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Summary. The course of  evolutionary change in 
DNA sequences has been modeled as a Markov 
process. The Markov process was represented by 
discrete time matrix methods. The parameters of  
the Markov transition matrices were estimated by 
least-squares direct-search optimization of the fit of 
the calculated divergence matrix to that observed 
/'or two aligned sequences. The Markov process cor- 
rected for multiple and parallel substitutions of  bas- 
es at the Same site. The method avoided the incor- 
rect assumption of  all previously described methods 
that the divergence between two present-day se- 
quences is twice the divergence of  either from the 
COmmon and unknown ancestral sequence. The three 
previous methods were shown to be equivalent. The 
present method also avoided the undesirable as- 
SUmptions that sequence compos i t ion  has not  
changed with time and that the substitution rates in 
the two descendant lineages were the same. It per- 
mitted simultaneous estimation of  ancestral se- 
quence COmposition and, if  applicable, of  different 
substitution rates for the two descendant lineages, 
provided the total number of  estimated parameters 
Was less than 16. Properties of  the Markov chain 
Were discussed. It was proved for symmetric sub- 
stitution matrices that all elements of  the equilib- 
rium divergence matrix equal 1/,6, and that the total 
difference in the divergence matrix at epoch k equals 
the total change in the common substitution matrix 
at epoch 2k for all values of  k. It was shown how 
t~ resolve an ambiguity in the assignment of  two 
different Substitution rates to the two descendant 
lineages When four or more similar sequences are 
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available. The method was applied to the divergence 
matrix for codon site 3 for the mouse and rabbit 
beta-globins. This observed divergence matrix was 
significantly asymmetric and required at least two 
different substitution rates. This result could be 
achieved only b~: using different asymmetric sub- 
stitution matrices for the two lineages. 

Key words: Evolutionary change -- Markov pro- 
cess -- Discrete matrix model -- Direct-search op- 
timization -- Substitution matrices -- Equilibrium 
divergence matrix symmetry -- Mouse beta-globin 
-- Rabbit beta-globin 

Introduction 

Zuckerkandl and Pauling (1962) first suggested that 
the evolutionary distance between two protein (or 
DNA) sequences X and Y can be inferred from the 
observed divergence matrix of  counts of the occur- 
rences of  amino acids (bases) ix and jy, 1 -< i~, jy _< 
20 (1 -<- ix, jy --< 4), in corresponding sites in the se- 
quences. They used the raw differences, but pointed 
out that these should be corrected for multiple sub- 
stitutions at the same site. Later (Zuckerkandl and 
Pauling 1965), they showed that in long sequences 
the fraction of unsubstituted elements declines ex- 
ponentially with time. They also discussed at length 
the evidence that the rate of  substitution of  one 
amino acid by another depends on such properties 
of  the two amino acids involved as bulk, charge, 
polarity, and ability to interact with other amino 
acids in the sequence to produce a functioning three- 
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Table 1. Substitution-matrix models 

M o d e l  m T C A G S u m  % 

I T a a a 

C a a a 
A a a a 
G a a a 

II T a b b 
C a b b 
A b b a 
G b b a 

III T a b c 
C a c b 
A b c a 
G c b a 

IV T a b da 
C c dc b 
A b da a 
G dc b c 

V T a b a 
C c c d 
A e a a 
G c f c 

Vl T a b c 
C a d e 
A b d f 
G c e f 

VII T a b b 
C c b b 
A d d a 
G d d c 

VIII T a b 
C c d 
A e f 
G g h 

RM T 25 11 1 1 38 27 
C 5 33 1 0 39 28 
A 3 I 2 4 10 7 
G 5 5 4 40 54 38 

Sum 38 50 8 45 141 
% 27 35 6 32 

SRM T 25 6 2 2 35.25 25 
C 6 33 2 2 43.25 31 
A 2 2 2 6 12.25 9 
G 2 2 6 40 50.25 36 

aI, Jukes and Cantor (1969). II, Kimura (1980). III, Kimura 
(1981). IV, Takahata and Kimura (1981). V, Gojobori et al. 
(1982). VI, Lanave et al. (1984). VII, Blaisdell (present paper). 
VIII, Holmquist (1976). RM, observed rabbit-mouse beta-glo- 
bin divergence matrix. SRM, symmetrized two-parameter rab- 
bit-mouse divergence matrix; correct transversion values are 
2.125. For matrices I-VII each element on the main diagonal 
is 1 minus the sum of the other elements in its row. In matrix 
VIII, each element on the main diagonal is zero and the other 
four unprinted elements are 1 minus the sum of the other ele- 
ments in their respective rows 

d imens iona l  p ro te in  structure.  P re sumab ly ,  a s im-  
ilar var iabi l i ty  o f  rate o f  subs t i tu t ion  wou ld  be f o u n d  
in the base sequences  tha t  genera te  the pro te in  se- 
quences .  

Jukes  and  C a n t o r  (1969) p r o v i d e d  a f o r m u l a  for 
cor rec t ing  the  total  n u m b e r  o f  subs t i tu t ions  in a 
d ivergence  ma t r ix  for  mul t ip le  subs t i tu t ions  at  the 
s a m e  site. T h e y  a s s u m e d  tha t  all k inds  o f  base  sub- 
s t i tu t ions  were equa l ly  likely (Table  1, subs t i tu t ion  
mat r ix  I). T h e y  d id  no t  disclose their  m e t h o d  of  
a r r iv ing  at their  fo rmula .  K i m u r a  (1980)  der ived  
their  f o r m u l a  by  using sys tems  o f  l inear  differential 
equa t i ons  wi th  cons tan t  coefficients as an express ion 
o f  the  M a r k o v  process  (Feller 1968, p. 444).  His  
de r iva t ion  s h o w e d  tha t  their  f o rmu la  depends  on 
a s s u m i n g  tha t  the rates o f  subs t i tu t ion  in the  two 
sequences  are  equal ,  tha t  the difference be tween  the 
two s t rands  is twice the difference o f  each  f r o m  the 
c o m m o n  ances tor ,  a n d  tha t  base  c o m p o s i t i o n  does 
no t  change  wi th  t ime.  He  o b t a i n e d  s imi lar  results 
to theirs  for  a ra te  ma t r ix  (Table  1, ma t r ix  II) hav ing  
one  rate for  t rans i t ions  ( p u r i n e - p u r i n e  o r  pyr imi -  
d i n e - p y r i m i d i n e  subst i tu t ions)  and  a s econd  for 
t r ansvers ions  ( p u r i n e - p y r i m i d i n e  subst i tu t ions) ,  a 
t w o - p a r a m e t e r  mode l .  N o t e  tha t  his rate ma t r ix  is 
symmet r i c ;  t ha t  is, the rate  o f  subs t i tu t ion  o f  base 
i by  base j equals  the  rate o f  subs t i tu t ion  o f  base j 
by  base  i. Th i s  t r e a t m e n t  o f  the  d ive rgence  matr ix  
was  p r o b a b l y  m o t i v a t e d  by  the  o b s e r v a t i o n  o f  Fi tch 
(1980) tha t  in three  be ta-g lobins ,  a m o n g  fourfold  
degenera te  codons ,  even  th i rd -pos i t i on  t ransi t ions  
o u t n u m b e r  t r ansve r s ions  by  2 to  1. 

