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We study the interior structure of a locally conformal invariant fourth 
order theory of gravity in the presence of a static, spherically symmet- 
ric gravitational source. We find, quite remarkably, that the associated 
dynamics is determined exactly and without any approximation at all 
by a simple fourth order Poisson equation which thus describes both the 
strong and weak field limits of the theory in this static case. We present 
the solutions to this fourth order equation and find that we are able to 
recover all of the standard Newton-Euler gravitational phenomenology 
in the weak gravity limit, to thus establish the observational viability of 
the weak field limit of the fourth order theory. Additionally, we make 
a critical analysis of the second order Poisson equation, and find that 
the currently available experimental evidence for its validity is not as 
clearcut and definitive as is commonly believed, with there not appar- 
ently being any conclusive observational support for it at all either on 
the very largest distance scales far outside of fundamental sources, or on 
the very smallest ones within their interiors. Our study enables us to 
deduce that even though the familiar second order Poisson gravitational 
equation may be sufficient to yield Newton's Law of Gravity it is not in 
fact necessary. 
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1. INTRODUCTION 

One of the most attractive features of the standard second order Ein- 
stein theory of gravity is that  it provides a covariant description of not 
only the exterior Newtonian gravitational potential but also of the interior 
second order Poisson equation as well; and indeed, this constitutes one 
of main reasons for having a second order gravitational theory in the first 
place. With the observational confirmation of the relativistic corrections to 
the Newtonian limit that  the theory then yields, the overwhelming consen- 
sus in the community is that  the correct theory of gravity has already been 
found, at least at the classical level. Despite this consensus (which has so 
far not been eroded even though the standard Newton-Einstein gravita- 
tional theory then requires the universe to contain enormous amounts of as 
yet unestablished non-luminous or dark matter),  it should he noted that as 
of today there is in fact no known basic underlying principle which would 
require relativistic gravitational theory, or even its weak gravity limit for 
that matter, to actually be second order. (Indeed it is the very absence of 
any such underlying principle which has engendered problems such as the 
notorious cosmological constant problem.) There is thus some value in ex- 
ploring other candidate covariant equations of motion for the gravitational 
field to see whether they might also fit observation, so that we can then 
address basic issues of principle such as the uniqueness of gravitational 
theory and identify what it is that the data actually mandate. 

In the literature there historically have been many challenges to the 
standard Einstein theory. However, those challenges were based either on 
a nonacceptance of covariance and Einstein's special view of space and 
time in the first place, or on a desire to describe the gravitational field in 
a manner different from Einstein's choice of purely the space-time metric. 
All of these efforts have long since been turned back, and today it can 
safely be said that  gravity is indeed a general covariant, purely metric 
based theory. Since general covariance requires only that the gravitational 
action be a general coordinate scalar, the general covariance principle is 
not, in and of itself, sufficient to single out the standard second order 
Einstein-Hilbert action from the infinite class of actions (of all orders) that 
one could possibly consider, with the issue of which particular action to use 
thus representing perhaps the only remaining open theoretical question in 
gravitational theory, at least at the classical level. 

While the question of the correct relativistic theory has often been ad- 
dressed in the past, it is remarkable how little attention has been given to 
the question of the correct non-relativistic limit, with it being taken almost 
as a given that the non-relativistic potential should be that of Newton. To 
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the extent that  modifications to the Newtonian potential have actually 
been sought from time to time, such studies have generally still taken the 
familiar 1 / r  potential to be the leading one at infinity. (Such proposed 
changes have also generally been ad hoc and not developed within a co- 
variant gravitational formulation.) Since both the standard Newton theory 
and its Einstein generalization have been established through observations 
made predominantly on solar system size or smaller distance scales, it is 
not clear that  one is immediately able to assume the validity of Newtonian 
gravity on larger distance scales, with the question of the leading grav- 
itational potential term at infinity actually being an observational issue 
and not merely a theoretical one. Given the fact that the standard second 
order theory requires the presence of dark matter  on both galactic and 
essentially every larger distance scale where the theory has been applied, 
while not seeming to require dark matter  on any shorter ones, this need 
for dark matter  could be considered as signaling an actual breakdown of 
the standard theory at the larger distances. Thus the question for obser- 
vational astronomy is whether one can find another covariant theory of 
gravity which can differ from the standard one on large distance scales in 
a way which would resolve issues such as the galactic rotation curve issue 
(the most clearcut problem for the standard theory in the sense that  it 
involves no dynamical assumptions or models, just data) without the need 
for dark matter, and yet at the same time still recover all of the familiar 
gravitational results on shorter distance scales. 

As we shall see, all of these requirements and constraints are in fact 
achievable in the fourth order conformal invariant theory we consider in 
this paper: in a manner which will actually raise some basic questions re- 
garding our general understanding of the standard relativistic theory and 
its familiar Newtonian limit. Specifically, we shall find that the conformal 
theory of gravity relates Newton's Law of Gravity to a fourth order rather 
than a second order interior Poisson equation. Since, as will become ap- 
parent, we are still able to recover all of the other standard features of 
non-relativistic Newtonian gravity in the weak field limit as well, w~ are 
therefore able to conclude that  the second order Poisson equation (and 
hence its second order Einstein generalization) are not necessary ingredi- 
ents for obtaining a viable non-relativistic phenomenology but  only suf- 
ficient ones. We thus see that  while the second order Poisson equation 
implies Newton's Law, it does not follow that Newton's Law implies the 
second order Pofsson equation, with the data admitting of a much richer 
range of possibilities; and indeed, even if the conformal theory considered 
here were to fall by the wayside, the question of the uniqueness of the 
second order gravitational theory would still require addressing. 
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Motivated by a desire to have a theory of gravity which is based on 
a local invariance principle and dimensionless coupling constants (to thus 
both put gravity on the same footing as that  enjoyed by the other fun- 
damental interactions and resolve the freedom inherent in choosing the 
appropriate general covariant gravitational action), we have recently em- 
barked [1-6] on a study of fourth order conformal gravity, and considered 
its viability as a candidate gravitational theory. (Fourth order conformal 
gravity is the theory which is based on invariance of the geometry under 
local conformal stretchings g~v(z) --* fl2(z)g~v(z) and which has Iw ---- 
--~ f d4z(-g)l/2C),.~,,~C "x"'*'~ = -2c~ f d4z(-g)l l2(R.x.R~# - (Raa)213) 
as its only allowable gravitational action where C ~ . ~  is the conformal 
Weyl tensor and a is a purely dimensionless coefficient.) In particular, 
we have obtained [1] its complete and exact exterior vacuum solution in a 
static, spherically symmetric geometry. The exterior metric is found (up 
to an unobservable overall conformal factor) to be of the form 

