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available. The method was applied to the divergence
matrix for codon site 3 for the mouse and rabbit
beta-globins. This observed divergence matrix was
significantly asymmetric and required at least two
different substitution rates. This result could be
achieved only by using different asymmetric sub-
stitution matrices for the two lineages.
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Introduction

Zuckerkandl and Pauling (1962) first suggested that
the evolutionary distance between two protein (or
DNA) sequences X and Y can be inferred from the
observed divergence matrix of counts of the occur-
rences of amino acids (bases) i, and j,, 1 =1,,j, <
20 (1 < i, j, < 4), in corresponding sites in the se-
quences. They used the raw differences, but pointed
out that these should be corrected for multiple sub-
stitutions at the same site. Later (Zuckerkandl and
Pauling 1965), they showed that in long sequences
the fraction of unsubstituted elements declines ex-
ponentially with time. They also discussed at length
the evidence that the rate of substitution of one
amino acid by another depends on such properties
of the two amino acids involved as bulk, charge,
polarity, and ability to interact with other amino
acids in the sequence to produce a functioning three-
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Table 1. Substitution-matrix models
Model* T C A G Sum %
1 T a a a
C a a a
A a a a
G a a a
1 T a b b
C a b b
A b b a
G b b a
I T b c
C a c b
A b c a
G c b a
v T b da
C c de b
A b da a
G dc b c
\' T b a
C c c d
A e a a
G c f c
Vi T a b
C a d 3
A b d f
G c e f
Vi1 T a b b
C c b b
A d d a
G d d C v
VIII T a b
C c d
A e f
G g h
RM T 25 11 1 1 38 27
C 5 33 1 0 39 28
A 3 1 2 4 10 7
G 5 5 4 40 54 38
Sum 38 50 8 45 141
% 27 35 6 32
SRM T 25 6 2 2 35.25 25
C 6 33 2 2 43.25 31
A 2 2 2 6 12.25 9
G 2 2 6 40 50.25 36

21, Jukes and Cantor (1969%). II, Kimura (1980). ITI, Kimura
(1981). 1V, Takahata and Kimura (1981). V, Gojobori et al.
(1982). VI, Lanave et al. (1984). VI, Blaisdell (present paper).
VIII, Holmquist (1976). RM, observed rabbit-mouse beta-gio-
bin divergence matrix. SRM, symmetrized two-parameter rab-
bit-mouse divergence matrix; correct transversion values are
2.125. For matrices I-VII each element on the main diagonal
is 1 minus the sum of the other elements in its row. In matrix
VIII, each element on the main diagonal is zero and the other
four unprinted elements are ! minus the sum of the other cle-
ments in their respective rows

dimensional protein structure. Presumably, a sim-
ilar variability of rate of substitution would be found
in the base sequences that generate the protein se-
quences.

Jukes and Cantor (1969) provided a formula for
correcting the total number of substitutions in a
divergence matrix for multiple substitutions at the
same site. They assumed that all kinds of base sub-
stitutions were equally likely (Table 1, substitution
matrix I). They did not disclose their method of
arriving at their formula. Kimura (1980) derived
their formula by using systems of linear differential
equations with constant coefficients as an expression
of the Markov process (Feller 1968, p. 444). His
derivation showed that their formula depends on
assuming that the rates of substitution in the two
sequences are equal, that the difference between the
two strands is twice the difference of each from the
common ancestor, and that base composition does
not change with time. He obtained similar results
to theirs for a rate matrix (Table 1, matrix IT) having
one rate for transitions (purine-purine or pyrimi-
dine-pyrimidine substitutions) and a second for
transversions (purine-pyrimidine substitutions), @
two-parameter model. Note that his rate matrix is
symmetric; that is, the rate of substitution of bas€
i by base j equals the rate of substitution of base J
by base i. This treatment of the divergence matrix
was probably motivated by the observation of Fitch
(1980) that in three beta-globins, among fourfold
degenerate codons, even third-position transitions
outnumber transversions by 2 to 1.

Similar differential equation solutions have been
given for divergence matrices with three (Kimura
1981), four (Takahata and Kimura 1981), and si*
parameters (Gojobori et al. 1982) (Table 1, matrices
II1, IV, and V, respectively). Note that matrices IV
and V are not symmetrical. These solutions ar¢
closed algebraic expressions the values of whose pa-
rameters are determined from imposition on ob-
served divergence matrices of the structures of the
various models given in Table 1. Tajima and Nel
(1984) recognized that actual divergence matrices
may be unlike any of the restricted structures of
Table 1, matrices -V, and suggested an ad hoc ap-
proximation that gave fairly good (error less than
10%) estimates of the number of substitutions if this
number was small (less than one per base on th¢
average).

Lanave et al. (1984) used the solutions of th¢
differential equations corresponding to the six-pad-
rameter symmetrized observed divergence matri®
(Table 1, matrix VI) and determined their disper”
sion by Monte Carlo computer simulation. This:
method is the most flexible of the differential-equa”
tion methods and makes fewer artificial assump”
tions. (In Table 1, matrices [-VII, each element 0B
the main diagonal is 1 minus the sum of the othef
elements in its row.)

Holmaquist (1976) gave numerical procedures fof
solving by generating functions the Markov proces®



gfe{::)ed by relative substitution rates (eight param-
n hisat a sgxgle base position (Feller 1968, p. 264).
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and Columnmo;s?; and similarly for the other rows
aSSUmptionss. his method makes unnecessary the
namely that common to all the other methods,
that the rateco?DOSIt}on does not change with time,
equal, ang ;10 substitution fqr the two lineages are
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and the oo ©8 1s twice the difference between each
other methnzimo'n ancestor. In common with the
evolutiong 0 s, it does assume that the process of
2 Markon l’}r' ase substitution may be rqodeled by
the same z?t Oﬁes§, that the rates of substitution are
rates of sub ? s¥tes n the sequence, and that the
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treat the M: ISV process). More precisely, since |
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multiplicario ough success_lve epochs by matnx
bility of Subs?', the assumption of constant proba-
epochs corre itution per epoch does not er}tail that
unreality of il;lond to constant intervals oftime. The
Stitution are the assumption that the rates of sub-
3 in the o € same at all sites can be ameliorated,
“Sﬂem”cod:mple below, by cc.msideri.ng only the
in whicy, o t% sites 3, aqd e§pecxally so if only those
amino g¢ig ar ur béses in site 3 gode for the same
si dereq o th‘e considered. In particular, I have con-
Maintaing me’;pﬁ}per‘ Table 1, matrix VI, which
and trapgyen; istinction between rates of transition
S10n, and permits them to be different
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Table 2 Comparison of Holmaguist (1976), Kimura (1980), and
Lanave et al. (1984) two-parameter solutians, P (transition} = P
(transversion)