S imi lar  differential  e q u a t i o n  so lu t ions  have  been 
g iven  for  d ivergence  mat r ices  wi th  three  (K imura  
1981), four  (Takaha t a  and  K i m u r a  1981), and  six 
pa r ame te r s  ( G o j o b o r i  et al. 198 2) (Table  1, matr ices  
I I I ,  IV, and  V, respect ively) .  N o t e  tha t  ma t r i ces  IV 
and  V are no t  symmet r ica l .  These  so lu t ions  are 
c losed algebraic  express ions  the values  o f  whose  pa- 
r amete r s  are d e t e r m i n e d  f r o m  i m p o s i t i o n  on  ob- 
served d ivergence  ma t r i ces  o f  the s t ructures  o f  the 
va r ious  mode l s  g iven  in Tab le  1. T a j i m a  and  Nei 
(1984) recognized  tha t  actual  d ive rgence  matr ices  
m a y  be unl ike any  o f  the res t r ic ted s t ructures  of  
Table  1, mat r ices  I - V ,  a n d  suggested an  ad  hoc  ap- 
p r o x i m a t i o n  tha t  gave fairly g o o d  (er ror  less thaZa 
10%) es t imates  o f  the n u m b e r  o f  subs t i tu t ions  i f  this 
n u m b e r  was  smal l  (less t han  one  per  base on  the 
average).  

L a n a v e  et al. (1984) used the so lu t ions  o f  the 
differential  equa t ions  c o r r e s p o n d i n g  to  the six-pa" 
r ame te r  s y m m e t r i z e d  o b s e r v e d  d ivergence  matr ix  
(Table 1, ma t r ix  VI)  a n d  d e t e r m i n e d  thei r  disper" 
s ion by  M o n t e  Car lo  c o m p u t e r  s imula t ion .  T h i s  
m e t h o d  is the  m o s t  flexible o f  the differential-equa" 
t ion  m e t h o d s  and  m a k e s  fewer  artificial assumP" 
tions.  ( In Tab le  1, mat r ices  I - V I I ,  each e l emen t  o~ 
the m a i n  d iagona l  is 1 m i n u s  the  s u m  o f  the  other 
e lements  in its row.) 

H o l m q u i s t  (197 6) gave  numer i ca l  p rocedures  for 
solving by  genera t ing  func t ions  the M a r k o v  proceSS 



defined by relative substi tut ion rates (eight param- 
eters) at a single base posi t ion (Feller 1968, p. 264). 
In his matrix (Table 1, matr ix  VIII), the elements 
on the main diagonal are zero and the sum of  the 
three rates in each row is 1; that is, the elements in 
matrix VIII are the probabili t ies o f  a muta t ion  con- 
ditioned on  there being a muta t ion  for a given base. 
These solutions give the exact probabilit ies for each 
base substitution for an arbi t rary number  o f  mu- 
tations. When supplemented  wi th  the assumption 
of  a Poisson distr ibution for the number  of  muta-  
tions at a given site, these procedures give the same 
results as those o f L a n a v e  et al. and those o f  Kimura  
et al. when applied to the same model  (Table 2). 

I have approximated  the Markov  process by dis- 
crete t ime matr ix  methods  that permi t  the estima- 
tion of  substi tution rates that  may  be different for 
the two descendant  lineages and the simultaneous 
estimation o f  the ancestral base composi t ion.  This 
is done by minimizing the sum of  squares o f  the 
differences between the predicted and observed di- 
vergence matrices, as in Table  1, matr ix RM. Matrix 
RM is data for the mouse  and rabbi t  beta-globin 
sequences: The first row gives the counts  o f  occur- 
renees o f  T, C, A, and G in the mouse  at sites cor- 
responding to the occurrence o f T  in the rabbit; the 
first column gives the counts  o f  T, C, A, and G in 
the rabbit at sites corresponding to the occurrence 
of  T in the mouse; and similarly for the other  rows 
and columns. This me thod  makes unnecessary the 
aSSumptions c o m m o n  to all the other  methods,  
namely that composi t ion does not  change with time, 
that the rates o f  substi tution for the two lineages are 
equal, and that the present difference between the 
two Sequences is twice the difference between each 
and the c o m m o n  ancestor. In c o m m o n  with the 
other methods,  it does assume that the process of  
evolutionary base substi tution may  be mode led  by 
a Markov process, tha t  the rates o f  substi tut ion are 
the same at all sites in the sequence, and that  the 
rates o f  substi tution are constant  over  t ime (a sta- 
tionary Markov process). More  precisely, since I 
treat the Markov process as a Markov  chain with a 
finite number  o f  states (four for  DNA)  and its de- 
Velopment through successive epochs by matr ix 
multiplication, the assumption o f  constant  proba-  
bility of  substitution per epoch does not  entail that  
e0ochs correspond to constant  intervats o f  time. The 
Unreality of  the assumption that  the rates o f  sub- 
stitution are the same at all sites can be ameliorated,  
as in the example below, by considering only the 
i 'silent' '  codon sites 3, and especially so if  only those 
m Which all four bases in site 3 code for the same 
amino acid are Considered. In particular, I have con- 
sidered in this paper Table  1, matr ix  VII, which 
maintains the distinction between rates o f  transition 
and transversion, and permits  them to be different 
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Table 2 Comparison of Holmquist (1976), Kimura (1980), and 
Lanave et aL (1984) two-parameter solutions, P (transition) = P 
(transversion) 

A 0 1 0 0 
1 0 '/2 �88 

4 % g2 Z 
5 '%, '�88 �88 
6 3342s 3t/t2s '& 

8 ~%,2 ':Z12 '/, 
B O = 637,816 P = 165,499 Q = 98,367 

C -(%)In[(1 - 2P - 203",/1-- 4Q = '& 

D -(3/4)1n[1 - 4(P + 2Q)/3] = 494,657 

E 637,816 165,449 98,367 98,367 
165,449 637,816 98,367 98,367 
98,367 98,367 6 3 7 , 8 1 6  165,449 
98,367 98,367 1 6 5 , 4 4 9  637,816 

472,367 4 7 2 , 3 6 7  606 ,531  1,000,000 
~/. y,, ,/~ o 

o - 1/v2 '/2 '4 

- i/V'5 o - ~  
~/v'7 o -'/~ '4 

(~)l  o + o +('A)(~) +(�89 
+('4X'4) +(%)(V3 + o + 0 
+('/,,XV~) +('/,)('/2) +(V,)('4) + ('/,)('4)I 

= ' A  

F 

G 

H 

606,531 
303,265 
75,816 
12,636 

1,580 
158 
13 
1 
0 

All decimal values have been multiplied by 1,000,000. A, 
Holmquist solution: col. 1, numbers of substitutions per site; col 
2, P (unchanged); col 3, P (transition); col. 4, I/2 P (transversion); 
col. 5, Poisson probability density tbr mean P = t/2. B, Poisson 
averaged values: O, P (unchanged); P, P (transition); Q, thP (trans- 
version). C, Kimura two-parameter solution. D, Jukes and Can- 
tor (1969) one-parameter solution. E, Substitution matrix (17, C, 
A, G arranged as in Table 1, matrix II). F, Eigenvalues of row E 
values. G, Negative of natural logarithms of row F values. H, 
Eigenvectors of row E values. I, Lanave et al. solution (assum- 
ing fraction of each base--1/4): sum[ln(eigenvalue)x ~uare 
(eigenvector values)] = th 

in the forward and backward directions. F ro m  this 
it follows that  the equil ibrium counts o fpyr imid ines  
(or purines) need not  be the same and that the counts  
o f  base i occurring in gene X at sites where base j 
occurs in gene Y need not  be the same as the counts  
of  base j occurring in gene X where base i occurs in 
gene Y. 