- g o o  = 1/g~ = B ( r )  = 1 - / ~ ( 2  - 3 / ~ 7 ) / r  - 3/~7 + 7 r  - k r  2 (1)  

where ~, 7, and k are three appropriate dimensionful integration constants. 
This solution contains the familiar exterior Schwarzschild solution (thereby 
yielding the. desired exterior Newtonian potential term) together with two 
additional potential terms. The kr ~ term represents a background de Sitter 
geometry (a vacuum solution in the present theory) which requires no 
cosmological term--indeed such a cosmological term is actually forbidden 
by the underlying conformai invariance of the theory--to thus provide a 
potential resolution of this longstanding problem [2]. The confining-type 
linear 7r  term is a new gravitational term and is a special feature of the 
fourth order theory. For small enough 7 the conformal theory would thus 
appear to enjoy the static experimental successes of Einstein gravity all 
of which have been obtained on solar system or smaller distance scales. 
Further, it was originally suggested in [1] that  the linear potential term 
might first manifest itself on galactic distance scales where it could then 
both compete with and be comparable to the galactic Newtonian term; it 
could thus, on the one hand, prevent galactic rotation curves from actually 
undergoing any Keplerian fall-off as a function of distance in the first place, 
while on the other, the balancing between the two potentials (one falling 
and one rising) could even produce a region of approximate flatness, to 
thus potentially bring rotation curves into agreement with observation 
without the apparent need for any dark matter. Moreover, this qualitative 
expectation has recently even been quantitatively borne out [6], with an 
acceptable fit to Begeman's NGC3198 rotation curve data [7] (so chosen 
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because these (prototypical) data go out to the largest known number of 
surface brightness scale lengths) being found. The fit of [6] (which also 
provides comparable fitting to some other typical galaxies) is reproduced 
here as Figure 1, and it shows that  at the very least the data will tolerate 
the presence o7 a linear potential in addition to the standard Newtonian 
one. Intriguingly, for the interplay between the two potentials to occur in 
Fig. 1, it was actually found that for this galaxy the parameter 1/7 should 
be of magnitude 3 x 10 29 cm, a value which is of the order of the Hubble 
length. (For a discussion of some possible bounds on 3' for laboratory sized 
objects see Wood and Nemiroff; Ref. 8.) Moreover, numerical simulation 
studies [9] have shown that  this balancing of the linear and Newtonian 
potentials provides for the stability of galaxies without the need for any 
galactic dark matter  halo, this being the other main galactic distance scale 
issue which the standard theory cannot apparently resolve without dark 
matter. With regard to cosmological implications of the theory, it has 
recently been shown [5] that the associated cosmology actually possesses 
no flatness problem (thus not requiring any inflationary epoch); and the 
fourth order theory is thus seen to be of some interest since it would appear 
to have the potential to eliminate the need for dark matter on both galactic 
and cosmological distance scales, and being a fully covariant theory, would 
thus warrant further consideration. 

While the conformal theory can thus potentially address some out- 
standing issues of observational astrophysics and even recover the Schwarz- 
schild limit on distance scales r << 1/3' while never containing the Einstein 
equations at all, nonetheless many other questions and challenges remain 
for the theory before it could possibly replace the standard Einstein one. 
In this paper we address and resolve three crucial such concerns regarding 
the theory's non-relativistic limit, concerns now made somewhat urgent by 
the apparent quality and general structure of the fit of Fig. 1 which suggest 
that the fourth order theory may be more than simply a possible logical 
option. By studying not the exterior but rather the interior structure of the 
theory, first we shall explore the connection of the theory to Poisson theory; 
and by utilizing the dynamical mass generation mechanism now standard 
in treatments of the other fundamental interactions, we shall resolve two 
further questions which are raised by the fact that  in a conformal invari- 
ant theory the matter  energy-momentum tensor is kinematically traceless. 
Specifically, we first have to explain why there are non-zero particle masses 
at all, since the tracelessness condition immediately excludes kinematical 
or mechanical masses, and strict unbroken conformal symmetry requires 
no mass scales. However, if the scale symmetry is spontaneously broken it 
is then possible to generate mass scales, and interestingly, we find that this 
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Figure  1. Comparison of the calculated rotational velocity curve for NGC3198 with 
Begeman's data shown with lds quoted error bars. The velocity is plotted as a function 
of distance from the center of the  galaxy with the distance expressed in units of the 
exponential scale le~agth Ro (=2.72 kpc) of eq. (36). The full curve shows the overall 
theoretical velocity prediction (in kin/s) of [6] which integrates the Newtonian and 
linear potentials over the observed li]rninous matter  distribution, while the two indicated 
dotted curves show the rotation curves that separate Newtonian and linear potentials 
would produce. No dark matter  is assumed. 

can be done while maintaining the tracelessness condition on the matter 
energy-momentum tensor. However, this in turn then creates a further 
problem since the familiar perfect fluid energy-momentum tensor of ordi- 
nary matter needed for the standardEuler hydrostatic theory is not in fact 
traceless; and one of the major results of this paper will be the deriving of 
the Euler equation even in the presence of a traceless energy-momentum 
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tensor. In the process our analysis will actually challenge the relevance 
of the second order Poisson equation to gravitational dynamics as well as 
some longstanding notions regarding the nature of gravitational sources, 
namely that  they should effectively be describable by mechanical, point 
delta functions "and that  they should make no asymptotic contributions to 
the geometry. As we shall see, this purely mechanical, Newtonian picture 
of matter  is not compatible with the underlying conformal structure of the 
theory. Nor for that  matter  is it even mandated by observation. Indeed, in 
a conformal theory all mass should be dynamical and all particles should 
be extended and not pointlike. We believe the results we present in this 
paper not merely to be of relevance for the viability of the fourth order 
theory, but  also to be of a very general nature and to constitute a quite 
strong challenge to the conventional gravitational wisdom independent of 
the correctness or otherwise of the fourth order theory itself. 

The present paper is organized as follows. In Section 2 the fourth 
order Poisson equation is derived in the conformal theory as an exact, and 
not merely as a perturbative, property of the field equations of conformal 
gravity, and its exact interior and exterior solutions are presented. Addi- 
tionally, the weak gravity limit of the conformal theory and the implica- 
tions of the theory for the structure of gravitational sources are presented. 
Section 3 is devoted to a discussion of mass generation in theories with a 
traceless energy-momentum tensor and to a discussion of macroscopic per- 
fect fluids within the framework of the fourth order theory. In Section 4 a 
derivation of the standard Newton-Euler hydrostatic equation is provided, 
a critical comparison between the second and fourth order Poisson equa- 
tions is presented, and the constraints actually imposed on the general 
structure of gravitational theory by the currently available observational 
data are identified. In particular, it is shown that the observational evi- 
dence for the validity of the second order gravitational Poisson equation 
is actually not as definitive as it is commonly thought to be. The paper 
concludes with a review of the main outstanding open questions for the 
fourth order theory. 

