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Abstract. The theory of the focusing NLS equation under periodic boundary con- 
ditions, together with the Floquet spectral theory of its associated Zakharov-Shabat 
linear operator L, is developed in sufficient detail for later use in studies of pertur- 
bations of the NLS equation. "Counting lemmas" for the non-selfadjoint operator L, 
are established which control its spectrum and show that all of its eccentricities are 
finite in number and must reside within a finite disc D in the complex eigenvalue 
plane. The radius of the disc D is controlled by the H 1 norm of the potential ~. For 
this integrable NLS Hamiltonian system, unstable toil are identified, and Backlund 
transformations are then used to construct global representations of their stable and 
unstable manifolds - "whiskered tori" for the NLS pde. 

The Floquet discriminant A(A; q-) is used to introduce a natural sequence of NLS 
constants of motion, [Fj(q-) ~ A(A ---= A~(q-); q-), where A~ denotes the jth critical 
point of the Floquet discriminant A(A)]. A Taylor series expansion of the constants 
Fj (q~), with explicit representations of the first and second variations, is then used to 
study neighborhoods of the whiskered tori. In particular, critical tori with hyperbolic 
structure are identified through the first and second variations of Fj(q~), which 

themselves are expressed in terms of quadratic products of eigenfunctions of L. The 
second variation permits identification, within the disc D, of important bifurcations 
in the spectral configurations of the operator L. The constant Fj (q-), as the height of 
the Floquet discriminant over the critical point A~, admits a natural interpretation 
as a Morse function for NLS isospectral level sets. This Morse interpretation is 
studied in some detail. It is valid globally for the infinite tail, {Fj(q~)}Ljt>N, which is 
associated with critical points outside the disc D. Within this disc, the interpretation 
is only valid locally, with the same obstruction to its global validity as to a global 
ordering of the spectrum. Nevertheless, this local Morse theory, together with the 
Backlund representations of the whiskered tori, produces extremely clear pictures of 
the stratification of NLS invariant sets near these whiskered tori - pictures which are 
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useful  in the study of perturbations of NLS. Final ly ,  a natural  connect ion is noted  
be tween the constants  F j  (q-) of  the integrable theory and Meln ikov  funct ions for the 
theory of  perturbations of  the NLS equation.  This  connect ion  generates a simple, but  
general,  representations of the Meln ikov  functions.  
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1. Introduction 

In  our earlier studies [27] of  damped and dr iven nonl inear  SchrOdinger (NLS) 
equat ions under  periodic boundary  condit ions,  we have observed chaotic temporal  
behavior  which  is part icularly apparent when  the nearby unper turbed integrable NLS 
equat ion has critical tori with hyperbol ic  (saddle-like) structure. In  this paper we 
study mathemat ical  properties of  the hyperbol ic  structure for the i n t e g r a b l e  NLS 
equation,  in the focusing case under  periodic boundary  condit ions.  These properties 
are prerequisites for any study of  perturbations of the integrable NLS system. 

In any integrable Hami l ton ian  system, hyperbol ic  structure consists in critical 
toil,  called "whiskered tori" [1], whose stable and unstable  manifolds  comprise  the 
"whiskers."  At issue here in the infinite d imens ional  NLS setting is to identify,  to 
represent, and to unders tand these whiskered tori, as well  as their neighborhoods in  
funct ion space. We accomplish these goals through the inverse spectral representat ion 
for the NLS equat ion with its associated l inear operator L. In  the focusing case, this 

operator f, is not  self-adjoint.  The nonselfadjointness  of  this second order differential 
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operator L is responsible for the existence of hyperbolic structure in the focusing 
NLS system. Certain critical configurations in the complex spectrum of L identify 
whiskered tori. (In fact, the presence of hyperbolic structure in the experiments [27] on 
perturbed NLS is monitored numerically by following passage through these critical 
spectral configurations.) 