Descript ion o f  the Discrete  M a t r i x  
Opt imizat ion  M e t h o d  

Assume the substi tutions in the descent  of  one lin- 
eage f rom the c o m m o n  ancestor  are modeled  by the 
first-order Markov  transi t ion matr ix  S = s(i, j), i, 
j = 1, 2, 3, 4, where s(i, j) is the probabil i ty  that  the 
base at a given site is j at epoch k condi t ioned on 
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its being i at epoch k - 1 and independent  of  its 
values at epochs k = 0, 1,2 . . . . .  k - 2. Then S(k) = 
s(i, j, k) = S(1) k, where s(i, j, k) is the probability 
that the base is j  at epoch k condit ioned on its being 
i at epoch I. Similarly, let T(k) be the transition 
matrix for the second lineage. Then the divergence 
probability matrix for the divergence between the 
two lineages at epoch k is 

D(k) = d(i, j, k) = ~ c(1, 0)s(l, i, k)t(1, j, k) (1) 

where i, j, 1 = 1, 2, 3, 4; k = 1, 2, 3 . . . .  ; c(1, 0) is 
the fraction of  base 1 in the ancestral sequence at 
epoch 0; and d(i, j ,  k) is the fraction at epoch k of  
the number  of  occurrences at the same site in the 
two descendant sequences of  j in the second se- 
quence and i in the first sequence. Note that  the two 
sequences are distinguished so that  d(i, j ,  k) may  not 
equal d~,J(j, i, k). Note also that  ~ d(i, j ,  k ) =  1, so 

i , j  
there are 15 independent  values in D(k). Each of  
the rows of  S and T sums to 1, so there are 12 
independent  values in each, and there are three in- 
dependent  values in ancestral composit ion c, mak- 
ing a total of  27 parameters determining the course 
o f  the evolutionary substitutions. Obviously, 27 pa- 
rameters cannot be est imated unambiguously from 
15 independent  observations. The number  of  esti- 
mable parameters is reduced to 15 or fewer by im- 
posing a reasonable structure on the matrices S and 
T; for example, i f  it is assumed in matrix II of  Table 
1 that the transition rate equals 4a and the trans- 
version rate equals 8b, there are five estimable pa- 
rameters: a, b, and three ancestral compositions, 
e(1, 0), c(2, 0), and c(3, 0). The parameters are es- 
t imated by nonlinear least-squares minimizing of  
the squares o f  the differences between the calculated 
divergence matrix (Eq. 1) and the observed one (e.g., 
Table 1, matrix RM) using the iterative "complex"  
optimization of  Box (1965) to determine a, b, c(1, 0), 
c(2, 0), and c(3, 0). In the use of  Eq. (1), one must  
choose a reasonable number  o f  epochs. From Table 
6 it appears that  16 is large enough to yield agree- 
ment  within 1% with a very large number.  In the 
application in Table 9, I used four epochs to speed 
calculation. 

The optimizer can be given initial values derived 
from the observed divergence matr ix as follows: For 
initial composit ion,  use the average values for the 
two genes in the observed divergence matrix. For  
example, for Table 1, matrix RM, I used (0.28 + 
0.35)/2 = 0.315 for C and similarly for T and A. 
Then G = 1 - (T + C + A). (Here each letter de- 
notes the composit ion fraction of  the corresponding 
base.) For  initial rates, use average values from the 
observed divergence matrix divided by the chosen 
number  of  epochs. For  example, in Table 1, matrices 
II and RM, for the transition rate b I used (1 + 1 + 

1 + 0 + 3 + 1 + 5 + 5)/(141 • 4 x 2) = 0.015071. 
These initial values will be too large, because, for 
example, for transitions the calculation of  the rate 
of  simultaneous occurrence of  T and C ignores the 
possibility that in addit ion to one arising from the 
other, both may  have arisen from a purine (A or 
G). I have also used the simplex method  of  SpendleY 
et al. (1962) and the quadratic method  of  Powell 
(1964), but have found the complex method  gew 
erally to be faster and less prone to failure. These 
are all direct search methods,  because closed expres" 
sions for the elements of  the divergence matrix for 
large epochs k are practically unattainable. The mila- 
imization is nonlinear  because even the elements of 
the square o f  a matrix are second degree in the ele- 
ments o f  the original matrix. The speed and tell- 
ability o f  the optimizations decline rapidly with 
increase in the number  o f  est imated parameters, so 
it is desirable to keep this number  small. GuidanCe 
in the selection o f  a model  is discussed below. 

Comparison of the Three Earlier Methods 

The three earlier solutions, (1) differential equatio~ 
solution in closed form for a specific substitutio~ 
matrix (Kimura 1980), (2) differential equation so" 
lution o f  the symmetr ized observed divergence ma- 
trix (Lanave et al. 1984), and (3) the generating funC" 
tion solution (Holmquist  1976), supplemented witll 
the assumption that  the number  of  substitutions at 
a given site is Poisson distributed, all give the sa~  e 
result for the same model. This is shown in Table 
2 for the two-parameter  model  (Table 1, matrix II), 
Rows A display the generating function solutio0 
(Holmquist  1976). The first column gives the nu~" 
bers o f  mutat ions  per site; the second, the proba" 
bility that the occupant o f  a site is unchanged; the 
third, the probability that  a site shows a transitio0 
substitution; the fourth, hal f  the probability that a 
site shows a transversion substitution; and the fifth, 
the probability mass values for a Poisson distribtV 
tion o f  mean value 1/2. In row B, O is the expectatio9 
that  a site shows no change, and is the inner produCt 
of  the second and fifth columns in rows A. SimilarlY, 
P is the expectation that  a site shows a transitioO 
and Q is half  the expectation that  the site shoWS a 
transversion. Row C shows that application o f  tlar 
closed-form differential equation solution of  IO' 
mura (1980) for the two-parameter  model (Table 1, 
matrix II) recovers the correct rate of  substitutio9 
of  1/2. Row D shows that  the misapplication of  t11r 
closed form for the one-parameter  model  (Table 1, 
matrix I) leads to an underest imation by 1%. Tlae 
calculation o f  the correct value in row C shows that 
the closed-form differential equation solution a 0d 
the generating function solution supplemented wit~ 



Table 3. Comparison of fraction changed and fraction diverged difference for one-parameter solutions 

A B C D E F G H 1 
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t/~6 3,906 3,896 3,906 7,772 7,771 7,791 
t/~28 7,812 7,772 7,812 15,463 15,461 15,501 
~4 15,625 15,463 15,625 30,608 30,604 30,607 30,682 30,925 
~z 31,250 30,608 31,250 59,967 59,959 59,965 60,108 60,575 
~6 62,500 59,967 62,500 1 1 5 , 1 3 9  1 1 5 , 1 2 2  1 1 5 , 1 3 5  1 1 5 , 3 9 8  116,258 
~/B 125,000 115,139 125,000 2 1 2 , 6 0 2  2 1 2 , 5 6 8  2 1 2 , 5 9 3  2 1 3 , 0 3 6  214,494 
J~ 250,000 212,602 250,000 3 6 4 , 9 3 7  3 6 4 , 8 6 6  3 6 4 , 9 2 0  3 6 5 , 5 4 6  367,646 
~/2 500,000 364,937 500,0(30 552,3(32 5 5 2 , 1 5 1  5 5 2 , 2 6 5  5 5 2 , 8 8 0  555,078 
t/t 1 , 0 0 0 , 0 0 0  5 5 2 , 3 0 3  1 ,000 ,000  6 9 7 , 8 8 7  6 9 7 , 5 7 1  6 9 7 , 8 0 8  6 9 8 , 0 5 0  699,352 