2. THE FOURTH ORDER POISSON EQUATION 

To formulate the theory we first identify the functional derivative 
( -g)- l /26Iw/6g~v as the specific gravitational rank two tensor -2c~W ~v 
of the conformal theory (this then being the analog here of the  Einstein 
tensor G ~ of the standard theOry), so that  the gravitational equations of 
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motion take the form [1] 

Ig t / ~  ~;~ + R  ;# - R ~  0 Wt,~, = ~ u ~ '~J ;~ u,, ;/3 - RuP;,,;p ;u;P 

1 a 3gu~(Raa);a;p - 2RuI~Rv ~ + ~ guvRa/~R ~ - 

+ g (R ~);.;~ + g R%R.~ - g g.~(R%) 2 = T.~ (2) 

with T u~ being the conformal energy-momentum tensor. Because of the 
conformal invariance of the theory both W u~ and T v~ are kinematically 
traceless thus giving the energy-momentum tensor a structure not pos- 
sessed by a s tandard Newtonian point particle. 

In order to study the geometry associated with a static, spherically 
symmetric mat ter  distribution in the conformal theory, we found it very 
convenient in [1] to write the standard coordinate metric 

ds 2 = b(p)d$ 2 -- a(p)dp 2 -- p2 d~  (3) 

in a slightly different form. We note first that  under the general coordinate 
transformation 

p = p ( r ) ,  B ( r )  -- r2b(r) A(r) - r2a(r)P'2(r) 
p 2 ( r ) ,  p2(r ) (4) 

with p(r)  so far arbitrary, the standard coordinate metric takes the form 

ds2~ P2(r) [B(r)dt2 - A ( r )dr  2 - r2 df~]. 
r 2 

(~) 

If  we now fix p(r) according to 

1 _ f d r  

v(,.) l ,.~(a(,.~,.) )~/~. (6) 

we then find that  the metric assumes the form 

ds 2 P2(r) [B(r)d t  2 dr2 ] 
= r 2 B ( r )  r2d~ (7) 

and is just  as general as it was, with the two metric functions in eq. (3) 
having been traded for two other functions in eq. (7). However, the result- 
ing metric is now conformal to a standard metric in which grr = - l / g00 -  
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Since we are in a conformal theory, the gravitational rank two tensor W ~" 
defined above in eq. (2) transforms conformally according to 

wu" n-6(x)w." (s) 

and thus we can evaluate its dependence on the metric coefficients simply 
by evaluating it in the geometry associated with the metric 

dr 2 
ds2 = B(r )d t2  B ( r )  r2d~" (9) 

Thus in the conformal theory all dynamical information is contained in the 
simple metric ofeq.  (9), so that  while we have to deal with a much higher 
derivative theory than the Einstein one, the underlying conformal invari- 
ance of the theory enables us to sharply reduce the number of independent 
metric coefficients. 

Because of the trace and Bianchi identities of the theory, in the static 
case of interest the gravitational rank two tensor W u~ has only one inde- 
pendent component, W ~r, which for the line element of eq. (9) takes the 
form [1] 

W ~  B I B  m B"2 B B m - B I B "  

B ( r )  6 12 3r 

B B "  + B 12 2 B B '  B 2 1 

3r 2 + 3r--- T -  3r 4 + 3r 4 . (10) 

The complete and exact vacuum (W rr = 0) solution to this theory is 
then given by the line element of eq. (1). With regard to the non-vacuum 
structure of the theory we note that,  even though it is not independent of 
W r*, the component W oo turns out to be very useful. Using the methods 
of [1] and [3] W oo is found to be of the form 

w o  O B " "  B "2 B "  B I B m B "  B I 

3 12B 6B r 3 r B  

B"  B '~ 2B I 1 B 
+ ~ r  2 + 3r2---- ~ 3r 3 3r4----~ + 3r--- ~ �9 

(11) 

Combining the above two equations then leads to the remarkably compact 
relation 

4 B "  ( r B ) " '  3 ( W ~  - Wrr) = S ' " '  + . . . .  V4B. (12) 
B r r 
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We stress that  eq. (12) is an exact relation and not a linearized perturbative 
one, even though some such form can be found in linearized approxima- 
tions to fourth order theories. Additionally we note that  in the standard 
second order Einstein theory no combination of any of the components 
of the Einstein tensor G ~ yields the second order Laplacian as an exact 
expression. Rather, the Laplacian form is only obtained in the linearized 
version of that theory. Here in the conformal theory no recourse to pertur- 
bation theory is needed. [While the nice simple form of eq. (12) is obtained 
in the static, spherically-symmetric case, the gravitational rank two tensor 
W "~ does not reduce to such a compact Laplacian (or d'Alambertian in 
general) form in an arbitrary geometry, and its structure even in the time 
dependent spherically-symmetric case is already far more complicated [3]. 
Nonetheless, just like the situation in the standard second order Einstein 
theory, for the standard weak gravity applications we only need explore 
the relativistic static, spherically-symmetric case for appropriately chosen 
fundamental sources (such as the spherically-symmetric stars in a disk 
shaped galaxy), take the ensuing non-relativistic weak gravity limit and 
add up the associated potentials in the standard linearized way. Thus all 
of the weak gravity implications of the fourth order theory are derivable 
from the dynamics associated with the fourth order Laplacian of eq. (12)]. 

In the presence of a static, spherically-symmetric source we define the 
convenient function 

f(r) = 3(T~ - T~ )/4~S(r) (13) 

so that eq. (2) yields (after implementing the transformation of eq. (8) on 
the conformal energy-momentum tensor T ~v as well) the compact relation 

V4B(r)  = f(r) (14) 

which we recognize as a fourth order Poisson equation, with our exterior 
metric of eq. (1) immediately emerging as the solution to the associated 
fourth order Laplace equation. (While it will not prove necessary for us to 
specify the detailed dynamical structure of f(r) in our treatment of eq. (14) 
below, we note in passing that for a standard perfect fluid the quantity 
T ~ - T r r  is given by - ( p  + p) which for slow moving sources nicely reduces 
to the energy density p.) For a spherically-symmetric source of radius R 
eq. (14) can be integrated completely to yield 

B(r) = - ~---~ / d3r' f(r ')  ,r - r '' 

= - 12rl f + 3 - It' -  13] (15) 
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with the last equality following since the angular integration can be per- 
formed analytically. (There is also an uninteresting particular integral 
solution of the form w - kr 2 which we do not display.) Exterior to the 
source the solution then takes the form 

B(r > R) = - g  dr' f(r') [3r'2r + r'4/rl (16) 

while in the interior the solution is given by 

B ( r  < R) = - g  dr'f(r') [3r'2r + r '4/r]  

6 dr'f(r') [3r 's + r2r']. (17) 