To understand this nonselfadjoint spectral problem, we begin with three basic 
"counting lemmas" which we use to control the spectrum of L. These counting lemmas 
identify a finite disc D in the eigenvalue plane, whose radius is controlled in terms 
of the unstable H ~ norm of the coefficient ~, which in turns is controlled by the first 
two NLS invariants - the L 2 norm and the energy. All eccentricities (such as the 
critical spectral configurations) due to nonselfadjointness of/~i occur within the disc 
D. The counting lemmas also enable us to order the spectrum of the linear operator 
(locally, near a fixed ~E H 1) and to use this ordering to label a basis of L 2 built from 
squared eigenfunction solutions of the linearization of NLS. B~icklund, or Darboux, 
transformations (also built from quadratic products of eigenfunctions) are then used at 
the critical spectral configurations to construct global representations of the whiskered 
tori. 

Integrable theory focuses attention upon level sets of constants of motion. In this 
NLS framework, these level sets are isospectral sets for the operator L, and can be 
defined in terms of the Floquet discriminant (which generates all NLS constants of 
motion): 

J { ( ~  --- (F E 3 -  I A(A; Q = A(A; q3 VA E C}. 

A global theory of these NLS level sets is not yet complete in the nonselfadjoint case; 
nevertheless, it is generally believed that the level set .f/~ is generically an (infinite) 
product of circles. 

To understand the critical NLS tori and their neighborhoods in function space, 
as well as the associated neighborhoods of the critical spectral configurations, we 
interplay the compex ,k dependence of the Floquet discriminant A(A; q~) with its 
dependence upon the function ((x). In terms of B(,~; q~) we introduce a natural 
sequence of NLS constants of motion, Fj(q-) _= B(A~(q-); ~ ,  where A~ denotes the jth 
critical point of the Floquet discriminant A(A). We then use a Taylor series expansion 
(in q~) of the constants Fj (q~) to study neighborhoods of the whiskered tori. The first 
and second variations of Fj (q~) admit concrete representations in terms of quadratic 

products of eigenfunctions of/~,. The critical tori are critical functions of Fj(q ~) at 
which, for at least one j ,  the first variation vanishes. When the first variation vanishes 
at a critical toms, the second variation, or Hessian, can be indefinite, which leads 
to the identification, within the disc D, of important bifurcations between "cross" 
and "gap" spectral configurations for the operator L, as well as to closely related 
bifurcations of the NLS invariant sets. 

This use of the family of constants {FjVj} to identify critical level sets and 
their neighborhoods is the first step toward a "Morse theory of NLS level sets." A 
successful Morse theory would describe how these toil change with the (values of) 
the spectrum, and how they stratify (or fill out) the function space S .  Clearly, such 
a stratification by tori will be organized by neighborhoods of critical tori for which 
one or more of the circles in the infinite product has pinched off. These are exactly 
the critical functions of the constants {Fj(q-)}. 

The constant Fj (q~), as the height of the Floquet discriminant over the critical point 
A~, admits a natural interpretation as a Morse function for NLS level sets. In Sect. 5 
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this Morse interpretation is investigated in some detail. It is valid globally for the 
infinite tail {Fj(q-)}IjI>N, which is associated with critical points outside the disc D. 
Within this disc, the interpretation is only valid locally, with the same obstruction 
to global validity as to a global ordering of the spectrum. Nevertheless, within the 
disc D we present explicit examples of this local viewpoint, which together with 
the Bgcklund representations of the whiskered tori, produces extremely clear pictures 
of the stratification of NLS invariant sets near these whiskered toil. These examples 
are more than adequate for our study of perturbations of NLS. We hope they will 
convince others to complete a global Morse theory of NLS level sets. 

Finally, in Sect. 6, we show that the constants Fj of the integrable theory also 
generate natural Melnikov functions for the theory of perturbations of NLS, precisely 
because these constants are critical on the critical tori. In addition, we derive 
explicit representations of the Melnikov function in terms of quadratic products of 
eigenfunctions. 

This work is a continuation of the initial study of [7, 8] for the sine-Gordon 
equation, and of the note [9]. However, it differs substantially from those earlier 
studies in that the role of finite genus algebraic geometry is downplayed and replaced 
by the functional analysis framework of [29]. Specifically, the explicit use of the 
counting lemmas to control the nonselfadjoint spectral theory of L is new, as are 
the explicit Hessian calculations. The detailed Morse study is new; in particular, the 
obstruction to its global validity, the Bott function G, the behavior near an arbitrary 
complex double point where several Bott functions must be studied simultaneously, 
and the pictures of the level sets in a six dimensional example were not known 
previously. 