All decimal values have been multiplied by 1,000,0(30. A, Rate of substitution; B, decimal equivalents of values in A; C, fraction of 
bases changed; D, Jukes--Cantor one-parameter ca/culation from column C of fraction changed; E, fraction of two diverged sequences 
tha~ differs, calculated from column C using equation of Holmquist (1972) [= 2C - (4/3)C2]; F, discrete time mmrix calculation of 
fraction differing using fraction changed at substilulion rate = t/~6; G, same as F, but substitution rate --- Y6,; H, discrete time matrix 
calculation of fraction differing using substitution rate = 1/2~6; 1, same as H, but substitution rate = t/~4 

the Poisson distr ibution for the number  o f  muta-  
tions give the same result. Rows E through I outline 
the steps o f  the numerical  differential equat ion so- 
lution for the symmetr ized substitution matr ix (rows 
E), which is assumed to be the same as the observ-  
able divergence matr ix  (Lanave et al. 1984). Row F 
gives the eigenvalues o f  the matr ix  in rows E, and 
row G shows the negative natural logarithms o f  the 
row F values. The columns o f  rows H are the ei- 
genvectors corresponding to the eigenvalues. Rows 
I illustrate the calculation o f  the average substi tution 
rate [Eq. (20) in Lanave  et al. (1984)], 

average rate = ~ q(i)[H(i, j)]2G(j) 
ij 

which also recovers the correct  value of  t/2. (Here G 
and H denote values in the corresponding parts o f  
Table 2.) In rows I the columns correspond to base 
indices i --- 1, 2, 3, 4, and  the rows to eigenvalues 
(and eigenvectors) j = 1, 2, 3. There  is no  row for 
J = 4, since G(4) = 0. The  calculation is shown for 
a Value o f  q(i), the fraction o f  base i in the ancestral 
Sequence, equal to 1/4 for all i. However ,  the same 
value would be obtained for an arbi t rary set o f  q(i), 
since these s u m  to 1 by definition and the sum of  
each column in I is the same. This  completes,  for 
the example o f  Table 1, matr ix  II, the demonst ra t ion  
that the three earlier solutions give the same results 
for the same model.  

Demonstration That the Three Earlier Methods Do 
Not Give the Correct Values for the Divergence 
Matrix, Whereas the Discrete Time Method Does 

The three earlier methods  discussed in the preceding 
section give the correct  result only for the evolu- 
t ionary distance between the observed present-day 
Sequence and its inaccessible ancestral sequence. 
When using the present-day divergence between two 

sequences to infer the evolut ionary distance between 
them, all these methods  make the obviously incor- 
rect assumption that the divergence between two 
sequences is twice the divergence of  each f rom their 
c o m m o n  ancestral sequence. It  is clear that  the di- 
vergence between two sequences will on  the average 
be less than twice the divergence o f  each f rom the 
c o m m o n  ancestral sequence, because some o f  the 
net substitutions in the two lineages may be the 
same. The consequences o f  this incorrect  assump- 
t ion are shown in Tables 3 and 4. 

For  ease of  reference, I shall f rom now on call 
the matrix o f  differences between a present-day se- 
quence and its ancestral sequence a substitution ma- 
trix and the matr ix  o f  differences between two pres- 
ent-day sequences a divergence matrix. Holmquis t  
(1972) has given for the one-parameter  model  (Ta- 
ble 1, matr ix  I) a closed expression for calculating 
the fraction in the divergence matr ix  different f rom 
the net  fraction changed in the substitution matrix.  
The  effect o f  this correction is shown in Table  3. 
Columns A and B show the mean values for the 
number  of  substitutions in an assumed Poisson dis- 
tribution. Column C shows the average net  n u m b er  
of  substitutions calculated for the one-parameter  
model  as Table 2, row B, was calculated for the two- 
parameter  model  (see descript ion above). Column 
C shows very  dear ly  the effect of  multiple muta-  
tions. When the number  o f  muta t ions  per site is 
1.00, only 0.55 substitutions will be observed.  Col- 
u m n  D is calculated f rom the observable co lumn  C 
using the closed-form differential equat ion solution 
(Jukes and Cantor  1969) and the correct  numbers  
of  substitutions are recovered; i.e., co lumn D is the 
same as co lumn B. Column E shows the divergence 
values calculated f rom the substi tution values in 
column C using Holmquis t ' s  (1972) correct ion 
expression. The  observed divergence values are 
much  less than twice the substi tution values at the 
higher numbers  o f  substitutions. When the number  
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of  substitutions per site is 0.500, the observed num- 
ber of substitutions is 0.365. Twice this value is 
0.710, but the observed divergence is only 0.552. 
In fact, when the number of  substitutions per site 
is 1.000, the observed substitution number is 0.552, 
and twice this value is 1.104, which is impossible, 
because the observed fraction of  substitutions can- 
not be greater than 1. In fact, as the average number 
of  mutations becomes very large, both the observed 
number of substitutions (column C) and the ob- 
served divergence (column E) approach 3/4. 

Columns F and G compare the discrete time ma- 
trix calculation of  the observed divergence values 
with the generating function values (column E), the 
latter of  which are equal to the closed-form differ- 
ential equation (infinitesimal) values, as shown 
above. Columns F and G are started in the first row 
with the observable average fractions changed taken 
from column C at substitution rates of  1/256 and 
1/64, respectively, and values in lower rows are ob- 
tained by matrix multiplication. The small discrep- 
ancies between the values in F and G and the more 
accurate values in column E are undoubtedly at- 
tributable to accumulation ofround-offerror  during 
the multiple single-precision matrix multiplica- 
tions. The difference between the epoch sizes of  col- 
umns F and G does not seem to be important (see 
also Tables 4 and 5, below). In practice it is desired 
to estimate the true substitution rate (column A) 
from the observed divergence. Columns H and I are 
started with the true rates 1/256 and 1/64. The val- 
ues in columns H and I differ from the more accurate 
values in column E by larger systematic amounts, 
but they extrapolate easily at rate zero to the values 
in column E (data not shown). 

Note that in Table 3, column E, row i, is the same 
as column C, row i + 1, for all i; that is, in this one- 
parameter example, divergence at k equals substi- 
tution at 2k, where k is the epoch, and is not equal 
to twice substitution at k, as is assumed incorrectly 
in the differential equation solutions. This means 
that application of the Jukes-Cantor one-parameter 
formula to the observed divergence matrix gives 
twice the rate of  substitution in each lineage. It may 
be argued that in the inference of an evolutionary 
tree from an observed divergence matrix a factor of  
2 in all evolutionary distances would not alter the 
tree. This is correct for the one-parameter model. 

However, although it is proved below that total 
fraction difference in divergence at k is the same as 
total fraction changed in substitution at 2k for all 
symmetric substitution matrices, in models de- 
pending on more than one parameter, no such sim- 
ple relation holds for the various classes of base 
change. This is shown for the two-parameter tran- 
sition-transversion model in Table 4, columns C 
and D. In Table 4 column A shows the epoch, k. 

Column B shows the substitution probability at ep- 
och 2k, S(2k), calculated by matrix multiplication 
of  the two-parameter model (Table 1, matrix II) 
with the transition probability a = 2/1024 and half 
the transversion probability b = 1/1024, or a total 
probability of change of  1/256. The last row of  Table 
4 shows one result for a total probability of  change 
of  1/64. Columns C and D show, respectively, the 
probabilities at epoch k of  a transition difference 
and of a transversion difference as found in D(k), 
which is calculated from S(k) as described above. 
Column E shows the sum from columns C and D 
of  the probabilities of  a divergence difference at ep- 
och k, which in this symmetric two-parameter mod- 
el is equal als0 to the probability of  substitution at 
epoch 2k. The small discrepancy is undoubtedly at- 
tributable to accumulation ofround-offer ror  during 
the multiple single-precision matrix multiplica- 
tions. In fact, i f  the two values are derived from the 
much larger main diagonal elements of  S(2k) and 
D(k), the discrepancy is less than 1/10,000 in the 
worst case, epoch 256 (data now shown). Column 
F is the probability of  substitution calculated from 
columns C and D by means of  the closed-form dif- 
ferential equation solution (Kimura 1980): 

-~/2 In[(l - 2C - D ) V ' I  - 2D] 

(Here the letters denote the values in the corre- 
sponding columns.) For low numbers of  epochs, the 
values in F are nearly equal to those in B (see their 
ratio in column G), but the error increases to nearly 
three-fold at epoch 256. Also recall that the values 
calculated from the divergence matrix at epoch k, 
which approximate at low k the values in the sub- 
stitution matrix at epoch 2k, are approximately equal 
to twice the values in the substitution matrix at 
epoch k, as found exactly for the one-parameter 
model in Table 3. The values in the last row for a 
substitution probability of 1/64 at epoch 4 are ap- 
proximately equal to the values for a substitution 
probability of 1/256 at epoch 16, which shows that 
the graininess of  the discrete time matrix method is 
of  little moment.  

