioned above. Then, node u k3 (k3 > k2) is 
degenerated either into the node r h  or into another 
node r h ( j 3  > j2) by the node-degeneration proce- 
dure. It is important to note that the node u k3 is never 
degenerated into the node r j~ if the node u k2 is not de- 
generated into r j~ . Consequently, the node degenera- 
tion function is monotonically increasing function, i.e., 
f ,  (k) < fu (k + 1) for any node u and 0 < k < k,, - 1. 

Deriving the node degeneration functions which 
lead to a properly node-degenerated SRDFG with the 
least number of  nodes is the main task in the node 
degeneration. 

Determining Node Degeneration Function. The node 
degeneration function for the case of  the convergence 
condition is derived as follows. Deriving the node de- 
generation function for the case of  the divergence con- 
dition can be described in a similar way. 

Suppose that the edge (u, v) with W delays is the 
only outgoing edge from the node u in the MRDFG. 
Furthermore, the nodes u and v are invoked k, times 
and kv times, respectively. Hence, Ouoku = luoko. 
Assume that (Ouok ~ + W)\Iuo = (O,,o(k ~ + 1) - 
1 + W) \ Iuv  for a node u k~ In other words, all the 
edges outgoing from u k~ are incoming to a single node 
v ((~176 Let j = (O,ok ~ + W ) \ l , o .  Thus, 
all the edges outgoing from u k~ are incoming to the 
node v j~~ 

I f ( O , , o ( k +  1) - 1 + W)\I,,o = j for a k (>  k ~  1), 
that is, all the edges outgoing from the node u k are also 
incoming to the node v j~~ then the nodes u k~ and u k 
can be degenerated into the same node. Hence, f ,  (k) 
is set as f,, (k ~ to indicate that the nodes u k~ and u k are 
degenerated into an identical degenerated node fi f.Ck~ 
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On the other hand, if (Ou ~ (k + 1) - 1 + W ) \  lu o ~ j ,  
then u k has an outgoing edge incoming to the node vJ' 
other then vJ. In this case, fu (k) is set as fu (k ~ + 1 to 
indicate that the nodes u k cannot be degenerated into 
the same degenerated node as u k~ 

More generally, the set of  nodes v k may have been 
degenerated. In that case, it is checked whether out- 
going edges are incoming to an identical degenerated 
node. First, k ~ is chosen as the smallest number to sat- 
isfy fo((Ouok ~ + W)\Iuo)  = fo((Ouo(k ~ + 1) - 1 + 
W)\Iuo),  i.e., all the outgoing edges from u k~ are in- 
coming to the degenerated node~ fo(((~ 

Let fv(((O,,ok,  + W)\ luo)%ko)  = j .  I f  fo ( (O,o(k  + 
1 ) -  1 + W)kluo = j for a k  > k ~  1, then let 
fu(k) = fu(k  ~ since all the edges outgoing from u k 
are incoming to fiJ and therefore u k can be degenerated 
into the same degenerated node as u k~ Otherwise, let 
fu (k) = fu (k ~ + 1. 

It must be noted that there can be the case where the 
convergence condition and/or the divergence condition 
is not satisfied for some node u. In that case, node u k is 
degenerated into the node fik for k = 0, 1 . . . . .  ku - 1 
by the node-degeneration procedure and no node de- 
generation is performed. 

The Order of  Deriving Node Degeneration Functions. 
Although the node degeneration function can be de- 
rived for each node independent of  the processing order 
of  the nodes, one order of  the nodes to be processed may 
result in a node-degenerated SRDFG with less nodes 
than another. If  the set of  nodes u k is degenerated 
into the degenerated node r k, more copies of  the edge 
(u, v) may be outgoing from an identical degenerated 
node r k. In that case, the possibility of  degenerating 
the set of nodes v k would be increased and they could 
be degenerated into less number of  degenerated nodes. 

Figure 11 shows an example. Let Fig. 1 l(a) be the 
equivalent SRDFG to be node-degenerated by the di- 
vergence condition. The nodes b ~ and b 1 satisfy the 
divergence condition since all the incoming edges to 
nodes b ~ and b t are outgoing from an identical node a ~ 
and there are no other edges incoming to nodes b ~ and 
b t. By applying the node degeneration procedure on 
the node b, nodes b ~ and b I are degenerated into a sin- 
gle degenerated node/~o as shown in Fig. 1 l(b). Then, 
nodes c o and c I can be degenerated into a single degen- 
erated node ~o since all the incoming edges to nodes 
c o and c I are outgoing from an identical node/~o and 
there are no other edges incoming to nodes c o and c t . 
Hence, the equivalent SRDFG shown in Fig. l l ( a )  is 
node-degenerated into the SRDFG shown in Fig. 1 l(c) 
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(a) 

(b) (d) 

(e) (e) 

Fig. 11. The order of degenerating nodes. (a) An example SRDFG. Degenerating the node b first (b) and then the node c (c) results in 3-node 
degenerated SRDFG. Another order of the node c first (d) and then the node b results in the degenerated SRDFG with more nodes. 

by applying the node degeneration procedure first on 
the node b and then on the node c. 