A0 1 0 0 606,531
1 0 % % 303,265
2 % % Y 75,816
3 Ys e Y 12,636
4 %a 2 Y 1,580
5 e Ysa Y 158
6 3% 28 328 % 13
7 ase e Y 1
8 12502 12%,a Y Q
B 0 =4637816 P=165499 Q= 98367
C (Ll - 2P ~ 20V - 4Q=1%
D~ ~ 4P + 2Q)/3) = 494,657
E 637,816 165,449 98,367 98,367
165,449 637,816 98,367 98,367
98,367 98,367 637,816 165,449
98,367 98,367 165,449 637,816
472,367 472,367 606,531 1,000,000
G % % Y 0
H 0 —IN2 Yy, Y
0 32 % %
~-1V3 0 ~y Y,
V2 0 ~1, Y,
I Al 0 + 0 +(4)%4) +(A04)
SAVA OA) SR VA CA) + 0 + 0
+ ()% +(%)(%) +{%X%) + (A1

=%

All decimal values have been multiplied by 1,000,000. A,
Holmaguist solution: col. 1, numbers of substitutions per site; col.
2, P (unchanged); col. 3, P (transition); col. 4, ¥2 P (iransversion);
col. 5, Poissont probability density for mean P = '2. B, Poisson
averaged values: O, P (unchanged); P, P (transition), Q, ¥2P (trans-
version). C, Kimura two-parameter solution. D, Jukes and Can-
tor (1969) one-parameter solution. E, Substitution matrix (T, C,
A, G arranged as in Table 1, matrix ID. F, Eigenvalues of row E
values. G, Negative of natural logarithms of row F values. H,
Eigenvectors of row E values. I, Lanave et al. solution (assum-
ing fraction of each base = %): sumfln(eigenvalue) x square
(eigenvector values)] = Y%

in the forward and backward directions. From this
it follows that the equilibrium counts of pyrimidines
(or purines) need not be the same and that the counts
of base i occurring in gene X at sites where base ]
occurs in gene Y need not be the same as the counts
of base j occurring in gene X where base i occurs in
gene Y.

Description of the Discrete Matrix
Optimization Method

Assume the substitutions in the descent of one lin-
eage from the common ancestor are modeled by the
first-order Markov transition matrix S = s(i, j), i,
)= 1,2, 3, 4, where s(i, j) is the probability that the
base at a given site is j at epoch k conditioned on
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its being i at epoch k — 1 and independent of its
valuesatepochsk=0,1,2,...,k — 2. ThenS(k) =
s(i, j, k) = S(1)%, where s(i, j, k) is the probability
that the base is j at epoch k conditioned on its being
i at epoch 1. Similarly, let T(k) be the transition
matrix for the second lineage. Then the divergence
probability matrix for the divergence between the
two lineages at epoch k is

D(K) = d(, j, k) = 2 (i, O)s(L, i, Wt j, k) (1)

wherei, j,1=1,2,3,4,k=1,2,3,...;¢,0)is
the fraction of base | in the ancestral sequence at
epoch 0; and d(i, j. k) is the fraction at epoch k of
the number of occurrences at the same site in the
two descendant sequences of j in the second se-
quence and i in the first sequence. Note that the two
sequences are distinguished so that d(i, j, k) may not
equal d¥(, i, k). Note also that > d(i,j, k) =1, so

there are 15 independent valuesdin D(k). Each of
the rows of S and T sums to 1, so there are 12
independent values in each, and there are three in-
dependent values in ancestral composition ¢, mak-
ing a total of 27 parameters determining the course
of the evolutionary substitutions. Obviously, 27 pa-
rameters cannot be estimated unambiguously from
15 independent observations. The number of esti-
mable parameters is reduced to 15 or fewer by im-
posing a reasonable structure on the matrices S and
T; for example, if it is assumed in matrix Il of Table
1 that the transition rate equals 4a and the trans-
version rate equals 8b, there are five estimable pa-
rameters: a, b, and three ancestral compositions,
c(1, 0), c(2, 0), and ¢(3, 0). The parameters are es-
timated by nonlinear least-squares minimizing of
the squares of the differences between the calculated
divergence matrix (Eq. 1) and the observed one (e.g.,
Table 1, matrix RM) using the iterative ‘“‘complex™
optimization of Box (1965) to determine a, b, ¢(1, 0),
¢(2, 0), and c(3, 0). In the use of Eq. (1), one must
choose a reasonable number of epochs. From Table
6 it appears that 16 is large enough to yield agree-
ment within 1% with a very large number. In the
application in Table 9, I used four epochs to speed
calculation.

The optimizer can be given initial values derived
from the observed divergence matrix as follows: For
initial composition, use the average values for the
two genes in the observed divergence matrix. For
example, for Table 1, matrix RM, I used (0.28 +
0.35)/2 = 0.315 for C and similarly for T and A.
Then G=1 — (T + C + A). (Here each letter de-
notes the composition fraction of the corresponding
base.) For initial rates, use average values from the
observed divergence matrix divided by the chosen
number of epochs. For example, in Table 1, matrices
II and RM, for the transition rate bl used (1 + 1 +

1+0+3+1+5+35)/(141 x 4 x 2)=0.015071.
These initial values will be too large, because, for
example, for transitions the calculation of the raté
of simultaneous occurrence of T and C ignores thé
possibility that in addition to one arising from the
other, both may have arisen from a purine (A 0f
G). I have also used the simplex method of Spendley
et al. (1962) and the quadratic method of Powell
(1964), but have found the complex method gen-
erally to be faster and less prone to failure. These
are all direct search methods, because closed expres
sions for the elements of the divergence matrix fof
large epochs k are practically unattainable. The min-
imization is nonlinear because even the elements of
the square of a matrix are second degree in the ele-
ments of the original matrix. The speed and reli-
ability of the optimizations decline rapidly with a8
increase in the number of estimated parameters, §0
it is desirable to keep this number small. Guidanceé
in the selection of a model is discussed below.