Properties of the Discrete Time Matrix Solution 

Properties of  the discrete time matrix solution are 
summarized in Table 5. Properties are listed for four 
classes of  solutions according to whether the sub- 
stitution matrices for the two descendant lineages 
are the same or different and whether for each of  
these the substitution matrix is symmetric or asym- 
metric. I call attention to the following features. The 
substitution matrices show that their Markov chains 
are regular, that is, that for large numbers of  epochs 



Table 4. 
model 

75 

Comparison of the discrete time matrix solution with the closed-form differential equation solution for the two-parameter 

A B C D E F G 

Substitution probability = �89 = 0.003906 
1 7,791 3,892 3,900 7,792 7,834 1.0055 
2 15,499 7,731 7,770 15,501 15,668 1.0109 
4 30,667 15,252 15,418 30,671 31,336 1.0218 
8 60,042 29,688 30,362 60,050 62,673 1.0438 

16 115,136 56,272 58,880 115,152 125,347 1.0887 
32 212,115 101,320 110,828 212,148 250,698 1.1819 
64 362,825 165,798 197,098 362,896 501,424 1.3820 

128 547,080 230,706 316,526 547,232 1,003,033 1.8334 
256 691,506 259,066 432,754 691,820 2,008,373 2.9043 

Substitution probability = ~4 = 0.015625 
4 116,003 56,811 59,190 116,001 126,360 1.0893 

Columns A-F have been multiplied by 1,000,000. A, Epoch (k); B, probability of substitution at epoch 2k; C, P (= probability of 
transition divergence difference at epoch k); D, Q (= probability of transversion divergence difference at epoch k); E, (= prob- 
ability of divergence difference at epoch k); F, probability of substitution calculated by Kimura (1980) two-parameter model 
(~ -I/2 In[1 - 2P - Q) x/ l  - 2Q]); G, (value in F)/(value in B) 

Table 5, Properties of the discrete matrix solutions 

Substitution matrices for the two lineages 

Equal Unequal 

Asym- 
Symmetric Asymmetric Symmetric metric 

A 
Equilibrium substitution matrices, 

i , j  = 1, 2, 3, 4, 
cO, e) ~ equilibrium composition 

s(i, j) '/, CO, e) 1/, CO, e) 
t(i, j) 1/4 cO, e) 

B 
Equilibrium divergence matrix d(i, j), 

row sums = 1, 
x(j, e) = equilibrium differences I/4 x(j, e) t/4 x(j, e) 

C 
Equilibrium divergence matrix e(i, j), 

sum of all elements = 1 �88 Sym. �88 Asym. 
D 

Equilibrium substitution composition 
preserved at all epochs k? 

s(i, j) Yes Yes Yes Yes 
t(i, j) Yes Yes 

E 
Ancestral substitution composition 

approaches equilibrium composition? 
s(i, j) Yes Yes Yes Yes 
t(i, j) Yes Yes 

F 
Equilibrium divergence differences 

preserved for all epochs k? Yes No Yes No 
G 

Early divergence differences 
approach equilibrium differences? Yes Yes Yes Yes 

I-I 
Divergence difference at k = 

substitution change at 2k? Yes No Yes No 

k each base  can  be  s u b s t i t u t e d  b y  e v e r y  base  (i.e., 
there  a re  n o  ze ros  in  the  s u b s t i t u t i o n  m a t r i x  for  large  
n u m b e r s  o f  e p o c h s  k). M a r k o v  c h a i n  t h e o r y  p r o v e s  
tha t  for  large  k v a l u e s  t he  s u b s t i t u t i o n  m a t r i x  ap -  
p roaches  an  e q u i l i b r i u m  m a t r i x  in  w h i c h  al l  r ows  
are the  s a m e  a n d  a re  e q u a l  to  the  e q u i l i b r i u m  c o m -  
Pos i t ion  ( rows A)  a n d  t ha t  i f  t he  c h a i n  p roces s  is 

s t a r t e d  a t  the  e q u i l i b r i u m  c o m p o s i t i o n  i t  wil l  s t ay  
a t  i t  ( row D),  b u t  t h a t  i f  i t  is  s t a r t e d  at  a n y  o t h e r  
c o m p o s i t i o n  i t  wi l l  o f  cou r se  a p p r o a c h  the  e q u i l i b -  
r i u m  c o m p o s i t i o n  ( row E). 

K i m u r a  (1980)  n o t e d  t ha t  fo r  t he  t w o - p a r a m e t e r  
so lu t ion ,  a t  e q u i l i b r i u m  P = Q / 2  = 1/4 e v e n  w h e n  the  

t r a n s i t i o n  p r o b a b i l i t y  is  n o t  e q u a l  to  h a l f  t he  t r ans -  
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Table 6. Determination of substitution rate--epoch pairs for the 
two-parameter model 

A B C D E F G 

8 11,559 5 , 814  3 ,853  1 ,938 92,472 35 
12 7,759 3 ,891  3 , 8 8 0  1 ,946 93,108 19 
16 5,839 2 , 924  3 ,893  1 ,949  93,424 50 
24 3,906 1 ,953 3 ,906  1 ,953 93,744 28 
32 2,935 1 ,466 3 ,913  1 ,955 93,920 64 
48 1,960 978 3 ,920  1 ,956  94,080 17 
64 1,471 734 3 ,923  1 ,957 94,144 39 

Columns B-F have been multiplied by 1,000,000; column G, by 
1,000,000,000. A, Epoch. B, Transition rate determined by best 
fit to observed divergence matrix at epoch 24; values for epoch 
24 are correct. C, Same as B for 1/2 x transversion rate. D, Tran- 
sition rate calculated for epoch 24 by ratio of epochs. E, Same 
as D for 1/2 x transversion rate. F, A(B + 2C)/2 (letters denote 
values in corresponding columns). G, Sum of squares of residuals 
of fit of calculated best-fit divergence matrix to observed diver- 
gence matrix 

version probability.  This can be proved  in a more  
general way for any symmetr ic  matr ix  (rows A). Let  
S(1) = s(i, j, 1) at epoch I, where s(i, j, 1) = sO, i, 1) 
by symmetry.  Then  at epoch 2, S (2 )=  $2(1)= 
s(i, j ,  2), where s(i, j, 2) = Y. s(i, k, 1)s(k, j, 1) = Y. 

k k 

s(k, i, 1)s(j, k, 1) = sO, i, 2), or  S(2) is symmetric,  since 
s(i, k, 1) = s(k, i, 1)and s(k, j ,  1) = s(j, k, 1). Similarly, 
S(k) is symmetr ic  for all k. Therefore ,  at equi l ibr ium 
s(l, 2) = s(2, 1), s(1, 3) = s(3, 1), ands ( l ,  4) = s(4, 1), 
and therefore  s(1, 1) = s(1, 2) = s(1, 3) = s(1, 4), 
since s(1, 1 ) =  s(2, 1 ) =  s(3, 1)---s(4, 1) at equilib- 
r ium. Since S is a probabil i ty matrix,  each row sums 
to 1. Thus  s(1, 1 ) = s ( 1 , 2 ) = s ( 1 , 3 ) = s ( 1 , 4 ) = %  
and therefore s(i, j) = 1/4, i, j = 1, 2, 3, 4. 

