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I. Markov State Representation. Considering a control of a stochastic system 
it is desirable to choose such a phase-state that the system evolution in time 
forms a Markov  process. 

Of course it is not  always possible if one is restricted to use a state-space only 
of a certain type (say, a finite dimensional  vector space). And  if it is possible 
then there are many  ways to do so. In [1]-[4] some relevant problems were 
considered. 

Let us consider the situation in a case of Gaussian stat ionary processes. 
Let x ( t ) =  {x~(t)) be an arbitrary family of univariate Gaussian stat ionary 

processes x~(t), - c ¢ < t < ~ ,  Ht(x )  be a linear closure of all variables x~(t), 
H - t  and H '+ be a linear closure correspondingly of all subspaces HS(x),  s < t, 
and HS(x),  s > t, in a Hilbert space of r andom variables with the usual inner 
product  (h l, h2) = Ehlh 2. 

Let P - t ( x )  be the or thogonal  projector onto H - t ( x ) .  The process x( t )  is 
Markovian  if 

P - '  ( x )H '+ ( x )=  H'  (x). ( l )  

Let us say that the Markov  process x( t )  gives a Markov state representation 
for a stat ionary process y( t )  if 

/4' (y) c n '  (x). (2) 

In a case of finite dimensional vector-processes it means that 

y ( t )  = Cx( t )  (2') 

where C is a constant  matrix. 
There is a feeling that for any given y( t )  it must  be in some sense minimal 

process x( t )  provided the Markov state representation. How can we describe 
this minimal Markov  process if it exists? 
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Let us consider a class of all Markov processes x(t) satisfying the condition 
(2) with the same "innovation" as y(t) namely such that 

/4 - '  (x )  = / 4  - '  ( y )  = H - ' .  

and 

H t(y) C_H t(x), H '+ (y)C_H t+(x) 

We have 

(3) 

and so 

Obviously 

Y ( t ) =  { Vth,hEP -°H°+ (y)} (5) 

where Vt, - m  < t < o0, means a family of unitary operators in our Hilbert 
space, generated by equations 

x~( t + s )= ~ x ~ ( s ) ;  - ~ < s,t < ~ .  

H ' ( y ) C _ H - t n n  t+ ( y ) c_n t ( y )  

and the stationary process Y(t) has the same innovation as y(t):  

H - t ( Y ) = H - ' .  

Let us show that Y(t) is a Markov process. 
Indeed for any heH°(Y)  there is ht~H°+(y) such that 

P-°h+ =h, h + - h ± H  -° 

V,(h + - h ) =  V,h + -  V , h ± l - l - '  

H - 0 C _ H - , ,  Vth +_ VthL H o, t>>O. 

(6) 

say 

e - t i l t+ ( y )  c P - t i l t+  (x)  ~- S t (x )  

where P - ' =  P - ' ( x ) =  P - ' ( y ) .  Thus for the Markov process x(t) 

e - i n  t+ (y)C_H' (x) (4) 

where p-tHt+(y) is the subspace "splitting" the future Ht+(y) and the pas~t 
H - t ( y )  of the processy(t ) ,  - 00 < t <  m. 

Let us form a stationary process Y(t), - ~ < t < m, with 

H t ( Y ) = p - t H  t+ (y) 
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We  have 
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e - ° ( V , h + -  Vth)=O, 
e -° (V,h) = e -° ( V,h +) ( r )  

because for t ~ 0 

Thus  

Vth + ~ H  °+ (y )  if h + ~ H  °+ (y).  

p - ° H ° +  ( y ) = H ° ( y ) ,  

p-tt-14t+ (y )=Ht  (y  ) 

what  we needed to prove. 
As a result we obtain the following. 

Theorem 1. There is the Markov process Y( t )  which space H i ( Y )  coincides 
with the minimal subspace splitting the future H t+ (y)  and the past H - t  (y)  of y ( t). 
This process Y( t )  gives the minimal, Markov state representation for y ( t )  in the 
sense that 

H '  ( Y )  c_ H t (x)  (6) 

for any other Markov process x( t )  provided the relation (2). 
Let us find now a condit ion for existence of finite-dimensional Markov  state 

representation. 
Let us consider a finite-dimensional Markov  vector-process x(t).  In  a case of 

discrete time t - -0 ,  + 1 . . . .  we have 

x ( t ) - A x ( t -  1) = ou(t)  (7) 

where A, o are constant  matrices of a proper  size and  u(t) means the corre- 
sponding innovat ion process for the pure non-determinist ic  process. The spectral 
transfer matr ix-funct ion can be found  as 

ep x .=(e iX I -A ) - ' o  (8) 

and  if y ( t ) =  Cx(t)  then % . =  Ce~x u so the spectral densities matrix epe e =q~y..q,y. 
of the process y( t )  must  be a rational funct ion of  z = e ix. 