Comparison of the Three Earlier Methods

The three earlier solutions, (1) differential equatio?
solution in closed form for a specific substitutio?
matrix (Kimura 1980), (2) differential equation $0°
lution of the symmetrized observed divergence ma”
trix (Lanave et al. 1984), and (3) the generating func
tion solution (Holmquist 1976), supplemented with
the assumption that the number of substitutions 3!
a given site is Poisson distributed, all give the samé
result for the same model. This is shown in Tabl¢
2 for the two-parameter model (Table 1, matrix )
Rows A display the generating function solutio?
(Holmquist 1976). The first column gives the nu
bers of mutations per site; the second, the prob#
bility that the occupant of a site is unchanged; th¢
third, the probability that a site shows a transitio?
substitution; the fourth, half the probability that 2
site shows a transversion substitution; and the fifth:
the probability mass values for a Poisson distrib¥
tion of mean value %. In row B, O is the expectatio?
that a site shows no change, and is the inner produ¢
of the second and fifth columns in rows A. Similarly:
P is the expectation that a site shows a transitio?
and Q is half the expectation that the site shows ?
transversion. Row C shows that application of tH
closed-form differential equation solution of KV
mura (1980) for the two-parameter model (Table I
matrix II) recovers the correct rate of substitutio?
of ». Row D shows that the misapplication of the
closed form for the one-parameter model (Table b
matrix I) leads to an underestimation by 1%. Th
calculation of the correct value in row C shows th?
the closed-form differential equation solution a}’d
the generating function solution supplemented w!
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Ta . . . . .
ble 3. Comparison of fraction changed and fraction diverged difference for one-parameter solutions

A B C D E F G B 1

://m 3,906 3,896 3,906 7,772 1,771 7,791

s 7,812 7,772 7,812 15,463 15,461 15,501

e 15,625 15,463 15,625 30,608 30,604 30,607 30,682 30,925

e 31,250 30,608 31,250 59,967 59,959 59,965 60,108 60,575

e 62,500 59,967 62,500 115,139 115,122 115,135 115,398 116,258

% 125,000 115,139 125,000 212,602 212,568 212,593 213,036 214,494

% 250,000 212,602 250,000 364,937 364,866 364,920 365,546 367,646

; 500,000 364,937 500,000 552,302 552,151 552,265 552,880 555,078
1,000,000 552,303 1,000,000 697,887 697,571 697,308 698,050 699,352

All decj . . .
bas;"f;l)mﬂl values have been multiplied by 1,000,000. A, Rate of substitution; B, decimal equivalents of values in A; C, fraction of
anged; D, Jukes~Cantor one-parameter calculation from column C of fraction changed; E, fraction of two diverged sequences

fi

that dj . . K .
rac(i(:;fe;isé‘ca-lculm?d from column C using equation of Holmgquist (1972) [= 2C — (4/3)C%; F, discrete time matrix calculation of
ering using fraction changed at substitution rate = Y, G, same as F, but substitution rate = %, H, discrete time matrix

caleulati . AP . N SR
on of fraction differing using substitution rate = Ys,; 1, same as H, but substitution rate = %,

t?:nsPO_l‘s/son distribution for the number of muta-
the stgl se tfl}e same resglt. Rows E through I outline
Jution t%r?h the numel_'lcal diﬂ‘ex;ent_ial equa?ion $0-
E), which ; € Symmetrized substitution matrix (rows
able dive 1s assumed. to be the same as the observ-
gives therg.ence matrix (Lanave et al. 1984). Row F
row G 5p eigenvalues o_f the matrix in rows E, and
row B va(})ws the negative natural logarithms of t‘n.e
Renvectn: ues. The col_umns of rows H are the ei-
IiHUStratestgorr esponding to the eigenvalues. Rows
rate [E e ftalculanon of the average substitution
(Eq. (20) in Lanave et al. (1984)),

average rate = 2 aHG, HPGH)

ZI:IC;CI}-‘I a(;zo recovers th.e correct value of Y2. (Here G
Table 3 | rllote values in the corresponding parts of
indices .i =n1rows { the columns correqund to base
(and eigonve, t2, 3, 4, and the rows to eigenvalues
i=aq, since é 2"31] =1, 2, 3. Thgre is no row for
2 value of (.)( )= 0. The calculation is shown for
Sequence 2 1), the frl'actlon of ‘base i in the ancestral
valye W();ll‘;l‘t;al 1o Y for all i. However, the same
Since these ¢ obtained for an grbitrary set of g(3),
cach colmnsu'm to 1 by definition and the sum of
the ex nm 1 is the same. This completes, .for

ample of Table 1, matrix II, the demonstration

that ) _
by the three earlier solutions give the same resulis
T the same model.

De .
o?(o;l-lsh'a"o“ That the Three Earlier Methods Do
atriwe the Correct Values for the Divergence
X, Whereas the Discrete Time Method Does

::é:ig;"e;::rhsr methods discussed in the preceding
tiODary dist the correct result only for the evolu-
Sequence aagcg be_tWeen the observed present-day
When ye: nad its inaccessible ancestral sequence.

using the present-day divergence between two

sequences to infer the evolutionary distance between
them, all these methods make the obviously incor-
rect assumption that the divergence between two
sequences is twice the divergence of each from their
common ancestral sequence. It is clear that the di-
vergence between two sequences will on the average
be less than twice the divergence of each from the
common ancestral sequence, because some of the
net substitutions in the two lineages may be the
same. The consequences of this incorrect assump-
tion are shown in Tables 3 and 4.