Equations (16) and (17) are exact relations and represent the main new 
results of this work. We see that our solution thus recovers both the r and 
1 / r  terms of our previous exterior solution ofeq. (1) in the r > R region as 
it should. Furthermore, we may identify the coefficients of these potential 
terms as system dependent moments of the source distribution according 
to 

1 ~o R R _i [ (18) 
- 3 7) = d r ' / ( r ' ) r  '4, = z J0 

(The solution of eq. (1) also entails a specific form for the parameter w 
of the particular integral solution in the exterior vacuum region outside 
of the source; while should there actually be any matter  distribution at 
large distances outside the source, the second integral in eq. (17) would 
then generate effective constant and quadratic potential terms to thus dy- 
namically determine the two particular integral terms in that case and 
make them of the order of magnitude of the scale of the matter  distri- 
bution.) We thus establish the complete consistency of the interior and 
exterior structure, with the exterior solution of eqs. (1) and (16) imme- 
diately yielding us Newtonian and linear potential terms which can then 
be added source by source in the standard weak gravity manner to yield 
the associated non-relativistic predictions of the theory. In particular this 
will enable us (Sections 3 and 4 below) to recover the standard Newton- 
Euler phenomenSlogy on distance scales where the linear potential term is 
negligible. 

As a somewhat unexpected outcome we thus see that even though 
the Green's function of the fourth order theory is linear in the distance r, 
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after in tegra t ing  we find tha t  we recover not  only the  l inear po ten t i a l  t e rm  
bu t  also the  1/r Newtonian  t e r m  in eq. (16) even though the  second order  
Lap lac ian  o p e r a t o r  V 2 is not  present  anywhere  in the  four th  order  theory.  
Thus,  as we no ted  earlier,  we confirm t h a t  while a second order  Poisson 
equat ion  is sufficient to  genera te  a 1/r potent ia l ,  i t  is not  in fact  necessary,  
wi th  Newton ' s  Law of Grav i ty  ob ta in ing  in the  four th  order  theory  as well. 

Whi le  the  solut ion of eq. (16) shows t ha t  the  Newtonian  t e rm  will 
be ob ta inab le  for any  spher ica l ly -symmet r ic  m a t t e r  d i s t r ibu t ion ,  we note  
t ha t  i ts s t r eng th  is re la ted  to the  four th  moment  of f ( r )  r a the r  t han  to the  
second one, the  case in the  famil iar  second order  Eins te in  theory.  Since 
this  four th  moment  would vanish for a de l t a  funct ion source, we see t ha t  
in order  to yield a Newtonian  po ten t i a l  in the  four th  order  theory  the  
source mus t  be ex tended  ra ther  than  pointl ike.  Whi le  this  violates  our 
s t a n d a r d  second order  in tu i t ion  (bu t  not  any observat ional  informat ion  
incidenta l ly) ,  3 i t  is not  all t ha t  surpr is ing  since our experience with  dy-  
namica l  mass  genera t ion  in the  o ther  fundamen ta l  in terac t ions  (which we 
recall  mo t iva t ed  our choice of local ly conformal  invar iant  gravi ty  in the  
first place)  indicates  t ha t  we should general ly  anyway expec t  e l emen ta ry  
par t ic les  to ac tua l ly  be  ex tended  soli ton or bag-l ike ob jec t s  r a the r  than  
point l ike ones, wi th  the  only new fea ture  here being t h a t  curvature  mus t  
now play  a role in p roduc ing  such s t ruc tures .  

W i t h  regard  to  our  der ivat ion  of the  exter ior  solut ion of  eq. (16), we 
would like to emphas ize  t ha t  the Newtonian  t e r m  emerges as the  shor t  
d is tance  l imit  of the  theory  ra ther  than  as its long d is tance  one. The  
Newtonian  piece is effectively an add i t iona l  piece which is left over after  
the  leading large dis tance  cont r ibu t ion  of the - I r - r ~ l / 8 ~ r  Green ' s  funct ion 
of  the  V 4 ope ra to r  is ex t r ac t ed  out.  I t  should then not  come as too much 
of  a surpr ise  t h a t  the  Newtonian  t e rm  is in t ima te ly  re la ted  to  the  in terna l  
s t ruc tu re  of  g rav i t a t iona l  sources. The  fact  t ha t  the  Newton ian  po ten t i a l  is 
expl ic i t ly  associa ted  with  the  shor t  d is tance  behavior  of  the  theory  s t ands  

We are not aware of any experiment which has demonstrated the existence of New- 
tonian point particles, or more specifically which has actually shown that the only 
moment of the matter distribution which is sizeable is the second one. (The fourth 
moment which is central to the conformal theory according to eq. (16) plays no role 
in the second order theory, and hence its presupposed insignificance---if sources could 
be approximated by delta functions, that is--has never been tested). With regard 
additionally to the fact that the second moment integral of eq. (16) leads to a non- 
asymptotically fiat geometry, we note (notwithstanding our experience with second 
order theories) tha t  n o t  on ly  are  we  n o t  aware  o f  any observation which has shown 
that isolated sources yield an asymptotically fiat geometry, we are not even sure how 
such an observation could be performed since the universe does not appear to he 
asymptotically fiat, 
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in s h a r p  c o n t r a s t  to  t h e  t y p e  of  b e h a v i o r  generally sought in t r e a t m e n t s  o f  

f o u r t h  o r d e r  t h e o r i e s  w h e r e i n  a t t e m p t s  are  m a d e  t o  r e d u c e  t h e  f o u r t h  orde~ 

e q u a t i o n s  o f  m o t i o n  to  t h o s e  o f  E i n s t e i n  g r av i t y  on  long e n o u g h  d i s t a n c e  

sca les  t h e r e b y  rea l i z ing  N e w t o n ' s  Law as a long  d i s t a n c e  a s p e c t  o f  t h e  

theory .  4 H a v i n g  n o w  e s t a b l i s h e d  t h e  p r e s e n c e  o f  a f o u r t h  o r d e r  P o i s s o n  

e q u a t i o n  in t h e  c o n f o r m a ]  t h e o r y  a n d  s h o w n  i ts  c o n n e c t i o n  to  N e w t o n ' s  

Law,  we t u r n  n e x t  t o  a d i scuss ion  of  m a s s  g e n e r a t i o n  in t h e  p r e s e n c e  o f  

c o n f o r m a l  s y m m e t r y .  5 

3. M A S S  G E N E R A T I O N  A N D  P E R F E C T  M A T T E R  F L U I D S  

4 With regard to our fourth order solution we should also point out that it entails a 
conceptual departure from the standard connection between potentials and Green's 
functions familiar in second order theories. Specifically, for second order theories it 
is generally the case that the structure of the potential (the solution to the second 
order Poisson equation) is the same as that of the Green's function which is used to 
integrate the Poisson equation in the first place, and indeed our whole perturbative 
picture of exchange of particles as a mechanism for producing interactions between 
particles is based on this connection. With the fourth order theory we suddenly find 
that the Newtonian potential has nothing to do with an exchange of the quantum 
particle associated with a 1 / r  potential, but rather, it is a byproduct of exchanging 
the quantum particle associated with a linear potential between extended rather than 
pointlike sources. We thus see a clear demarcation between the Coulomb and New- 
tonian potentials while also exposing the limitations of the canonical perturbation 
theory picture of free propagators and point vertices. 