For the spectral theory, we follow closely the work, in references [29, 14], 
extending it to the non-self-adjoint case in order to treat hyperbolic structure. 

Finally, the table of contents serves as an adequate outline for the paper. 

2. The General Setting 

2.1. NLS as a Hamiltonian System 

We consider the focusing nonlinear Schr6dinger equation (NLS) 

- i q t  + qx~ + 2 ]q]2q = 0, (2.1) 

with periodic boundary conditions q(x + 1) = q(x). Energy arguments, using "higher" 
constants of motion, establish existence in H k, k > 1. 

To view NLS as an (infinite dimensional) dynamical system, we first fix the phase 
space. We begin with the ambient space of Hpler([0, 1]; C 2) C Ll2oc(R, C 2) of periodic, 
complex valued two vector functions of z, which are square integrable over [0, 1] 
with square integrable first derivative. It will be convenient to fix the following real 
Hilbert spaces: 

For focusing NLS, the phase space is then the embedding of C a in Y - ,  

-.-.-.f =- C ~176 c Y - .  

On this phase space, NLS is a Hamiltonian system, 

- iq t  = J grad H .  



Morse and Melnikov Functions for NLS Pde's 179 

Here J denotes the matrix 

and the Hamiltonian H : ~  ~ R is given by 

1 

H(q3 - f [q rx + q2r2] dx. 
o 

The complete integrability of the NLS Hamiltonian system is established through 
the "inverse spectral transform" which we now describe. 

2.2. Spectral Background 

The NLS equation can be integrated with the Zakharov-Shabat linear system [34] 

(Px = U(X)q r , (2.2) 

~?t = V(A)~, (2.3) 

where 
~ 

I r  

V(A) = 2iA2a3 + iqra3 + -2iAr + r x 

where a 3 denotes the third Pauli matrix a 3 = diag(1,-1). Compatibility of the over 
determined system (2.2, 2.3) insures that the coefficient q satisfies the NLS equation. 

Focusing attention upon the "spatial flow" (2.2), we let y(1) y(2) be the 
fundamental solutions of ode (2.2), i.e. solutions with the initial condition: 

Y(1)(O) = (10), Y(2)(O) = (~ )  �9 

With these initial conditions, the differential equation may be rewritten as an 
integral equation 

X 

I i~ x] J" [ 0 iol y(1)d~ (2.4) y(1) = e + exp[ia3A(x- t)] - i r  
0 

Y(2) [ O ] e_iX x + - t)] [ O iq] 0 (2.5) 

o 
which, through Weyl's iteration procedure, produces formal series representations of 
Y(J), j = 1,2, together with the estimates 

Is(l)[ < exp{lfmAlx} [ c~ (2.6) 
- L sinh()lq hx/775) J ' 

[y(a)] < exp{llmAlx} [ sinh(Hq~]'x/~) ] (2.7) 
- kcosb([lq~[2x/~) [ " 

Precisely, one has the following 
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Theorem 1. The formal  power series for  y(1) and y(2) converge uniformly on bounded 
subsets of  [0, 1] • C x L2c • L2c . Moreover, they satisfy the integral equations (2.4) and 
(2.5), and the estimate (2.6) and (2.7). For each x E [0, 1], yO) and y(2) are entire 
functions on C x g~ • g2c . The solution Y@)(.; A; q~), j = 1, 2, is analytic as a map 
from C x L 2 x L 2 into H 1. 

2.2.1. Floquet Spectral Theory. The integration of the NLS equation is accomplished 
through the spectral theory of the differential operator L = f ,(~,  

g = - i~3 ~ - r 

for coefficients ( = (q, r) which are periodic, H 1 functions of z. We view L as an 
operator on L2(R), with dense domain H 1. In this L e setting, the spectrum (7(L) is 
defined as the closure of the set of complex A for which there exists a solution of 

g ~  = ~ ,  

which is bounded for all z E ( - c o ,  +oo). Since the coefficient q'is a periodic function 
of z, Floquet theory can be used to characterize this spectrum. 