If the node generation procedure is applied first 
on the node c, on the other hand, no actual node- 
degeneration is performed on the nodes c o and c I 
since the convergence condition is not satisfied for the 
nodes c o and c l. The resultant SRDFG is illustrated 
in Fig. 1 l(d) and is identical to the original equivalent 
SRDFG. Then, applying the node degeneration pro- 
cedure on the node b results in the node-degenerated 
SRDFG shown in Fig. 1 l(e). 

Consequently, applying the node degeneration pro- 
cedure on the node b first and then the node c results in 
the node-degenerated SRDFG with 3 nodes as shown 
in Fig. 1 l(c) and is better than applying the node de- 
generation procedure on the node c first and then the 
node b which leads to the node-degenerated SRDFG 
with 4 nodes as shown in Fig. ll(e).  

One good order is to derive the node degeneration 
function for the ancestor node first in the case of the 
divergence condition. Such an order is achieved by 
the depth first search (DFS) with an appropriate root 
node. Similarly, processing the successor node first 
may be used in the case of the convergence condi- 
tion. This order is also achieved by DFS by assuming 
the directions of edges are reversed. According to the 
discussion above, a node which could be degenerated 
should not be the root node of the DFS so as to derive 
the node-degenerated graph with the least number of 
nodes. Therefore, we choose a node with incoming 
edges outgoing from more than one ancestor nodes for 
the case of the divergence condition and a node with 
outgoing edges incoming to more than one successor 
nodes for the case of the convergence condition. In the 
case there is no such node, we may choose a node with 
the smallest number of invocations for the maximal 
node degeneration. 

Node Degeneration During Expanding the MRDFG. 
Instead of degenerating the equivalent SRDFG, we 
can expand the MRDFG directly into the node- 
degenerated SRDFG by determining and utilizing the 
node degeneration function during the expansion of 
the MRDFG. The overall algorithm to construct the 
node-degenerated and the edge-degenerated equivalent 
SRDFG is summarized in Fig. 12. 

At first, fu(k) = k for every node u as an ini- 
tial proper node degeneration function. It means 
no node degeneration is performed at the beginning. 
DFSconv(u) updates the node degeneration functions 
for the node v if the convergence condition is satisfied 
for an edge (u, v). Similarly, DFSdiv(v) updates the 
node degeneration functions for the node u if the diver- 
gence condition is satisfied for an edge (u, v). After de- 
riving the proper node degeneration functions by these 
DFSs, degenerated nodes and edges between them are 
included into the node set Ns and the edge set E~, re- 
spectively. 

The DFS procedures require time complexity 
O(IEmlk) where k is the average of ku for all u E 
Nm. Including the node fit requires time complexity 
O(INmlk). Including edges between these nodes re- 
quires time complexity of O(I E,, Ik) since O(k) copies 
are included for each edge in Era. Therefore, the total 
time complexity of the algorithm is O(IN,. I k + I E,. I k). 
The memory requirement is O([Nm Ik) for storing the 
node degeneration function fu (k). 

EXAMPLES. By the node degeneration, we can re- 
duce the number of nodes and the number of edges. 
From the SRDFG shown in Fig. 6(b), we can degener- 
ate the node b ~ and b I into one node and the node b 2 
and b 3 into another node. Figure 6(c) shows the maxi- 
mally node-degenerated SRDFG. In this example, the 
number of nodes is reduced from 9 to 7, and the num- 
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Fig. 12. 

Input: MRDFG G.,  - (N , , , , E . ~ , q . , , d , , , )  
Output: the node- and edge-degenerated SRDFG 

G. - ( N o , E o , q o , d , )  
N. - O , E .  - 0 ;  
Calculate ku for all u E N.~; 
for all u E N,= do 

for k - 0 t o k u - l d o  
f~(k) ,-- k 

enddo 
enddo 
/* Node degeneration for the convergence condition */ 
for all u E Nm do 

Label u as 'not processed' 
enddo 
Choose the root node s for the convergence condition; 
call DFSconv(s); 
/* Node degeneration for the divergence condition */ 
for all ~ E N.,  do 