5 We note in passing that  it has been claimed in the literature, on the basis of perturba- 
tive studies, that fourth order theories do not in fact possess a good interior Newtonian 
limit [10-13]. Beyond the detailed non-perturbative analysis of this point which we 
make in this paper, we note that this claim was based on the unproven assertion that  
it is impossible to obtain the standard Newtonian term using a positive definite source 
f ( r )  in the fourth order Polsson equation of eq. (14), an equation which also happens 
to appear in the perturbative treatments made by these authors, and not just in the 
exact treatment given here. To this end we note only that the particular positive def- 
inite source f ( r )  =- - 2 p 6 ( r ) l r  ~ - (3q/2)[V 2 - (r~112)~7"][5(r) /r  a] provides a specific 
counterexample to the claim. The positivity of .f(r) may be exhibited by writing the 
q-dependent part of the source as the �9 ~ 0 limit of 6q�9 - 3 � 9  - 10e~r2)/~(r~+c2) 5, 
a limit in which f ( r )  traps a singularity at the origin; with explicit calculation show- 
ing that in this lirnlt the source does in fact yield the requisite Newtonian potential 
by providing contributions to the second and fourth moment integrals in eq. (18) 
according to fl(2 - 3fl~f) -- q and "y -- p (to thus incidentally show that the strengths 
of the linear and the Newtonian terms are in principle independent in the absence of 
more detailed dynamical information). While it remains to be seen to what degree 
this source may rr the interior of an elementary particle or possibly even the 
completely unknown singularity structure of an elementary particle within its own 
Schwarzschild radius (a region where it is not even known whether the energy density 
is in fact positive definite anyway - only the integral over the entire particle is known 
to be positive), its only purpose here is to show that the formal claim made by the 
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In order to discuss bulk matter  fluids we need only consider a fermion 
field r  to generically represent normal matter  and a scalar field S(=) to 
produce a symmetry breaking mass scale. For these fields the most general 
covariant, conformal invariant matter  action is given by 

u 

zM = - ] d '= ( -a ) ' /2 [S"S"12 + AS" - $2 RI',/12 

+ (or + r . ( = ) ) r  - hS(br (19) 

where r~(=) is the fermion spin connection and h and ~ are dimensionless 
coupling constants. With this action the matter  field equations of motion 
take the form 

iT"(Z)[Og + r~,(z)]r - hSr  = 0 (20) 

and 
S~'.,. + S R ~ ' ~ , / 6  - 4AS 3 + h r 1 6 2  = 0 

while the conformal energy-momentum tensor is given by 

(21) 

T~. = i r  + r . ( = ) ] r  + 2SUS./3 - gu.S~S~/6 - SS . ; . / 3  

+ g s , , , S S ~ ' ; J 3  - S2 (R~ , , ,  - g . . R ~ / 2 ) / 6  - g~,,, .~S 4. (22) 

Thus when the scalar field acquires a non-vanishing vacuum expectation 
value the fermion acquires a mass parameter m = h S .  

Because of the conformal invariance of the theory, should the solutions 
to the theory yield a spacetime dependent value for S(x), we are always 
able to remove this spacetime dependence by a conformal transformation 
and bring S(z)  to a space-time independent constant (i.e. the physics is 
in this constant being non-zero), so with no loss of generality we may set 
S(z) = So in the above equations of motion so that T ~  then simplifies to 

T ~  = i r162162162 (23) 

which makes its tracelessness manifest. 
With this last form for the energy-momentum tensor it is now possible 

to establish the perfect fluid form needed for bulk matter. Specifically, if 
we momentarily restrict the theory to flat spacetime, the quantization of 
the theory is straightforward and yields one particle plane wave eigenstates 

authors of [10-13] is technically incorrect. 
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Ik) of four momentum k s = {E~ = (k 2 + m2) 112, k)  (the mass being given 
by m = hSo). For these states we obtain [2] the matrix elements 

(k I / dSzToo k) = Ek - m2/4E~ (24) 

so that  the tracelessness property is still manifest. In eqs. (24) and (25) 
we note that  the energy is reduced from the usual one particle Et  term by 
the vacuum contribution -m2 /4Ek  while the usual kinematic k2/Ek pres- 
sure is augmented by a corresponding vacuum contribution. These vacuum 
contributions (which are akin to the Poincard stresses of a completely elec- 
trodynamical  electron) thus appear when the mass is dynamical and serve 
to maintain the tracelessness of T~,,, to thus show that  the tracelessness 
of T ~  does not in fact necessitate masslessness even while it does entail 
the vanishing of kinematic masses, to thus resolve the mass problem in 
conformal theories. 

Following the general averaging prescription developed in Ref. [14] we 
find that  an incoherent averaging over the above plane wave states then 
yields a perfect fluid, two in fact. One is a completely standard kinematic 
fluid coming from the averaging over the fermion ir + Fv(z) ) r  
kinetic energy term, viz. the kinematic T kin = (p "q-p)U#Uu q-Pg#v where 

[ ! f, k v' (26) P = dkle2Ek' P = 3r  2 J Ek ' z" j 

while the other one (which we denote by T ~ )  is due to the self consistent 
-g~, ,hSor162 term. Since TiC serves to maintain tracelessness in the 
fermion sector it must take the form T~ c = -g1 , , ( 3p -  p)/4 where, to 
repeat,  p and p are the standard kinematic energy density and pressure of 
T kin, so that  the full T ~" reduces to 

T~,, = (p+ p) (U~,U,, + g~,,/4) - S~(R~,, -g~,,,R'~,J4)/6 (27) 

Even though an interplay between the two fluids is seen to be neces- 
sary to maintain the tracelessness of the energy-momentum tensor, it is 
crucial to note (see also Kefs. 5,15) that  no such interplay is actually needed 
in order to enforce its covariant conservation. Specifically, the fermion ki- 
netic energy term contribution T kin is covariantly conserved all by itself -DV 

in the S = So gauge simply because of the fermion equation of motion. 
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(This can also be seen directly from eq. (22) when S(x) is a constant since 
the Einstein tensor obeys the Bianchi identities.) Consequently, the kine- 
matic p and p obey none other than the standard covariant conservation 
equations 