It was noted in Tables 3 and 4 that for the one- 
parameter  and two-parameter  models,  d(i, i, h ) =  
s(i, i, 2h) at all epochs h, where s(i, i, 2h) is the 
probabil i ty that  there is no substi tution o f  base i at 
epoch 2h and d(i, i, h) is the probabil i ty that  there 
is no difference between the two lineages for base i 
at epoch h. Consequent ly  the complementa ry  prob- 
abilities that there is a substi tution and that there 
is a difference, respectively, are also equal. Note  that  
this does not  mean d(i, j, h) = s(i, j, 2h), i ~ j, as 
was seen for the two-parameter  model  (Table 4). 

This may  also be p roved  more  generally for any 
symmetr ic  substi tution matr ix  (Table 1, matr ix  VI) 
that is the same for both  lineages. For  such matrices 
s(i, j, h) = sO, i, h). Then  the probabil i ty that there 
are no substitutions at epoch 2h is 3S s(i, i, 2 h ) =  

i 

Y. Y~ s2(k, i, h). The  probabil i ty that there is no 
i k 

difference between the two lineages at epoch h is 
Y~ d(i, i, h) -- Y~ s(k, i, h) s(k, i, h) -- Y~ s2(k, i, h). The  
i ik  ik  

argument  does not  hold for symmetr ic  substi tution 
matrices that  are different for the two lineages, nor  
for asymmetr ic  substi tution matrices. 

The equil ibr ium divergence matr ix  can be con- 
strued in two ways. First, the matr ix  may  be con- 
strued as the probabil i ty that a base in the second 
lineage is T, C, A, or G condi t ioned on the proba-  
bility that  a base in the first lineage is T, C, A, or 
G, respectively, for each row. In this case the row 
sums will be 1; that is, the matr ix  is a convent ional  
probabil i ty matr ix  (Table 5, row B). I f  the substi- 
tut ion matrices are symmetr ic ,  then in this case also 
if  the composi t ion  o f  the first lineage is equal to the 
equil ibrium condit ional  composi t ion  o f  the second 
lineage, the condit ional  composi t ion  o f  the second 
lineage will equal at all epochs its equi l ibr ium value, 
and i f  the composi t ion  o f  the first lineage is not  equal 
to the equil ibr ium condit ional  composi t ion  o f  the 
second lineage, the condit ional  composi t ion  o f  the 
second lineage will approach its equi l ibr ium value 
with increasing epoch n u m b er  k (Table 5, rows F 
and G). In the second construct ion each element  
d(i, j) is regarded as the probabil i ty that  at the given 
site the base is j in the second lineage and i in the 
first lineage. In this case the sum o f  all e lements  in 
the matr ix  will be 1 (Table 5 row C). Note  that i f  it 
is desired to fit an asymmetr ic  observed divergence 
matrix,  it is necessary to use asymmetr ic  substitu- 
t ion matrices that are different for the two lineages 
(Table 5, row C). 

Choice of the Number of Epochs for the Discrete 
Time Matrix Solution 

The evolut ionary distance between two lineages is 
the product  o f  the n u m b er  o f  epochs since diver- 
gence and the probabil i ty  per epoch that a base is 
substituted. Table 6 shows that  the graininess of  the 
discrete t ime matr ix  solution does not  introduce 
much  uncertainty into this determinat ion,  since the 
evolut ionary distance varies less than 2% for an 
eightfold increase in the n u m b er  of  epochs and a 
corresponding decrease in the probabilit ies o f  sub- 
stitution. In the est imation o f  evolut ionary trees the 
influence o f  even this small variabil i ty can be re- 
m o v ed  by fixing the number  o f  epochs for all di- 
vergence matrices and using the es t imated substi- 
tut ion rates. 

Removal of an Ambiguity in the Assignment of 
Different Mutation Rates to Two Descendant 
Lineages 

A more  disconcerting proper ty  o f  the discrete matr ix  
solution is that when one estimates the muta t ion  
rates in the two lineages separately, al though the 
total muta t ion  rate is well determined,  the fraction 
o f  it assigned to each lineage is arbitrary, depending 
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A B C D E F G H I 

62,499 31,248 46,879 39,064 250,002 2000 1200 1000 64 
60,608 27,991 48,966 42,158 249,872 2165 1161 875 64 
53,791 20,392 55,929 49,038 2 4 8 , 5 8 0  2638 114l 614 64 
74,444 41,757 33,299 28,419 248,095 1783 1172 1752 64 

Columns A-E have been multiplied by 1,000,000; columns F-H by 1000; column I, by 1,000,000,000. A, Transition substitution rate 
of lineage 1 determined from best fit ~o observed divergence matrix. (Row 1 values are those used in generating the divergence matrix.) 
r~, Same as A for ~/~ • transversJon rate. C, Same as A for lineage 2. D, Same as B for lineage 2. E, Total substitution rate [= A + C + 
2(B q- D), where letters denote values in corresponding columns]. F, A/B. G, C/D. H, (A + 2B)/(C + 2D). I, Sum of squares of 
residuals of fit of  calculated best-fit divergence matrix to observed divergence matrix 

on the initial values assumed in the iterative opti- 
mization process (Table 7). F o r  a single pair o f  lin- 
eages there is no way to remove this ambiguity. 
HOWever, i f  four or more lineages are available for 
the same gene, the informat ion is sufficient to re- 
SOlve the ambiguity using the evident topology of  
the evolutionary tree. 

Let the evolutionary tree for four genes be as 
Shown in Fig. 1. Let the true average transit ion sub- 
stitution rates from a common  ancestral t ime of  - 1 
to the present t ime 0 be a, b, c, and d for lineages 
A, B, C, and D, respectively. Let the t ime of  diver- 
gence of lineage B from the common  ancestor of  C 
and D be - s  and the t ime of  divergence of  C from 
D be ~t .  Let the rates of  substitution in lineages A 
and B, est imated by opt imizat ion from the diver- 
gence matrix o f  A and B, be x~ and x~, respectively, 
and let the fraction o f  the total assigned to A be f~. 
Similarly, for the pairs (A, C), (A, D), (B, C), (B, D), 
and (C, D), let the est imated rates be x3, x4, x5 . . . . .  
x~2 and the fractions of  the total rate assigned to the 
left members of  the pairs be f2, f3, t"4, fs, and f6, 
respectively. Then the following relations hold: 

fla = xl (A1) 
(1 - fob = x2 (A2) 

f2a = x3 (A3) 
(1 -- f2)c = x, (A4) 

f3a = x5 (A5) 
(1 - f3)d = x6 (A6) 

sf4b = x7 (A7) 
s(1 - f4)c = xs (AS) 

sfsb = x9 (A9) 
s(1 - fs)d = xm (A10) 

tf6c = Xli (A1 1) 
t(1 - f6)d = xlz (A12) 

Where a, b, c, d, s, t, f~, f2, f3, f4, fs, and f6 are to be 
determined from the calculated xt, x~, xa . . . . .  xt~ 
estimated from the six observed divergence matri- 
ces by the optimizat ion process. Equations (A1)- 
(A12) are 12 equations in 12 unknowns and may  be 
Solved as follows: From Eqs. (AI) and (A3) obtain 

f2 = flx3/xi (B1) 

and similarly 

f3 = f, xs/x~ (Be) 

sf, = (1 - f~)xv/x2 (B3) 

sfs ----- (1 -- fl)Xp/X2 (B4) 

tf6 = (1 - f2)xtJx, = (1 - f~x3/x~)x,~/x4 (B5) 

Substitute Eq. (BI) in Eq. (A4) and obtain 

(1 - f~xdxt )c  = x4 ( C I )  

and similarly 

(1 - f~x~/x0d --- x6 (C2) 

[s - (1 - f0x~/x2]c--xs (C3) 

[s - (1 - fl)xp/x2]d = xtQ (C4) 

[t - (1 - f~x~/x~)x~/x4]d = xj2 (C5) 

Substitute Eq. (CI) in Eq. (C3) and obtain 

[S -- ( l  --  Y1)X7/X2]X4/ (1  - -  flX3/Xl) = X8 (DI) 

and similarly 

IS -- (1 --  fl)X9/X2]X6 -- --- Xlo (D2) 
(1 - f ~ x J x 0  

[t - (1 - ftX3/X0XII/X4]X6 = X~ (D3) 
( 1  - f t x s / x 0  

Now Eqs. (D I) and (D2) are two linear equations 
in unknowns s and f~ and are easily solved. Substi- 
tute f~ into Eq. (D3) to obtain t; f~ into Eqs.(A1), 
(A2), (C1), and (C2) to obtain a, b, c, and d; and f~, 
s, and t into Eqs. (B1), (B2), (B3), (B4), and (B5) to 
obtain f2, t"3, t"4, fs, and Q. 