Label u as 'not processed' 
enddo 
Choose the root node s for the divergence condition; 
call DFSdiv(s); 
for all u E Nm do 

for k - O t o  f~,(k, , -  l )do  
Include ~h into N. ;  
qoff?) ~ q. ,(u) 

enddo 
euddo 
for all (u, v) E E,,~ do 

W ~-- d,~ (u, v); 
fO ~__ --1; 
for k - 0 to k~ - 1.~o 

i f  f~(((O,,~(k + I) - 1 + W)\L ,~)%k~)  y fo  then 
fo  ,.._ f~(((Ou~(k + 1) - 1 + W)\ l~ , )%k~);  
j *-- f~( ( (O~,k  + W)\I~)%k~) ;  
W ~ . -  (O~uk + W)\(I=~k~); 
i f fo  _> j then f l  ,_  fo 

else f t *- f ~  + f~(k~ - 1)+ 1; 
f o r t  - j  t o f  t do 

Include (~l~tk), 0/)  into E~ 
d.(,~ y~ck~, ~/) 4-- W~ 
j * - - j +  1; 
i f j  > f~(k~ - I) t h e n j  ~ 0, W ~ +-- W ~ + 1 

enddo 
endif 

enddo 
enddo. 

procedure DFSconv(u) 
for all (u, v) E E,~ do 

if v is labeled as 'processed' Skip to the enddo; 
if (u, v) is not the only incoming edge to v 

then goto desceng 
W *-- d,~(u, v), k ~ *-- 0; 
while f , , (((Iuvk ~ -- W ) \ O , , v ) % k . )  u 

f . ( ( (1 . . (k  ~ + l) - l - W ) \ O , , , ) ~ k u )  do 
k~ +.- k~ 1 

enddo 
jo 4__ f, ,(((i , ,u(k o + I) - 1 - W)\Ouv)%ku);  
k 4-- k~ I; 
while k _< k~ do 

i f  fuC((lu,~(k + 1) - 1 - W)\O. , , )%k , , )  - jo then 

f . (k )  +-- f.Ck ~ 
else 

f~(k)  .-- f~(k ~ + 1, k ~ ,-- k; 
jo ,_. fu ( ( ( Iu . (k  + l) -- 1 -- W)\Ou=)%ku)  

eadif 
k * - - k + l  

enddo 
descent: 

Label v as 'processed'; 
call DFSconv(v) 

euddo. 

procedure DFSdiv(v) 
for all (u, v) E E.,. do 

if v is labeled as 'processed' then Skip to the enddo; 
ff (u, v) is not the only outgoing edge from u then 

then goto descent;, 
W ~-- dr~(u,v), k ~ *-- O; 
while f~(((O,~k ~ + W ) \ I ~ ) % k ~ )  u 

y~(((O~Ck ~ + i) - t + W ) \ l ~ ) % k ~ )  do 
k ~ +-- k ~ + 1 

enddo 
jo ,._ f~(C(O~(kO 4. 1) -- 1 4- W)\Iuv)%kv);  
k * -  k~ 1; 
while k < ku do 

if fe(((O~,,,(k + 1) - I + W)\Iu~)%ku)  . jo  then 

f~(k) . -  f~(k ~ 
else 

fu(k)  4-" fa (k  ~ + I, k ~ *--- k; " 
jo ,_  f~(((ouu(k + l ) -  l + w ) \ I ~ ) % k ~ )  

endif 
k ~ " k + l  

euddo 
descent: 

Label u as 'processed'; 
call DFSdiv(u) 

enddo. 

An algorithm to construct the node-degenerated equivalent SRDFG. 

ber  o f  edges  is r educed  f r o m  16 to 13. T h e  n u m b e r  o f  

de lays  is also r e d u c e d  f rom 4 to 3. 

T h e  n u m b e r  o f  i nvoca t ions  o f  nodes  V, W, X,  Y, 

and  Z in the  M R D F G  i l lus t ra ted  in Fig. 13(a) are 1, 10, 

2, 20, and  20, r espec t ive ly  [13]. The re fo re ,  the  equ iv-  

a len t  S R D F G  cons is t s  o f  53 nodes ,  122 edges ,  and  65 

delays.  T h e  edge  d e g e n e r a t i o n  p r o c e d u r e  c a n n o t  re-  

duce  any  edges  f r o m  this  e q u i v a l e n t  S R D F G  s ince  the re  
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Fig. 13. An example of the node degeneration. (a) The given MRDFG. (b) The node-degenerated equivalent SRDFG. 

exist no parallel edges. However, the node-degenerated 
SRDFG as shown in Fig. 13(b) is constructed by the 
node degeneration procedure. This graph consists of 
only 9 nodes, 18 edges, and 10 delays. 