For ease of reference, I shall from now on call
the matrix of differences between a present-day se-
quence and its ancestral sequence a substitution ma-
trix and the matrix of differences between two pres-
ent-day sequences a divergence matrix. Holmquist
(1972) has given for the one-parameter model (Ta-
ble 1, matrix I) a closed expression for calculating
the fraction in the divergence matrix different from
the net fraction changed in the substitution matrix.
The effect of this correction is shown in Table 3.
Columns A and B show the mean values for the
number of substitutions in an assumed Poisson dis-
tribntion. Column C shows the average net number
of substitutions calculated for the one-parameter
model as Table 2, row B, was calculated for the two-
parameter model (see description above). Column
C shows very clearly the effect of multiple muta-
tions. When the number of mutations per site is
1.00, only 0.55 substitutions will be observed. Col-
umn D is calculated from the observable column C
using the closed-form differential equation solution
(Jukes and Cantor 1969) and the correct numbers
of substitutions are recovered; i.e., column D is the
same as column B. Column E shows the divergence
values calculated from the substitution values in
column C using Holmaquist’s (1972) correction
expression. The observed divergence values are
much less than twice the substitution values at the
higher numbers of substitutions. When the number
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of substitutions per site is 0.500, the observed num-
ber of substitutions is 0.365. Twice this value is
0.710, but the observed divergence is only 0.552.
In fact, when the number of substitutions per site
is 1.000, the observed substitution number is 0.552,
and twice this value is 1.104, which is impossible,
because the observed fraction of substitutions can-
not be greater than 1. In fact, as the average number
of mutations becomes very large, both the observed
number of substitutions (column C) and the ob-
served divergence (column E) approach %.

Columns F and G compare the discrete time ma-
trix calculation of the observed divergence values
with the generating function values (column E), the
latter of which are equal to the closed-form differ-
ential equation (infinitesimal) values, as shown
above. Columns F and G are started in the first row
with the observable average fractions changed taken
from column C at substitution rates of 1/256 and
1/64, respectively, and values in lower rows are ob-
tained by matrix multiplication. The small discrep-
ancies between the values in F and G and the more
accurate values in column E are undoubtedly at-
tributable to accumulation of round-off error during
the multiple single-precision matrix multiplica-
tions. The difference between the epoch sizes of col-
umns F and G does not seem to be important (see
also Tables 4 and 5, below). In practice it is desired
to estimate the true substitution rate (column A)
from the observed divergence. Columns H and I are
started with the true rates 1/256 and 1/64. The val-
ues in columns H and I differ from the more accurate
values in column E by larger systematic amounts,
but they extrapolate easily at rate zero to the values
in column E (data not shown).

Note that in Table 3, column E, row 1, is the same
as column C, rowi + 1, for all i; that is, in this one-
parameter example, divergence at k equals substi-
tution at 2k, where k is the epoch, and is not equal
to twice substitution at k, as is assumed incorrectly
in the differential equation solutions. This means
that application of the Jukes—-Cantor one-parameter
formula to the observed divergence matrix gives
twice the rate of substitution in each lineage. It may
be argued that in the inference of an evolutionary
tree from an observed divergence matrix a factor of
2 in all evolutionary distances would not alter the
tree. This is correct for the one-parameter model.

However, although it is proved below that total
fraction difference in divergence at k is the same as
total fraction changed in substitution at 2k for all
symmetric substitution matrices, in models de-
pending on more than one parameter, no such sim-
ple relation holds for the various classes of base
change. This is shown for the two-parameter tran-
sition—transversion model in Table 4, columns C
and D. In Table 4 column A shows the epoch, k.

Column B shows the substitution probability at ep-
och 2k, S(2k), calculated by matrix multiplication
of the two-parameter model (Table 1, matrix II)
with the transition probability a = 2/1024 and half
the transversion probability b = 1/1024, or a total
probability of change of 1/256. The last row of Table
4 shows one result for a total probability of change
of 1/64. Columns C and D show, respectively, the
probabilities at epoch k of a transition difference
and of a transversion difference as found in D(k),
which is calculated from S(k) as described above.
Column E shows the sum from columns C and D
of the probabilities of a divergence difference at ep-
och k, which in this symmetric two-parameter mod-
el is equal also to the probability of substitution at
epoch 2k. The small discrepancy is undoubtedly at-
tributable to accumulation of round-off error during
the multiple single-precision matrix multiplica-
tions. In fact, if the two values are derived from the
much larger main diagonal elements of S(2k) and
D(k), the discrepancy is less than 1/10,000 in the
worst case, epoch 256 (data now shown). Column
F is the probability of substitution calculated from
columns C and D by means of the closed-form dif-
ferential equation solution (Kimura 1980):

—-%In[(1 — 2C ~ D) VT = 2D]

(Here the letters denote the values in the corre-
sponding columns.) For low numbers of epochs, the
values in F are nearly equal to those in B (see their
ratio in column G), but the error increases to nearly
three-fold at epoch 256. Also recall that the values
calculated from the divergence matrix at epoch k,
which approximate at low k the values in the sub-
stitution matrix at epoch 2k, are approximately equal
to twice the values in the substitution matrix at
epoch k, as found exactly for the one-parameter
model in Table 3. The values in the last row for a
substitution probability of 1/64 at epoch 4 are ap-
proximately equal to the values for a substitution
probability of 1/256 at epoch 16, which shows that
the graininess of the discrete time matrix method is
of little moment.

Properties of the Discrete Time Matrix Solution

Properties of the discrete time matrix solution are
summarized in Table 5. Properties are listed for four
classes of solutions according to whether the sub-
stitution matrices for the two descendant lineages
are the same or different and whether for each of
these the substitution matrix is symmetric or asym-
metric. I call attention to the following features. The
substitution matrices show that their Markov chains
are regular, that is, that for large numbers of epochs
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Table 4. Comparison of the discrete time matrix solution with the closed-form differential equation solution for the two-parameter

mode]
A B C D E F G
Substitution probability = Y%, = 0.003906
1 7,791 3,892 3,900 7,792 7,834 1.0055
2 15,499 7,731 7,770 15,501 15,668 1.0109
4 30,667 15,252 15,418 30,671 31,336 1.0218
8 60,042 29,688 30,362 60,050 62,673 1.0438
16 115,136 56,272 58,880 115,152 125,347 1.0887
32 212,115 101,320 110,828 212,148 250,698 1.1819
64 362,825 165,798 197,098 362,896 501,424 1.3820
128 547,080 230,706 316,526 547,232 1,003,033 1.8334
256 691,506 259,066 432,754 691,820 2,008,373 2.9043
Substitution probability = %, = 0.015625
4 116,003 56,811 59,190 116,001 126,360 1.0893