Then k[f~a + (I- f~)b]  = dAB, the evolutionary 
distance between present-day lineages A and B cor- 
rected for multiple substitutions at any site in the 
sequence, where k is the epoch used for all the es- 
t imations x~, x2, x~ . . . . .  x~2. Similar calculations 
give dAC, dAD, dBC, dBD, and  dCD. The edge 
lengths of  the assumed tree can then be estimated 
by the conventional  least-squares method  (Fitch and 
Margoliash 1967). 
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Fig. 1. A s s u m e d  evolu t ionary  tree 

A similar solution can be obta ined for each sub- 
st i tution-rate parameter  set x~, x2, x3, � 9  x~2 es- 
t imated  by the opt imizat ion procedure.  In the two- 
parameter  model  (Table 1, matr ix  II) there are two 
such parameter  sets, one for transit ions and one for 
transversions. The  evolut ionary trees est imated from 
these two sets would be expected to be much  the 
same, though it is obvious  that after a few different 
substi tutions have been established in each lineage 
the changed sequences may  modi fy  in different ways 
the probabili t ies o f  further  substitutions, and that 
these modificat ions may  be different for different 
classes o f  substitutions, for  example,  transitions and 
transversions.  It  is also possible to pool  the evolu- 
t ionary distances for the various substi tut ion classes 
to obtain an overall or total evolut ionary  distance 
and to est imate the edge lengths o f  the assumed tree 
using the pooled data. 

I f  data for the same gene exist for n lineages, 
where n > 4, the n overde te rmined  true average 
substi tut ion rates a, b, c , . . . ,  n for the n lineages, 
the n - 2 relative branch times, and the n choose 
2 = m fraction assignments f~, f2, f3 . . . . .  fm of  the 
total average substi tution rates to the respective 
numbers  o f  the m possible pairs o f  lineages may  be 
est imated f rom the 2m rates x~, x2, x3, �9 �9 �9 Xzm by 
nonl inear  least-squares opt imizat ion.  The  x values 
themselves will have been est imated previously for 
each model  parameter  f rom the m divergence ma- 
trices by nonlinear  least-squares opt imizat ion as de- 
scribed above.  For  example,  i f  n = 5, then n - 2 = 
3, m =  1 0 , 2 m = 2 0 ,  and there are 20 - 5 -  3 -  
10 = 2 degrees o f  f reedom for the former  est ima- 
tion. 

Choice  of  a Suitable Mode l  

Since the speed of  and avoidance o f  failure in the 
opt imizat ion process improve  with the number  of  

Table 8. C o m p a r i s o n  o f  obse rved  r a b b i t - m o u s e  beta-globin di- 
vergence ma t r ix  with resul ts  o f  four  s imula t ions  o f  subs t i tu t ions  
in two lineages by one -pa rame te r  and  two-paramete r  mode l s  

A B 

Ave, 

Ave.  

O n e  pa ramete r  

0 18 
3 20 
1 15 
2 16 

1.5 17.25 

Two  pa rame te r  

7 13 
22 13 
18 24 
30 19 

19.25 17.25 

A, N u m b e r  o f  cases in 1000 trials in which  T - C  count  was >- 11 
and  C - T  count  was -<5. B, N u m b e r  o f  cases in 1000 trials in 
which  C--G count  was zero and  G - C  count  was >-5 

degrees o f  f reedom in the est imat ion (15 minus  the 
number  o f  parameters  estimated), it is desirable to 
keep the number  of  es t imated parameters  as small 
as will still permi t  fitting obvious  features o f  the 
divergence matrix.  For  example,  consider  the beta- 
globin divergence matr ix  for rabbit  (van Ooyen  et 
al. 1979) and mouse  (Konkel  et al. 1979), matr ix  
RM in Table 1. This  matr ix is for codon  site 3 and 
for only those amino  acids not  paired with gaps in 
the al ignment o f  Dayhof f  (1978) for  m a n y  alpha- 
and beta-globins. The  meaning o f  the display has 
been described above.  What  model  is suitable for 
these measurements?  It appears that  the transit ion 
values (11, 5, 4, and 4) are greater than the trans- 
version values (1, 1, 1, 0, 3, 1, 5, and 5). A t-test 
for the difference between their  means  gives t = 
2.27, P = 0.025. In fact, a t-test on all 36 possible 
pairs o f  9 beta-like globins finds t = 8.28, - 10 log 
P ~ 162 (data not  shown). Therefore  it seems that 
a model  o f  at least two parameters ,  one for transi- 
tions and one for transversions,  is needed. The  count  
o f  sites having C in mouse  and T in rabbit,  11, is 
different f rom the count  of  sites having T in mouse 
and C in rabbit,  5, at aligned sites. Similarly, the 
count  for C-G,  0, is different f rom that  for G -C ,  5. 
Table 8 gives the results o f  four Monte  Carlo sim- 
ulations o f  1000 trials each for a one-parameter  
model  in which the parameter  equals the average, 
3.416, and for a two-parameter  model  in which the 
transit ion parameter  equals its average, 6, and the 
transversion parameter  equals its average, 2.125. 
The  values tabulated are the n u m b er  o f  cases in 
which the T - C  count  is -> 11 and the C - T  count  is 
- 5 and the n u m b er  o f  cases in which the C - G  count  
is zero and the G--C count  is >-5, respectively. For  
both T - C  and C-G,  the probabil i ty  o f  such an asym- 



rnetry is <0.02,  a clear indicat ion that the model  
should provide  an asymmetr ic  divergence matrix.  
From the summary  o f  solution properties in Table  
5, such an asymmetr ic  divergence matr ix  is attain- 
able only from asymmetr ic  substitution matrices that 
are different for the two lineages. 

Application of the Discrete Time Matrix Method 
to an Observed Divergence Matrix 

I)iscrete t ime matr ix  opt imizat ion  solutions for the 
observed rabb i t -mouse  beta-globin divergence ma- 
trix (Table I, matr ix  RM) are given in Table  9 for 
five models  with one to eight subst i tut ion-rate pa- 
rameters plus three ancestral composi t ion  param-  
eters. The five models  are as follows: model  (1), one 
parameter  the same for bo th  lineages (Table 1, ma-  
trix I); model  (2), two parameters ,  symmetric ,  the 
Same for bo th  lineages (Table 1, matr ix  II); model  
(4), four parameters,  asymmetr ic ,  the same for  both 
lineages (Table 1, matr ix  VII); model  (2,2), two pa- 
rameters, symmetric ,  different for the two lineages 
(Table 1, matr ix  II); and model  (4,4), four param-  
eters asymmetric ,  different for the two lineages (Ta- 
ble 1, matr ix VII). 