Similarly in a case of cont inuous time t we have 

dx(  t) - ax(  t) = odu( t) (7') 

and  

dpx u = (iXI - a ) -  'o (8') 
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so ~y, = C~x u and the spectral density fyy = ~yu~u is a rational function of z = iX. 
As well known for a such type of stationary process y(t) there is the explicit 

finite-dimensional Markov state representation. For example the corresponding 
Markov process x(t) can be taken as follows. Let 

and 

t=O, + 1,... 

y(t)= f'_~r eiXtd?yu(e-iX )ddPu(X) 

be a spectral representation of y(t) upon its multi-dimensional innovation 
process u(t) with %u as the maximal (rational) factor in the factorization 

~yu~);*u = fyy 

see [5]. Let 

Q ( z ) =  ~ qkz z' 
k = O  

be a polynomial with a non-degenerated coefficient q0(detqo~O) such that 

%uQ = ~ c j  ~ 
k ~ O  

is also polynomial matrix. Say if ~y. is polynomial itself then one can take Q = I. 
Let us set 

Xo( t)= ~reiXtQ (e-iX )-l  ddPu(X) 

and 

where 

x(t)= (xk( t ) )  

xk( t )=Xo(t-k);  k=O, 1 . . . . .  r - 1  (r=maxm, n) 

Obviously the process x(t) is Markovian because the equation of the type (7) 
holds: 

n - I  

Xo(t ) - qo 1 ~ q~+ lx~(t - 1) = qo lu(t) 
k=O 

xk(t)--Xk_l(t--1)=O; k = l  . . . . .  r - 1  
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f__~e'Xt[~=oCke-iXk 1 Ckxk(t)= Q(e -ix ) dOpe(k) 
k=O 
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f ~_ ~re iAt = d?yu(e-iX)dO~O~)=y(t) 

which gives us the representation (2'). 
One can proceed similarly in a case of continuous time t. 
As an additional result we obtained the following. 

Theorem 2. The minimal subspace splitting the future and the past & finite 
dimensional if and only if the process y(t) has a spectral densities matrix with 
rational components.l 

As well known for univariate process y(t) with the spectral density 

p Z  

(where P~ Q is the outer factor) the minimal splitting subspace is generated by 
functions 

e i x ( t -  k) 

O 

in a case of the discrete time and 

- -  ; k=O . . . . .  r -  1 ( 9 )  

(i~) ke ixt 
Q , k = 0  . . . . .  r - 1  (9') 

for the continuous time where r is a maximal deg:ee of the polynomial P, Q (see, 
for example [6]). 

The explicit description of minimal splitting subspace for multidimensional 
processes with rational spectrum is still it seems an open problem. 

Another open problem is concerning analysis of the Markov state representa- 
tions by means of processes x(t) with different innovations u(t), -oo  < t < oo, 
i.e. such that 

H -1 ( y ) .  

(Note that the innovation type and the richness of the past H - t ( x )  can be 
characterized completely by the inner factor in the corresponding factorization 

ICf. with [6] where similar result was obtained for univariate processes in a quite complicated 
analytical way. 
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II. Innovation Continuity. Let x(t) be a random process on an interval of the 
real line and ~t be a complete o-algebra generated by the variables x(s), s ~< t. 
The o-algebras @, is growing when t is increasing. We consider the question on 
continuity of the 0~ t growth which is quite important for different approaches to 
the stochastic optimal control as well as for the general theory of random 
processes (see for example [7]). 

Let H t = L2(~t) be the subspace of all random variables h, Eh2< ~ ,  measur- 
able with respect to the o-algebra ~t.  It is convenient to treat H, as the subspace 
in the Hilbert space of all random variables h, Eh 2 < ~ ,  with the inner product 
E(hl.h2). Because of the obvious correspondence between ~t and H t we 
consider mainly the family H t treated as a function of t. 