E‘Zlufr{ns A~F have been multiplied by 1,000,000. A, Epoch (k); B, probability of substitution at epoch 2k; C, P (= probability of
abfl‘_smOn d§vergence difference at epoch k); D, Q (= probability of transversion divergence difference at epoch k); E, (= prob-
ity of divergence difference at epoch k); F, probability of substitution calculated by Kimura (1980) two-parameter model

=% m[1 - 2P — Q) \/T = 2QJ); G, (value in F/(value in B)

T . . . .
able 5. Properties of the discrete matrix solutions

Substitution matrices for the two lincages

Equal Unequal
Asym-
Symmetric Asymmetric Symmetric metric
A Equilibrium substitution matrices,
Lj=1,23,4,
c(j, €) = equilibrium composition .
s(i, §) A c(, €) Ya <G, ©)
B i, j) " c(, €)
Equilibrium divergence matrix d(, j),
row sums = 1,
c x(j, €) = equilibrium differences Y x(, €) Uy x(, €)
Equilibrium divergence matrix e(i, j),
b sum of all elements = | Yie Sym. Yie Asym.
Equilibrium substitution composition
preserved at all epochs k?
s(i, J) Yes Yes Yes Yes
E t(i, j) Yes Yes
Ancestral substitution composition
approaches equilibrium composition?
s(i, j) Yes Yes Yes Yes
F t(, j) Yes Yes
Equilibrium divergence differences
G preserved for all epochs k? Yes No Yes No
Early divergence differences
y approach equilibrium differences? Yes Yes Yes Yes
Divergence difference at k =
Yes No Yes No

substitution change at 2k?

:( €ach base can be substituted by every base (i.e.,
nuerlr'lebare no zeros in the substitution matrix for large
thay fel‘s of epochs k). Markov cl}aiq theory proves
prog gr large k values the substitution matrix ap-
are tl: €5 an equilibrium matrix in which all rows

‘1€ same and are equal to the equilibrium com-
POsition (rows A) and that if the chain process is

started at the equilibrium composition it will stay
at it (row D), but that if it is started at any other
composition it will of course approach the equilib-
rium composition (row E).

Kimura (1980) noted that for the two-parameter
solution, at equilibrium P = Q/2 = Yseven when the
transition probability is not equal to half the trans-
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Table 6. Determination of substitution rate—epoch pairs for the
two-parameter model

A B C D E F G

8 11,559 5814 3,853 1,938 92472 35
12 7,759 3,891 3,880 1,946 93,108 19
16 5839 2,924 3,893 1,949 93424 50
24 3906 1,953 3906 1,953 93,744 28
32 2,935 1,466 3913 1,955 93,920 64
48 1,960 978 3,920 1,956 94,080 17
64 1,471 734 3923 1,957 94,144 139

Columns B~F have been multiplied by 1,000,000; column G, by
1,000,000,000. A, Epoch. B, Transition rate determined by best
fit to observed divergence matrix at epoch 24; values for epoch
24 are correct. C, Same as B for 2 x transversion rate. D, Tran-
sition rate calculated for epoch 24 by ratio of epochs. E, Same
as D for 2% transversion rate. F, A(B + 2C)/2 (letters denote
values in corresponding columns). G, Sum of squares of residuals
of fit of calculated best-fit divergence matrix to observed diver-
gence matrix

version probability. This can be proved in a more
general way for any symmetric matrix (rows A). Let
S(1) = s(, j, D) at epoch 1, where s(i, j, ) =s(, 1, 1)
by symmetry, Then at epoch 2, S(2) =S%1)=
s(i, J, 2), where s(, j, 2) = Z s(i, k, Ds(k, j, D —Z

s(k, 1, Ds(j, k, 1) = s(j, 1, 2), or S(2) i$ symmetric, smce

s(i, k, ) = s(k, i, 1) and s(k, j, 1) = s(j, k, I). Similarly,
S(k) is symmetric for all k. Therefore, at equilibrium
s(1,2) =s(2, 1),s(1, 3) = s(3, 1), and s(1, 4) = s(4, 1),
and therefore s(1, 1) = s(1, 2) = s(1, 3) = s(1, 4),
since s(1, 1) =s(2, 1) =s(3, 1) = s(4, 1) at equilib-
rium. Since S is a probability matrix, each row sums
to 1. Thus s(1,1)=s(1,2)=s(1,3)=s(1,4)="%
and therefore s(i, j) = %,1,j =1, 2, 3, 4.

It was noted in Tables 3 and 4 that for the one-
parameter and two-parameter models, d(i, i, h) =
s(i, i, 2h) at all epochs h, where s(i, i, 2h) is the
probability that there is no substitution of base i at
epoch 2h and d(i, i, h) is the probability that there
is no difference between the two lineages for base i
at epoch h. Consequently the complementary prob-
abilities that there is a substitution and that there
is a difference, respectively, are also equal. Note that
this does not mean d(, j, h) = s(i, j, 2h), i # j, as
was seen for the two-parameter model (Table 4).

This may also be proved more generally for any
symmetric substitution matrix (Table 1, matrix VI)
that is the same for both lineages. For such matrices
s(i, j, h) = s(j, i, h). Then the probability that there
are no substitutions at epoch 2h is Z s(i, 1, 2h) =
E E s2(k, i, h). The probability that there is no
dlﬁ'erence between the two lineages at epoch h is
Zd(l i, h)—Zs(k i, h) s(k, 1, h)—'Zsz(k i, h). The

argument does not hold for symmetrlc substitution
matrices that are different for the two lineages, nor
for asymmetric substitution matrices.

The equilibrium divergence matrix can be con-
strued in two ways. First, the matrix may be con-
strued as the probability that a base in the second
lineage is T, C, A, or G conditioned on the proba-
bility that a base in the first lineage is T, C, A, or
G, respectively, for each row. In this case the row
sums will be 1; that is, the matrix is a conventional
probability matrix (Table 5, row B). If the substi-
tution matrices are symmetric, then in this case also
if the composition of the first lineage is equal to the
equilibrium conditional composition of the second
lineage, the conditional composition of the second
lineage will equal at all epochs its equilibrium value,
and if the composition of the first lineage is not equal
to the equilibrium conditional composition of the
second lineage, the conditional composition of the
second lineage will approach its equilibrium value
with increasing epoch number k (Table 5, rows F
and G). In the second construction each element
dd, j) 1s regarded as the probability that at the given
site the base is j in the second lineage and i in the
first lineage. In this case the sum of all elements in
the matrix will be 1 (Table 5 row C). Note that if it
is desired to fit an asymmetric observed divergence
matrix, it is necessary to use asymmetric substitu-
tion matrices that are different for the two lineages
(Table 5, row C).