The Euclidean norm o f  the residuals, rn, is largest 
for the one-parameter  solution, (1); about  the same 
for the two- and four -parameter  solutions, (2), (4), 
and (2,2); and smallest for the eight-parameter  so- 
lution, (4,4). The  respective norms  o f  the solution 
parameters,  sn (Lawson and Hanson  1974), gener- 
ally increase as the number  o f  parameters  increases. 
The substantial decrease in rn for  model  (4,4) is 
obtained at the cost o f  only a modes t  increase in sn, 
and I Conclude that  model  (4,4) provides  the best 
representation o f  the data. However ,  the best fit by 
the F-test  is for  model  (2), for which - 10 log P = 
103. S. Karl in  (personal communica t ion)  has ques- 
tioned this application o f  the F-test .  

The est imated ancestral composit ions,  rows c l ,  
e2, and c3 (and c4 by difference), are about  the same 
for all five models.  The relatively small fraction of  
base A is the most  variable and for all models  sub- 
stantially higher than the observed values for mouse  
or rabbit (Table 1, matr ix  RM). For  the best solu- 
tion, mOdel (4,4), the est imated fraction o f T  is about  
the same as that  observed,  the est imated fraction o f  
C is intermediate  between the two observed values, 
and the est imated fraction o f  G is higher than either 
of  the observed values. 

The substi tution-rate parameters  appear  to vary  
Widely for the five models,  but  closer inspection 
finds them to he relatively consistent.  For  example,  
one-third the transit ion rate plus two-thirds the 
transversion rate for model  (2) approximately equals 
the total rate for model  (1): 1/3 ( 2 9 , 5 8 0 ) +  2/3 
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Table 9. Results of determination from observed rabbit-mouse 
beta-globin divergence matrix of ancestor composition and sub- 
stitution rates in each of two lineages for three composition and 
one, two, four, or eight substitution-rate parameters 

Model 

(I) (2) (4) (2,2) (4,4) 

Xa 14,752 29,580 45,915 32,836 19,549 
Xb 8,224 8 , 3 4 7  6 , 5 8 6  7,655 
Xc 22,737 21,582 
Xd 8,228 5 

Ya 26,297 69,580 
Yb 9,832 5,312 
Yc 24,516 
Yd 20,142 

cl 253,349 251,931 290,141 250,652 279,179 
c2 331,442 333,420 307,265 333,745 303,071 
c3 16,227 10,46l 18,827 11,041 20,006 
c4 398,982 404,188 383,767 404,562 397,744 

rn 69 49 46 48 15 
sn 836 937 1,128 1,1ll 1,395 
F 38 150 94 87 275 
df 4,11 5,10 7,8 7,8 11,4 
-10 log P 56 103 62 63 45 

All values in rows Xa to sn have been multiplied by 1,000,000. 
Codes for rows: X, first lineage; Y, second lineage; c, base com- 
positions; a, b, c, d, parameter designations (Table I, matrices I, 
II, VII); rn, square root of sum of squares of residuals; sn, square 
root of sum of squares of estimated parameters; F, F-value for 
fit to observed divergence matrix; dr, degrees of freedom. Model 
(1), one parameter the same for both lineages. Model (2), two 
parameters the same for both lineages. Model (4), four parameters 
the same for both lineages. Model (2,2), two parameters for each 
of the two lineages. Model (4,4), four parameters for each of the 
two lineages 

(8224) = 15,343 -~ 14,752. A weighted average o f  
the rates a and b for the two lineages in model  (2,2) 
equals the c o m m o n  rate of  the two lineages assumed 
to be the same in model  (2): 0.502(32,836) + 
0 .498 (26 ,297 )  = 29 ,580  and  0 .495(6586)  + 
0.505(9832) = 8224. Similarly, a weighted average 
of  the rates o f  transit ion substitution f rom T to C 
and C to T and f rom A to G and G to A in model  
(4) equals the c o m m o n  rate for both  directions in 
model  (2): 0.295(45,915) + 0.705(22,737) = 29,580. 
The  forward, backward,  and combined  t ransvers ion 
rates are all about  the same: 8347 -~ 8228 ~ 8224. 
A weighted average o f  three o f  the four rates for  
model  (4,4) equals the rate for model  (4): 

0.473(19,549) + 0.527(69,580) -- 45,915 
0.606(21,582) + 0 .394(24 ,516)=  22,737 

0.592(5) + 0.408(20,142) = 8228 

Only for rates xb/yb  does such an average fail, since 
both  xb/yb for model  (4,4) are less than xb for model  
(4), a divergence that may  explain in part  the much  
better  fit for model  (4,4), in which the residual norm,  
in, is reduced by a factor o f  1/3. 
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Table 10. Calc~ated divergence matrices 

Model T C A G 

RM T 25 11 1 1 
C 5 33 1 0 
A 3 1 2 4 
G 5 5 4 40 

(1) T 25.4 3.9 2.0 4.3 
C 3.9 32.1 2.5 4.8 
A 2.0 2.5 2.0 2.9 
G 4.3 4.8 2.9 39.8 

(2) T 25.3 7.2 1.3 2.6 
C 7.2 33.1 1.6 2.8 
A 1.3 1.6 1.7 5.1 
G 2.6 2.8 5.1 39.7 

(4) T 25.1 8.0 1.3 2.6 
C 8.0 33.0 1.5 3.0 
A 1.3 1.5 2.0 4.1 
G 2.6 3.0 4.1 40.0 

(2,2) T 25.1 7.3 1.5 2.5 
C 7.1 33.2 1.8 2.8 
A 1.1 1.4 1.8 5.6 
G 2.6 2.8 4.6 39.8 

(4,4) T 25.1 10.9 0.7 0.8 
C 5.1 33.0 0.7 0.8 
A 1.5 2.0 2.1 4.1 
G 4.6 5.5 4.1 40.0 

o b s e r v e d  m a t r i x  a n d  is in  c lose  a g r e e m e n t  w i th  it. 
T h e r e  a re  m o r e  Cs in  m o u s e  a l i g n e d  w i th  Ts  in  
r a b b i t ,  10.9, t h a n  the re  a r e  Ts  in  r a b b i t  a l i g n e d  w i th  
Cs in  m o u s e ,  5.1, b u t  the  n u m b e r s  o f  G s  in  m o u s e  
a l i gne d  w i th  A s  in  r a b b i t  a n d  o f  As  in  m o u s e  a l i gne d  
w i t h  G s  in  r a b b i t  a r e  t he  s a m e ,  4.1. N o t e  t h a t  the  
l a t t e r  v a l u e  is  less  t h a n  t h e  f o r m e r  two .  T h e  G - T  
a n d  G - C  d i f fe rences  a r e  l a rge r  t h a n  the  A - T  a n d  
A--C di f ferences ,  a n d  the  a v e r a g e s  o f  b o t h ,  5.05 a n d  
1.75, r e spec t i ve ly ,  a re  c lose  to  the  o b s e r v e d  v a l u e s  
o f  5.00 a n d  2.00.  T h e  T - G  a n d  C--G d i f fe rences  a r e  
a b o u t  t he  s a m e  as  t he  T - A  a n d  C - A  di f ferences ,  a n d  
t h e i r  o v e r a l l  ave rage ,  0 .75 ,  is e q u a l  to  t he  o b s e r v e d  
va lue .  F r o m  th i s  e x a m i n a t i o n  o f  t he  de t a i l s  o f  the  
c a l c u l a t e d  fit, i t  is  c o n c l u d e d  t h a t  m o d e l  (4,4) p r o -  
v i d e s  t he  be s t  r e p r e s e n t a t i o n  o f  t he  da t a ,  in  agree -  
m e n t  w i t h  the  c o n c l u s i o n  r e a c h e d  a b o v e  f r o m  the  
t r e n d  in  t he  r e s i d u a l  n o r m  w i t h  t he  s o l u t i o n  n o r m .  
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