(p + p)U",~U ~ + p~(g"~ + U"U ~) = 0 (28) 

and also, because of eq. (26), the standard equations of state, the presence 
of the spontaneous mass generation mechanism notwithstanding. Equa- 
tions (26) and (28) are thus completely insensitive to whether mass is 
dynamical or kinematical, and the motions of particles in ordinary hydro- 
static or hydrodynamic fluids are unaffected by the mechanism by which 
the particles acquire their masses in the first place. The self-consistent 
T~ c thus plays no role at all in ordinary non-relativistic physics, which of 
course is why its neglect in the literature has not created difficulty. The 
only place where T~, c does appear is in the vacuum energy, with gravity 
being the only interaction which is sensitive to its presence. Moreover, 
in the standard second order theory this same vacuum energy leads to a 
huge cosmological term, and it is a virtue of the conformal gravity theory 
that in it the cosmological term is in fact constrained and controlled in an 
acceptable way [2]. We thus establish the key and quite remarkable feature 
that not only is the full energy-momentum tensor covariantly conserved 
(as would be expected in a covariant theory), but  in fact it turns out that 
two independent pieces of  it are separately covariantly conserved also. We 
find that  the standard kinematic non-traceless perfect fluid piece is covari- 
antly conserved all on its own, and thus it does not exchange energy and 
momentum with the self consistent piece. It is the absence of any exchange 
of this type will which lead us to the standard Euler fluid equation, as we 
now see. 

4. D I S C U S S I O N  A N D  G E N E R A L  C O M M E N T S  

In the standard Newtonian theory the second order Poisson equation 
is not a fundamental equation, but only a restatement of the Newtonian 
Law of Gravity in the presence of many sources. Specifically, to calculate 
the overall potential r  of a set of sources in the non-relativistic weak 
gravity limit one can either sum up all of the Newtonian potentials directly 
one by one, viz. 

1 (29) 
_- I r -  r'l 

or alternatively, one can integrate up the second order Poisson equation 

V~r = g(r) (30) 
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with appropriate source g(r). The advantage of using the Poisson equation 
is that  it directly exploits the symmetry of the problem, so that for a 
spherically-symmetric static source for instance, eq. (30) yields exterior 
and interior solutions 

r > R) = __1 [ R  dr'g(r ') r'2 (31) 
r do 

and 

i f  of f r / t  ~b(r < R) = - r  dr 'g(r ' )r  '2 - dr 'g(r ' )r '  (32) 

respectively. 
Regarding these solutions several comments are in order. Firstly, 

eq. (31) shows that no matter how the spherically-symmetric source func- 
tion g(r) behaves as a function of the radial distance r, exterior to the 
source a test particle only sees a 1/r  potential. It is not necessary that  
the source be a delta function in order for the Poisson equation of eq. (30) 
to yield an exterior 1/r  potential (even though it is of course sufficient). 
Thus no matter how extended a source and no matter how convoluted a 
function of r the source function g(r) is, the exterior potential is always 
Newtonian. Moreover, no matter how accurate any measurements of the 
exterior potential may he, as long as the potential r is only observed in 
the r > R region, it is impossible to reconstruct g(r) in the r < R region. 
Observation thus never establishes a delta function nature for gravitational 
sources, and the issue is simply not addressable. 

In the exterior region observation not only yields a 1/r potential, 
but also determines its coefficient, and observationally it is found in the 
weak binding limit that  this coefficient grows as indicated in eq. (29), 
i.e. directly as the number of sources, so that the gravitational potential 
of a weakly bound macroscopic system is an extensive function of the 
number of fundamental microscopic constituents that  it contains. Thus 
given eq. (29), the appropriate source to choose for eq. (30) is the number 
density of the sources. However, since the energy density of a macroscopic 
collection of weakly bound sources also grows with the number density, in 
the second order theory one can then take the source g(r) to be the energy 
density, an unnecessary but acceptable replacement which unfortunately 
fixes in one's mind the idea that  it is the energy density rather than the 
number density which is the key quantity (and all the more so in fact since 
in the second order Einstein theory it is the energy density rather than the 
number density which emerges as the source of the gravitational field). 

As regards the interior solution of eq. (32), we should point out that 
despite its name it is in fact still an exterior solution, i.e. we are evaluating 
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eq. (29) at points r < R by summing over the exterior potentials due 
to the individual fundamental gravitational sources (typically nuclei or 
atoms) inside the material. We are thus interior to the bulk material 
but exterior to its individual fundamental sources. No knowledge of the 
gravitational potential inside of the individual protons, nuclei or atoms is 
required, and according to eqs. (29) and (32) the macroscopic potential is 
again proportional to the total number of fundamental microscopic sources 
in the weak binding limit. Now of course the Poisson equation is also 
assumed to hold within the fundamental sources as well and it would have 
dynamical consequences there. However, those consequences have never 
been explored either theoretically or experimentally since gravity is not 
the major dynamical force inside fundamental particles. Thus to sum 
up, the non-relativistic theory never appeals to anything other than the 
exterior Newtonian potential, and the second order Poisson equation as 
it has so far been used contains no additional dynamical information, it 
merely puts Newton's Law into a convenient form for weakly bound bulk 
matter,  and as long as the sources are putting out 1/r potentials that  is all 
that  matters in the weak field limit, and we are not aware of any dynamical 
information regarding the internal structure of microscopic sources which 
has been obtained by gravitational means. 

Returning now to the fourth order theory, we see directly that the 
gravitational potential put out by gravitational sources such as nuclei or 
atoms in the conformal case is given by eq. (1) or eq. (16) since that is 
the exact exterior solution of the theory. Moreover, this remains true no 
matter  how complicated the source function f(r) may be in the micro- 
scopic nuclear interior. Then for weakly bound bulk matter  we may sum 
over the potentials of the individual nuclei to thus obtain none other than 
eq. (29) (whenever the linear potential term is insignificant that is), 6 with 
the weak gravity potential thus growing as the total number of nuclei just 