Choice of the Number of Epochs for the Discrete
Time Matrix Solution

The evolutionary distance between two lineages is
the product of the number of epochs since diver-
gence and the probability per epoch that a base is
substituted. Table 6 shows that the graininess of the
discrete time matrix solution does not introduce
much uncertainty into this determination, since the
evolutionary distance varies less than 2% for an
eightfold increase in the number of epochs and a
corresponding decrease in the probabilities of sub-
stitution. In the estimation of evolutionary trees the
influence of even this small variability can be re-
moved by fixing the number of epochs for all di-
vergence matrices and using the estimated substi-
tution rates.

Removal of an Ambiguity in the Assignment of
Different Mutation Rates to Two Descendant
Lineages

A more disconcerting property of the discrete matrix
solution is that when one estimates the mutation
rates in the two lineages separately, although the
total mutation rate is well determined, the fraction
of it assigned to each lineage is arbitrary, depending
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able 7. Determination of different substitution rates for two diverging lineages from observed divergence matrix

A B C D E F G H I

62,499 31,248 46,879 39,064 250,002 2000 1200 1000 64
60,608 27,991 48,966 42,158 249,872 2165 1161 875 64
33,791 20,392 55,929 49,038 248,580 2638 1141 614 64
74,444 41,757 33,299 28,419 248,095 1783 1172 1752 64

octf’lli‘:lmns A-E hav§ been multiplied by 1,000,000; columns F-H by 1000; column I, by 1,000,000,000. A, Transition substitution rate
Saeﬂge 1 determinea from best fit 10 observed divergence matrix. (Row 1 values are those used in generating the divergence matrix.)
2EB lne as A for %o x transversion rate. C, Same as A for lineage 2. D, Same as B for lineage 2. E, Total substitution rate [= A + C +
D), where letters denote values in corresponding columns]. F, A/B. G, C/D. H, (A + 2B)/(C + 2D). I, Sum of squares of

resi . . . .
1duals of fit of calculated best-fit divergence matrix to observed divergence matrix

0 T . . . .
1 the initial values assumed in the iterative opti-

and similarly

Mization process (Table 7). For a single pair of lin-
€ages there is no way to remove this ambiguity. £ = hixs/x) (B2)
thco‘«v(-:ver, if four or more lineages are available for sf, = (1 — f)x,/x (B3)
€ same gene, the information is sufficient to re- * v
solve the ambiguity usi i fy = (1 — )Xo/ (B4)
h ambiguity using the evident topology of sfs = ( Xg/X
€ evolutionary tree. ‘- — 1 - fixs p (B5)
o ;'Et the evolutionary tree for four genes be as the = (1~ f/x = ( /%) x'f Re
Stit:? in Fig. 1. Let the true average transition sub-  Substitute Eq. (B1) in Eq. (A4) and obtain
o 1h éon rates fr‘om a common ancestral time of —1 (1 — fxg/x)c = X 1)
present time 0 be a, b, ¢, and d for lineages 1R 4
ge’nB’ G, and D, respectively. Let the time of diver-  and similarly
andcf) of lineage B from the common ancestor of C A = fxy/x)d = x (€2)
Db be —s and the time of divergence of C from 150 6
andeﬁ—\t' I'.et the rates of substitution in lineages A [s — (1 — f)x/x,)c = Xg (C3)
» estimated by optimization from the diver-
ii’;cf ;n;trix of A and B, be x, and x.,, respectively, [s — (1 — f)xo/x:1d = X0 (C4)
. & Iet the fraction of the total assigned to A be f). -
asl‘ﬁﬂarly, for the pairs (A, C), (A, D), (B, C), (B, D) It = (= fxs/x)xn/xi]d = 2 €3
X, ai% tlg), flet tl}e esti}nated rates be Xs, X4, Xs, .. .,  Substitute Eq. (C1) in Eq. (C3) and obtain
€ fractions of the total rate assigned to the _ _ - =
i:fl Mmembers of the pairs be f;, f;, fi, fs, and f, [s = (1 = foxo/xafxs/(1 — fixa/x) = x5 (D)
SBectively. Then the following relations hold: and similarly
fia =x, {Al) [s (1(1__ fi)z/(;/;(ﬂxs = X0 (D2)
(- Hb=x, (A2) e |
fa =%, (A3) ft — (1 = fixy/x )%/ XalXs _
(1 = e =x, (A%) = fao/n) o (O3
fia = x4 (A5)
(1 —f5)d =%, (A6) Now Egs. (D1) and (D2) are two linear equations
sfb = x, (A7)  in unknowns s and f, and are easily solved. Substi-
s(1 — f)e=%g (A8) tute f, into Eq. (D3) to obtain t; {) into Egs.(Al),
sfsb = %, (A9) (A2), (Cl), and (C2) to obtain a, b, ¢, and d; and {},
s(1 — £)d = xyq (A10) s, and tinto Egs. (B1), (B2), (B3), (B4), and (B5) to
tf,e = Xy, (All) obtain f, 3, fi, §5, and f..
Y1 — f)d = x;; (A12) Then kif,a + (1—f)b] = dAB, the evolutionary

gel;zre a,b,¢c,d,s, t, 1, §, fi, fy, f5, and fs are to be
st I:’:’mned from the~ calculated Xy, Xz, X35+« o5 Xi2
cor bated frorq thg six observed dwerge)nce matri-
( Alzy the optimization process. Equations (Al)-
Soly ) are 12 equations in 12 unknowns and may be

ed as follows: From Egs. (A1) and (A3) obtain

fz = f!X3/Xl (Bl)

distance between present-day lineages A and B cor-
rected for multiple substitutions at any site in the
sequence, where K is the epoch used for all the es-
timations X,, Xa» X3, - - -, Xi2. Similar calculations
give dAC, dAD, dBC, dBD, and dCD. The edge
lengths of the assumed tree can then be estimated
by the conventional least-squares method (Fitch and

Margoliash 1967).
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-1

0
A B C D time

Fig. 1. Assumed evolutionary tree

A similar solution can be obtained for each sub-
stitution-rate parameter set X;, X5, Xa, ..., X2 €§-
timated by the optimization procedure. In the two-
parameter model (Table 1, matrix II) there are two
such parameter sets, one for transitions and one for
transversions. The evolutionary trees estimated from
these two sets would be expected to be much the
same, though it is obvious that after a few different
substitutions have been established in each lineage
the changed sequences may modify in different ways
the probabilities of further substitutions, and that
these modifications may be different for different
classes of substitutions, for example, transitions and
transversions. It is also possible to pool the evolu-
tionary distances for the various substitution classes
to obtain an overall or total evolutionary distance
and to estimate the edge lengths of the assumed tree
using the pooled data.