7 Exper imenta l  Results 

The CPU time to determine the iteration bound for prac- 
tical SRDFGs are compared. We chose the 5th order 
elliptic wave filter (EWF) [14] and the recursive part of 
the 4-level pipelined lattice filter (PLF) [15] as bench- 
marks. EWF which consists of  34 nodes, 56 edges, 
and 7 delays is an SRDFG where the number of  delays, 
I DI, is relatively smaller than the number of nodes, IN I, 
and the number of  edges, IEI. On the other hand, PLF 
which consists of  8 nodes, 10 edges, and 8 delays is an 
SRDFG where IDI is comparable to INI and IEI. 

Table 1 shows the comparison of  time complexity, 
memory requirement, and CPU time to determine each 
iteration bound of  EWF and PLE In this table, NCD is 
the negative cycle detection method by using Bellman- 
Ford shortest path algorithm to detect negative cycles, 
LPM is the longest path matrix method, LPM' is the 
mixture of  LPM and NCD methods by using Floyd 
shortest path algorithm to detect negative cycles, and 
MCM is the minimum cycle mean based method. The 
computation time of  node i, q ( i ) ,  is assumed 1 if node 

i is an addition or 2 if it is a multiplication. All the 
CPU times are measured on a SparcStation 2 and do 
not include the time consumed in reading the DFG 
from a file. 

In NCD and LPM' methods, the calculation of  
the iteration bound is terminated when the difference 
between successive guess iteration bounds becomes 
smaller than 1/[Nl2y 2 where INI is the number of  
nodes in the DFG and y is the longest computation 
time of nodes [6]. While LPM and MCM derive the 
exact iteration bound, NCD and LPM'  derive only an 
approximate iteration bound. Some post-calculations 
may be necessary to identify the exact iteration bound 
from the approximate. 

Table 2 shows CPU times to determine the iteration 
bounds of  the equivalent and node-degenerated SRD- 

Table 2. Iteration bound determination of DFG in Fig. 13. 

CPU [mS] 
Method Equivalent Node-degen. 

NCD 52.7 a 1.45 e 
LPM 4350 b 3.02 b 
LPM t 442 a 4.10 e 
MCM 40.7 b 0.767 b 

aThe obtained iteration bound = 4.0003128. 
hThe obtained iteration bound = 4.0000000. 
eThe obtained iteration bound = 3.9902344. 

Table 1. Comparison of iteration bound determination algorithms. 

CPU [mS] 

Method Time complexity Memory requirement EWF PLF 

NCD O(INIIEI log IN[) O(INI + lED 25.2 a 1.00 c 
LPM O(IDIIEI 4- IDI 4) O(INI 4- IDI 2) 1.92 b 2.97 d 
LPM' O(IDIIEI 4- IDI 3 log IDI) O(INI 4- IDI 2) 3.58 a 6.38 c 
MCM O(IDIIEI + IDIIEal) O(INI + 1912) 0.717 b 0.650 d 

aThe obtained iteration bound = 16.0002594. eThe obtained iteration bound = 1.50439453. 
bThe obtained iteration bound = 16.0000000. dThe obtained iteration bound = 1.50000000. 
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FGs of the MRDFG in Fig. 13(a). All the computation 
time of nodes are assumed to be 1. We can see that the 
node degeneration greatly improves CPU time in any 
iteration bound methods and that our proposed iteration 
bound determination method is the fastest. 

8 Conclusions 

In this paper we proposed a new method to determine 

the iteration bound of SRDFGs. Its time complexity is 
better than the previously reported methods in the case 
where the number of delays is relatively smaller than 
the number of nodes in the SRDFG. If the number of 
delays is much larger than the number of nodes, then 
the NCD method would be the fastest; however, most 
digital signal processing algorithms do not fall into this 
category. 

The node degeneration technique to reduce the num- 
ber of nodes and the number of edges of the equiv- 
alent SRDFG of an MRDFG is also proposed. In 
some cases, node degeneration may not be applica- 
ble. However, if the node-degeneration is applicable, 

then it is shown that the iteration bound of the node- 
degenerated SRDFG can be computed faster than the 
approach where either only edge degeneration or no 

degeneration is applied. 
In rate-optimal scheduling, the iteration bound is 

computed many times. Therefore, the node degenera- 
tion technique would play an important role in speeding 
up the scheduling by minimizing the iteration bound 
determination time. In the case of further combining 
the node degeneration technique into scheduling, care- 
ful attention should be paid since some nodes may have 
been removed from the node-degenerated SRDFG and 
operations of those nodes have to be scheduled as well 

as the nodes in the node-degenerated SRSFG. 
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Note 

1. The technique described in [10] can also eliminate some tran- 
sitive edges and hence derives a reduced SRDFG with the less 
number of edges than the edge-degenerated SRDFG. 
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