By the  s a m e  reasoning  we see t ha t  the  p a r a m e t e r  ~ for macroscopic  m a t t e r  shou ld  
also be  a n  extensive func t ion  of the  n u m b e r  of  f u n d a m e n t a l  sources in  a s y s t e m  in  
the  weak b ind ing  a n d  weak gravi ty  l imit .  Since i t s  m a g n i t u d e  for a weakly b o u n d  
N-part icle s y s t e m  of  p ro tons  would t hen  typically be  of order  N-yp where  ~p would be  
the  appropr ia te  p a r a m e t e r  for a n  individual  pro ton ,  a value for ~ for a galaxy of order  
t he  inverse Hubble  radius  leads to a fantas t ica l ly  smal l  value for ~p of order  10 -96 
c m -  1. Such a value would t hen  make  the  cont r ibu t ion  of the  l inear  potent ia l  to solar  
and  terrestr ial  d i s tance  gravi ty  completely insignificant,  and  much ,  m u c h  smal le r  t h a n  
any b o u n d s  on the  l inear potent ia l  coming  f rom the  reqn i rement  tha t  it  no t  spoil the  
s t a n d a r d  N e w t o n - E i n s t e i n  succeases on those  dis tances.  For ins tance,  the  resu l t ing  
value of order  10 -s9  c m -  1 for the  "y p a r a m e t e r  of  the  Sun  yields a potent ia l  for the  
p lane t  Mercury  of order  10-~7, while the  Schwarzschild correct ion which p roduces  the  
per ihel ion advance  is of order 10 - z s .  (In pas s ing  we no te  t ha t  even if we were to take 
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as required by observation. Hence we see that  even though the coefficient 
of the Newtonian term is related to the fourth moment  of f ( r )  in eq. (16)~ 
the coefficient is still linear in the number density of weakly bound sources, 
since in the macroscopic weak gravity limit we are simply insensitive to 
the structure of f ( r )  inside of the fundamental microscopic sources. Now 
of course, in the interior of a nucleus we would have to deal directly with 
the explicit structure of the source function f ( r )  within each of the indi- 
vidual protons within the nucleus, and also we would have to take into 
account the explicit two-body strong coupling nuclear forces between the 
protons in order to evaluate the fourth moment integral. Thus the weak 
binding limit approximation would simply not be relevant, and the fourth 
moment integral of f ( r )  for a nucleus would not immediately he related 
to the number density of its nucleons. Similarly, for compact macroscopic 
sources we would again be unable to assume weak binding and would again 
need to evaluate the full eqs. (16) and (17) without approximation. For 
the moment  however the strong binding case is intractable, just like its 
second order counterpart.  For weak binding though, where there are data, 
one need not deal with the details of the fourth moment integral at all; 
all that  is needed is to sum over the exterior eqs. (1) and (16), (i.e. for 
weakly bound bulk mat ter  the potential is obtained by summing incoher- 
ently over all the microscopic protons (for simplicity) of the system with 
each one contributing a te rm B ( r )  = 1 - 2 f lv / r  to the sum whenever all 
the 7 dependent terms in eq. (1) may be ignored), with the theory thus 
leading to gravitational forces which grow as the total number of sources 
in precisely the kinematic regime where they are observationally found to 
do so. 

Finally, as regards the interior gravitational potential of weakly bound 
bulk mat ter  composed of fundamental static protons, we need only in- 
tegrate the potential of eq. (1) [or equivalently that  of eq. (16)] over a 
spherical distribution of weakly bound proton sources each of mass mp 
and Schwarzschild radius 2tip. This then gives the standard weak gravity 
expression for the metric coefficient B(r )  = -g00, viz. 

B '  ~ B '  2fl, 4~r2n(r)dr  (33) 
T -  

a value for ~ for the Sun as large as the value we have suggested for a galaxy, the linear 
potential contribution to the perihelion would still not outperform the Schwarzschild 
term, and would actually fall within the current obserwtional uncertainty.) With a 
of order 10 -s9 cm -1 for the Sun, the linear potential produces a solar surface gravity 
~R| of order 10 -2s, a value which is far smaller than the Newtonlan surface gravity 
fl(2 - 3fl~)//~ ~ 10 -6, and so here also the linear term is not of any significance. 
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where n(r) is the number density of protons. (Phenomenologically for 
a bulk source with N protons and total mass M, we may may identify 
Newton's constant G according to 2MG = 2N/Jr, i.e. according to mpG = 
/Jr, if we neglect the weak bulk source binding energy, that is.)7 For static, 
spherically-symmetric bulk matter, the perfect fluid covariant conservation 
condition of eq. (28) yields 

-2p~/(p + p) = B'IB (34) 

where we recall and stress again that the energy density and pressure are 
the kinematic ones of eq. (26). For weak binding and weak gravity then 
where p is the standard ram pressure and where the energy density required 
for eq. (26) may be taken to be given by p : nCr)mp, we see that  eqs. (33) 
and (34) reduce to the standard ones, so that the theory nicely recovers 
the standard Newtonian Euler hydrostatic theory [and in particular its 
Chandrasekhar limit which explicitly uses a Fermi sphere containing the 
modes of eq. (26)] just as required even while not possessing any second 
order Poisson equation at all, and even while the full energy-momentum 
tensor of the theory is traceless. 

While we have introduced Newton's constant here in order to make contact with 
the conventional gravitational discussion, we note that G itself is not in fact observ- 
able gravitationally, with only the product ~fG being measurable. The standard 
Cavendish~value for G thus represents only the choice of units to measure mass, and 
in this sense G is a derivative concept in the same way as Boltzmann's constant serves 
only to define temperature units in the observable product kT. Even without a funda- 
mental G in our theory, gravity is still universal because the fundamental parameter 
defined in the Weyl action Iw and present in the source function S(r) of eq. (13) serves 
to couple gravity universally to gravitating matter in exactly the same way as the 
fine structure constant couples electromagnetism universally to electromagnetically 
participating matter. Through the coupling constant ~ gravity is universally coupled 
to matter  for all gravitational field strengths, both strong and weak. The Cavendish- 
type experiments show only that gravitational effects are extensive in the number of 
particles and universal in the weak gravity limit, a fact that can be described with or 
without a fundamental G as we noted above. Since the Einstein theory then elevates 
G to a fundamental element of the gravitational action, it thereby insists that gravity 
is coupled universally through a fundamental G even for strong gravitational fields, 
an effect for which there is currently no experimental guidance. Since our theory 
couples gravity through ~ and not through G at all, its strong gravity predictions 
will thus in principle differ from those of the standard theory, though this issue would 
not appear to be explorable in the immediate future. (Given these remarks, it is now 
not at all clear as to whether the Planck length should play a central role in quantum 
gravity, with the expectation of a huge Planck density cosmological term perhaps no 
longer being warranted.) 
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It is also of interest to consider the weak gravity limit when the linear 
term is not negligible, such as in a galaxy, a system which provides an ex: 
ample of a non-spherically-symmetric distribution of stellar sources. With 
each star putting out a potential 

v(,-) ---~/,- + ..-/2 (35) 

according to eqs. (1) and (16), we may integrate this potential over a thin 
exponential disk of stars with scale length R0 and surface brightness 

~(n)  = ~0~ -R/R~ (36) 

and N = 21rEoR02 particles, to straightforwardly obtain [6] circular orbit 
rotational velocities of the form 

v ~ C r ) - 2 R ~  I0 ~ 0  Ko ~-~ 

(.)] + "Y~---~~ z, ~ KI ~ . (37) 

Given the asympototic behaviour of the modified Bessel functions, we find 
that at infinity 

NTr 3N7/~20 ~v'cr)--, N~ + _ _  (38) 
r 2 4r 

to thus nicely demonstrate the extensive property of both the Newtonian 
and the linear potentials in the weak gravity limit. (In passing we note 
that the fit of Fig. 1 is nothing more than a fit of eq. (37) as applied to the 
explicit luminous matter  distribution of NGC3198 given in [16] and [17], 
and we refer the reader to Mannheim's paper [6] for further details.) 