If data for the same gene exist for n lineages,
where n > 4, the n overdetermined true average
substitution rates a, b, c, . . ., n for the n lineages,
the n — 2 relative branch times, and the n choose
2 = m fraction assignments f, £, f5, .. ., f, of the
total average substitution rates to the respective
numbers of the m possible pairs of lineages may be
estimated from the 2m rates x,, X, X3, - . . , X3 DY
nonlinear least-squares optimization. The x values
themselves will have been estimated previously for
each model parameter from the m divergence ma-
trices by nonlinear least-squares optimization as de-
scribed above. For example, ifn = 5, thenn — 2 =
3, m=10, 2m = 20, and there are 20 — § — 3 —
10 = 2 degrees of freedom for the former estima-
tion.

Choice of a Suitable Model

Since the speed of and avoidance of failure in the
optimization process improve with the number of

Table 8. Comparison of observed rabbit-mouse beta-globin di-
vergence matrix with results of four simulations of substitutions
in two lineages by one-parameter and two-parameter models

A B

One parameter

0 18
3 20
1 15
2 16
Ave. 1.5 17.25
Two parameter
7 13
22 13
18 24
30 19
Ave. 19.25 17.25

A, Number of cases in 1000 trials in which T—C count was =11
and C-T count was <5, B, Number of cases in 1000 trials in
which C-G count was zero and G-C count was =35

degrees of freedom in the estimation (15 minus the
number of parameters estimated), it is desirable to
keep the number of estimated parameters as small
as will still permit fitting obvious features of the
divergence matrix. For example, consider the beta-
globin divergence matrix for rabbit (van Ooyen et
al. 1979) and mouse (Konkel et al. 1979), matrix
RM in Table 1. This matrix is for codon site 3 and
for only those amino acids not paired with gaps in
the alignment of Dayhoff (1978) for many alpha-
and beta-globins. The meaning of the display has
been described above. What model is suitable for
these measurements? It appears that the transition
values (11, 5, 4, and 4) are greater than the trans-
version values (1, 1, 1, 0, 3, 1, §, and 5). A (-test
for the difference between their means gives ¢ =
2.27, P = 0.025. In fact, a z-test on all 36 possible
pairs of 9 beta-like globins finds ¢ = 8.28, —10 log
P =162 (data not shown). Therefore it seems that
a model of at least two parameters, one for transi-
tions and one for transversions, is needed. The count
of sites having C in mouse and T in rabbit, 11, is
different from the count of sites having T in mouse
and C in rabbit, 5, at aligned sites. Similarly, the
count for C-G, 0, is different from that for G-C, 5.
Table 8 gives the results of four Monte Carlo sim-
ulations of 1000 trials each for a one-parameter
model in which the parameter equals the average,
3.416, and for a two-parameter model in which the
transition parameter equals its average, 6, and the
transversion parameter equals its average, 2.125.
The values tabulated are the number of cases in
which the T-C count is =11 and the C-T count i
=<5 and the number of cases in which the C-G count
is zero and the G-C count is =35, respectively. For
both T-C and C-G, the probability of such an asym-



Mmetry is <0.02, a clear indication that the model
should provide an asymmetric divergence matrix.
5rom the summary of solution properties in Table

» Such an asymmetric divergence matrix is attain-
able only from asymmetric substitution matrices that
are different for the two lineages.

:&Dl’lication of the Discrete Time Matrix Method
0 an Observed Divergence Matrix

(]))bl:Crete time platrix optimization solutions for the
o €rved rabbit-mouse beta-globin divergence ma-
TiX (Table I, matrix RM) are given in Table 9 for
r:; models with one to eight substitution-rate pa-
- eters plus three ancestral composition param-
€15. The five models are as follows: model (1), one
?I‘;;a?eter the same for both lineages (Table 1, ma-
- ); model (2), two parameters, symmetric, the
4Ine for both lineages (Table 1, matrix 1I); model
lixzéfour parameters, asymmetric, the same for both
ramages (Table 1, matrix VII); model (2,2), two pa-
(Ta slters, symr'netnc, different for the two lineages
ttor el, matrix II)_; and model (4,4), f"our param-
bl s asymrpemc, different for the two lineages (Ta-
¢ 1, matrix vII).
orjgge Euclidean norm of th.e residuals, rn, is largest
for the one-parameter solution, (1); about the same
and 25 two- and four-parameterl solutions, (2), (4),
luti (2,2); and smallest for the eight-parameter so-
On, (4,4). The respective norms of the solution
s;ra_meters, sn (Lawson and Hanson 1974), gener-
Y Increase as the number of parameters increases.
o é‘e Substantial decrease in rn for model (4,4) is
tained at the cost of only a modest increase in sn,
;‘:d I conclude that model (4,4) provides the best
thg’;fentat.lon of the data. However, the best fit by
103 S—test is for model (2), for which —10 log P =
" -9, K'arlm (personal communication) has ques-
Oned this application of the F-test.
© he estimated ancestral compositions, rows cl,
fo; led c3 (and c4 by diﬂ'erenc.:c), are about the. same
bas. AﬁVe models. The relatively small fraction of
Stang, 18 tl_le most variable and for all models sub-
or r i)an'y higher than the observed values for mouse
o abbit (Table 1, matrix RM). For the best solu-
1, model (4,4), the estimated fraction of T is about
¢ same as that observed, the estimated fraction of
anls lnterm‘ediate between the two gbsewed va}ues,
of the estimated fraction of G is higher than either
the observed values.
Wi('ifllle substitution-rate parameters appear to vary
ﬁnde Y for the five models, but closer inspection
oneft;hem to be relatively consistent. For e?(ample,
tran IFCI_ the transition rate plus two-thirds the
h Sversion rate for model (2) approximately equals
€ total rate for model (1): % (29,580) + %
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Table9. Results of determination from observed rabbit~-mouse
beta-globin divergence matrix of ancestor composition and sub-
stitution rates in each of two lineages for three composition and
one, two, four, or eight substitution-rate parameters