Let us set 

Hi_o= [..J Hs, Ht+o = ~ H. 
$ < t  u > t  

the former one means the closure of all subspaces H s, s < t. We have 

H,_oC_ H, C Hi+ 0 

and it can be a gap between H,_ 0 and H, as well as between H t and H,+ 0. Say it 
occurs if t is a fixed point of discontinuity of the random process x( . ) .  So 
considering conditions for the family H t to be continuous we assume that the 
process x(t) in a metric phase-space R is stochastically continuous: 

l imP ( p( x(s) ,x(  t) ) >1 e) =0 (10) 
S---) t 

for any ~ > 0; here p(x~, x2) means the distance between points x 1, x 2 E R. 
One can verify that under this assumption 

Ht_o=Ht (11) 

Let us remind that a probabilities distribution in a metric space is regular 
namely for any measurable set B 

inf P ( B \ F ) = O  
FC_B 

where inf is over all closed sets F, F C_ B. For any closed set F we have 

inf P ( G \ F ) = O  
GD_F 

where inf is over all open sets G, G D F, with boundaries 6G of zero probability 
P(SG)=O; say one can take the proper 

C=(x:p(x,F)<r), 
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with the boundaries 

6 G C _ ( x : p ( x , F ) = r }  

which are disjoint for different r so P ( 6 G ) =  0 except not more than a countable 
number of r. Thus any event ( x ( t ) ~ B  } can be approximated by a proper event 
{ x ( t ) E G )  with P ( x ( t ) E 3 G } = O .  The event ( x ( t ) ~ G }  itself can be approxi- 
mated by events ( x (s )E G }, s < t. Indeed 

P ( x ( t ) E G ,  x(s)q~G } < e { x ( t ) ~ G ' F }  + e  ( p ( x ( t ) , x ( s ) )  >I ~)--~0 

if we consequently take 

F = { x : p ( x , R ' G ) > E )  

and s ~ t - O ,  e~O. Applying it to the other open set G ' = R . ( G  tO 6G) with the 
same boundary 6G'= 6G we obtain 

e a,x(s)  a ) < e 6%-,0. 

Thus the o-algebra (~, generated by the events { x ( s ) ~ B  }, s < t, coincides with 
the o-algebra ~t-0 generated by the events {x(s)E B }, s < t. 

We apply now the same arguments considering the right-continuity of the 
family H t: 

Hi+o= n r (12) 

Generally this property does not hold even for very smooth process x(t);  
moreover it can be arbitrary type of discontinuity (see for example [8]). 

But it holds for a case of stochastically continuous processes with indepen- 
dent increments (which are more and more usable in martingale approach to the 
stochastic optimal control). Apart of the Wiener process case we don't  know 
where this fact can be found though it looks like one of the classical results of 
the probabilities theory being the direct generalization of the famous 0-1 low. 

Theorem 3. For stochastically continuous process with independent increments 

H i _ o - - H i = H i +  O. 

The proof of the theorem is based on the following 

Lemma. The orthogonal complement 1t. @ H t in H. to the subspace H,, t < u, is 
a linear closure of variables 

where h t E H t and 

h = h,h,, (A 1)"" h,o(A.) (13) 

ht~(A~) = 1~ - E la~, 
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1Ak are indicators of the events 

t0=t<t ,< . - .  <t°<u. 

Indeed the subspace H~ coincides with the linear closure of elements 

h =  1A " ' '  1A E H  t 

(where A k are the events of the type A k =  (X( tk)~Bk};  t I < ' ' "  < t. < t) together 
with elements of the type (13) and the last are obviously orthogonal to the 
subspace H r 

As it was actually shown in the case of stochastically continuous process by 
the proof of the equation (11) any event 

A = ( x ( t l ) - - x ( t ) ~ B )  

can be approximated by the event 

A ' = ( x ( t l ) - x ( t + a ) ~ B  }, 8-->+0, 

and therefore any element h of the type (13) can be approximated by similar 
element h' which is obtained from h by the substitution of the second factor: 

ht,(Al)--~ht,(A' ). 

Thus any element hi+ o from the orthogonal complement Ht+oGHt in H,+ o to 
the subspace H t as an element of the subspace H~O H t can be approximated by 
the linear combination of the proper elements h'. According to the lemma they 
belong to the subspaces H~OHt+ ~ so they are orthogonal to Ht+oC_Ht+~. 
Because the element hi+ o belongs to Ht+ o we conclude that h/+o=0 and thus 
H/+0= H c 
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