Now that  we have established that the conformal theory does indeed 
have a good weak field limit, we can address our original question of what 
it is that  the data actually mandate, and to do this we must discuss both 
the non-relativistic limit and its relativistic corrections. With regard first 
to the non-relativistic limit, we note first that the only data which un- 
ambiguously establish a Newtonian law at all are those solely on solar 
and smaller distance scales. There is no definitive evidence at all that the 
gravitational potential is a pure 1/r  potential on galactic or larger distance 
scales, as the need for dark matter  clearly indicates. Moreover, only if the 
potential can be shown to be strictly 1 / r  on all distance scales (something 
which has yet to be done observationally) would it then be possible to 
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extract out a second order Poisson structure. If the potential shows some 
deviation from 1/ r  on large distance scales, some other equation would be 
needed. One might at first expect that in such a case the Poisson equation 
might be modified so that it would contain both V 2 and V 4 type terms 
and so on with appropriately chosen coe~cients. The beauty of our dis- 
cussion of the fourth order Poisson equation is that in fact no V 2 term 
is necessary at all, with the Newtonian term still being generated in the 
integration of eq. (14). In fact there is even a general moral here. If we 
take an even higher order Poisson equation we would generate even more 
terms in,the potential, with V 6 for instance yielding r s, r and 1 / r  terms 
on integration. The Newtonian potential is thus in principle divorced from 
the second order Poisson equation, and the issue of what order or combi- 
nation of orders of the operator V ~ is needed depends on measurements 
made on all distance scales and not merely on those made on solar and 
smaller ones alone. 

As we can see, there is still a great deal of observational ignorance in 
our ability to ascertain the gravitational potential on all distance scales, 
and this issue can only be resolved by observation. Since we do not yet 
know what order non-relativistic Poisson equation is mandated, finding the 
correct relativistic theory purely from observation is not yet possible. Both 
the second order and fourth order Poisson equations have clearcut and 
distinct relativistic generalizations, and yet both yield the same Schwarz- 
schild relativistic corrections of eq. (1) on solar and smaller distance scales. 
Moreover, both of these two covariant generalizations automatically obey 
the equivalence principle, with geodesic motion in a background external 
field occurring in both the cases. In fact, as is discussed in detail in [15], 
geodesic motion has nothing to do with the detailed structure of the grav- 
itational field equations, rather it follows strictly from covariance. Indeed, 
in the absence of any pressure, the covariant conservation equation for T ~ 
given by eq. (28) is the geodesic equation. Thus while the gravitational 
field equations serve to fix the background gravitational field, the response 
of a test particle to the field is strictly geodesic. Since the conformal theory 
is fourth order, it is necessary to comment on why test particles actually 
obey second order geodesic equations of motion at all. The answer to this 
is that the same conformal invariance which requires the gravitational sec- 
tor of the theory to uniquely be described by the fourth order Weyl action 
Iw actually requires all the other fundamental interactions to be second 
order as the conformal matter  action of eq. (19) makes manifest. In fact 
conformal invariance actually provides a rationale for why the other funda- 
mental interactions should in fact be second order in the first place, a fact 
for which there is actually no other known explanation at the present time. 
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The covariant conservation of the conformal invariant energy-momentum 
tensor is then automatically a second order rather than a fourth order con- 
dition on the motion of the matter fields. With the recognition that the 
other fundamental interactions are constrained by conformal inwriance to 
be second order, w'e thus see a basic in principle difference between the elec- 
tromaguetic and gravitational Poisson equations. For electromagnetism, 
the second order electrostatic Poisson equation follows from Gauss's Law, 
i.e. from the fundamental conformal invariant second order Maxwell equa- 
tions of motion of the theory. The second order gravitational Poisson 
equation has no such similar rationale, being just a phenomenology until 
it is derived from some fundamental footing such as a covariant set of grav- 
itational equations; and as we have seen, if one does not impose conformal 
invariance for the gravitational sector as well to make an unambiguous 
choice, there are potentially quite a few covariant theories (covariant gen- 
eralizations of possibly all V 2n) that one could write down which could 
have a good Newtonian limit, and phenomenologically all of them would 
in principle at least seem to need exploring. 

There are two key regimes where the second and fourth order theories 
do differ. One is strong gravity, though there are as of yet no calculations 
or clearcut data for that matter; the other, as indicated by eq. (1), is on 
large enough distance scales; and it is perhaps only with the detection 
of dark matter (in just the right amount) or with a demonstration of its 
absence that one might eventually be able to discriminate between the 
theories, s Since a linear potential would deviate from a Newtonian one 
more and more as we go to larger and larger distance scales, we would 

8 As we noted and discussed in our earlier papers, there are some other outstanding 
open questions for the conformal gravity theory which still need to be dealt with. 
At the classical level the theory still awaits a calculation which would enable it to 
address the crucial non-static gravitational radiation reaction question relevant to the 
decay of the orbit of the binary pulsar PSR 1913+16 (that there must he some orbit 
decay in the theory follows since every relativisticaily invariant theory automatically 
contains retardation--gett ing the precise numerical prediction of the theory however 
requires a highly detailed and sophisticated calculation). Additionally, at the quan- 
tum mechanical level the theory awaits a non-perturbative treatment of the ghosts 
and conformal anomalies which appear in a linearization of theory around fiat space- 
time, a limit which however, as can be seen from eq. (1), may not be all that relevant 
to the theory, with the restoring linear potential possibly even confining the ghosts 
and removing them from the physical spectrum in the true vacuum altogether. As re- 
gards the ghost question, we note additionally that in first order perturbation theory 
the fourth order theory yields a fourth order box operator, to thus yield corrections to 
the metric which grow with distance (just like the linear potential) and which hence 
become indefinitely large at large distances. Since the ghost states would appear on 
shell at low momenta, we see that  their presence in the theory is inferred in precisely 
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expect the conformal theory to differ from the Einstein one not only on 
galactic distance scales, but essentially on every larger one as well. There 
is thus potentially a wealth of testing and of comparing with the standard 
theory to be done in gravitational lensing, d~;namics of clusters of galax- 
ies, large scale structure, large scale streaming and velocity flows, galaxy 
formation and fluctuations in the cosmic microwave background, and in 
cosmology and nucleosynthesis (as indicated in Ref. 5). This is of course 
a mammoth undertaking, which given the copious need for dark matter in 
the standard theory on all these scales, may eventually prove definitive. 
For the moment however, it appears to us that despite the fact that the 
fourth order theory possesses a linear potential, it nonetheless cannot be 
excluded on any currently known observational grounds. 
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