Model
¢)] €] 4@ 2,2 4,4)
Xa 14,752 29,580 45,915 32,836 19,549
Xb 8,224 8,347 6,586 7,655
Xc 22,737 21,582
Xd 8,228 5
Ya 26,297 69,580
Yb 9,832 5,312
Yc 24,516
Yd 20,142
cl 253,349 251,931 290,141 250,652 279,179
c2 331,442 333,420 307,265 333,745 303,071
c3 16,227 10,461 18,827 11,041 20,006
c4 398,982 404,188 383,767 404,562 397,744
m 69 49 46 48 15
sn 336 937 1,128 1,111 1,395
F 38 150 94 87 275
df 4,11 5,10 7.8 7.8 11,4
—10log P 56 103 62 63 45

All values in rows Xa to sn have been multiplied by 1,000,000.
Codes for rows: X, first lineage; Y, second lineage; ¢, base com-
positions; a, b, ¢, d, parameter designations (Table I, matrices I,
1, VII); rn, square root of sum of squares of residuals; sh, square
root of sum of squares of estimated parameters; F, F-value for
fit to observed divergence matrix; df, degrees of freedom. Model
(1), one parameter the same for both lineages. Model (2), two
parameters the same for both lineages. Model (4), four parameters
the same for both lineages. Model (2,2), two parameters for each
of the two lineages. Model (4,4), four parameters for each of the
two lineages

(8224) = 15,343 = 14,752. A weighted average of
the rates a and b for the two lineages in model (2,2)
equals the commaon rate of the two lineages assumed
to be the same in model (2): 0.502(32,836) +
0.498(26,297) = 29,580 and 0.495(6586) +
0.505(9832) = 8224, Similarly, a weighted average
of the rates of transition substitution from T to C
and C to T and from A to G and G to A in model
(4) equals the common rate for both directions in
model (2): 0.295(45,915) + 0.705(22,737) = 29,580.
The forward, backward, and combined transversion
rates are all about the same: 8347 = 8228 = 8224,
A weighted average of three of the four rates for
model (4,4) equals the rate for model (4):

0.473(19,549) + 0.527(69,580) = 45,915
0.606(21,582) + 0.394(24,516) = 22,737
0.592(5) + 0.408(20,142) = 8228

Only for rates xb/yb does such an average fail, since
both xb/yb for model (4,4) are less than xb for model
(4), a divergence that may explain in part the much
better fit for model (4,4), in which the residval norm,
n, is reduced by a factor of V5,
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Table 10. Calculated divergence matrices

Model T C A G
RM T 25 11 1 1
C 5 33 1 0
A 3 1 2 4
G S 5 4 40
(1) T 25.4 39 2.0 4.3
C 3.9 32.1 2.5 4.8
A 2.0 2.5 2.0 2.9
G 4.3 4.8 2.9 39.8
) T 253 7.2 1.3 2.6
C 7.2 33.1 1.6 2.8
A 1.3 1.6 1.7 5.1
G 2.6 2.8 5.1 39.7
(4) T 25.1 8.0 1.3 2.6
C 8.0 33.0 1.5 3.0
A 1.3 1.5 2.0 4.1
G 2.6 3.0 4.1 40.0
(2,2) T 25.1 7.3 1.5 2.5
C 7.1 332 1.8 2.8
A 1.1 1.4 1.8 5.6
G 2.6 2.8 4.6 39.8
4.4) T 25.1 10.9 0.7 0.8
C 5.1 33.0 0.7 0.8
A 1.5 2.0 2.1 4.1
G 4.6 5.5 4.1 40.0

The divergence matrices calculated from the es-
timated parameters of the five models are displayed
in Table 10. The calculated matrix for model (1) is
symmetric and the average difference between the
two sequences is 3.4, in good agreement with the
observed average of 3.416. The calculated matrix
for model (2) is also symmetric, with an average
transition difference of 6.15 and transversion dif-
ference of 2.1, in good agreement with the observed
values of 6.0 and 2.125. The solution also provides
a larger transition difference for the (T,C) pair than
for the (A,G) pair, in agreement with observation
but not with the correct average values. It also fails
to provide a larger average for the lower-left-hand
2 x 2 transversion submatrix than for the upper-
right-hand submatrix, as is seen in the observed
matrix. The calculated matrix for model (4) is also
symmetric, and it provides the correct average val-
ues for the (T,C) and (A,G) pair transitions. It again
fails to provide a larger average for the lower-left-
hand transversion submatrix than for the upper-
right-hand one. The calculated matrix for model
(2,2) is much like that for model (2). The calculated
matrices for maodels (2), (4), and (2,2) ali give larger
values for G-T and G-C than for A-T and A-C, in
agreement with observation, but because of their
symmetry for near symmetry for model (2,2)] in-
troduce a difference where none is warranted in the
upper-right-hand submatrix. The calculated matrix
for model (4,4) exhibits most of the features of the

observed matrix and is in close agreement with it.
There are more Cs in mouse aligned with Ts in
rabbit, 10.9, than there are Ts in rabbit aligned with
Cs in mouse, 5.1, but the numbers of Gs in mouse
aligned with As in rabbit and of As in mouse aligned
with Gs in rabbit are the same, 4.1. Note that the
latter value is less than the former two. The G-T
and G-C differences are larger than the A-T and
A—C differences, and the averages of both, 5.05 and
1.75, respectively, are close to the observed values
of 5.00 and 2.00. The T-G and C-G differences are
about the same as the T-A and C-A differences, and
their overall average, 0.75, is equal to the observed
value. From this examination of the details of the
calculated fit, it is concluded that model (4,4) pro-
vides the best representation of the data, in agree-
ment with the conclusion reached above from the
trend in the residual norm with the solution norm.
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