Floquet theory begins from the fundamental matrix M = M(z;  A; q~), which is 
defined in terms of y(1) and ~rr(2): 

M = columns{Y (1), y(2)}. 

Next, one introduces the transfer matrix T 

T(A;q3 = M(1;A;q3. 

Then the spectrum (7(L) can be characterized as the set of all A for which the 2 • 2 
matrix T has eigenvalues on the unit circle. Since the de tT = 1, this is in turn 
determined by a single scalar function called the Floquet discriminant: 

z~:C x H 1 -4 C by A(A;q-) = tr{T(A; ~ } .  

In terms of A the spectrum is given by 

cT(L(q~)) = {A E C ] A(A) is real and - 2 _< A _< +2} .  

The integration of NLS is actually accomplished through an interplay between 
the ), and r dependence of the Floquet discriminant A(A; q~. First one establishes, 
as a corollary to Theorem 1, that A is entire in both X and ~' = (q, r). Moreover, a 
calculation [27] shows that its Poisson bracket with the NLS Hamiltonian vanishes: 

{A(A; q~), H(q~)} = 0 VA, 

where the Poisson bracket is defined as 

1 

{F, G} = / ( g r a d  F, J grad G) dx .  

0 

Thus, A(A; ~ generates an infinite family of NLS constants of motion, one for each 
A. Moreover, this family of invariants pairwise commutes, 

{z~(;~; q0, z~(~'; 0 }  = 0 vA, ~ ' .  
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The difficulty with the spectral theory of L is that this operator is not selfadjoint. 
Nevertheless, certain properties of  its spectrum follow as in the ;tandard Floquet 
theory of Hill 's  operator [22]. The spectrum occurs in bands, not necessarily real, 
which terminate at periodic points, Aj, for which A(Aj) = •  Furthermore, 

asymptotic behavior of  A(A) for large [AI is easy to establish, from which one obtains 
the asymptotic behavior of  the periodic points: 

A j ~ j : r  as A j - - + •  

The above spectral properties apply for general (q, r)  ~ Hp~e~; however, we are 
primarily interested in focusing NLS which has the constraint r = - q .  In this focusing 
case, symmetries of  L imply the following facts: 

(i) R C or(L), 
(ii) k ~ o - ~ A ~ ,  

(iii) for even q(m), A ~ a ~ - A  ~ ~ .  
Next we define critiealpoints and multiple points: First, critical points are defined by 
the condition 

&3(A;d), q) ~o(q) = 0 ; 

while a multiple point, denoted A (m), is a critical point for which 

I ~ ( ~ ;  q, ~)1 = 2. 

The algebraic multiplicity of A (m) is defined as the order of  the zero of A(.k) • 2. 
Usually it is 2, but it can exceed 2; when it does equal 2, we call the multiple point 
a double point, and denote it by /V d). The geometric multiplicity of A('~) is defined as 
the dimension of the eigenspace of  L at A (~), and is either 1 or 2. 

Turning to properties of  the spectrum of L which are rather directly related to the 
nonselfadjointness of  L, we consider a critical point A ~ at which 

IA(A~)I < 2.  

I q l  - -  q r  . " * -  " q r  
. ~  q o ~Oq o o ' 

- 5  0 5 - - 5  0 5 - 5  0 5 - 5  0 5 

i i i i i i : i i i l  i i i i ; i t ] i  i i i i i i i i i i  i , , z : , - ,  i 

! t t { t t t \ \ t \ t ! / ! ! i / # i i # #  ! i t t t t k t t i !  i i i i ! i i i i ]  
! i ! ! t \ \ \ ' , . \ ~ ! / l i i  ! # f # i ] ! t k \ \ ' , . ~ ' . e  : ! i i !  i i ~ ! f 
! i i i t t X \ \ " g " . ; ' i  i / / # i i ! i i i i t \ ',,',~ e'i/7!t li 
i i i i k t \",..:f...."i ! ? i i i ! i i i",. \'., /i! " ! i 
i i I i t \ \ "~" 1 ! I J I i i i i i i t \ \ i ] l # i i 

I i ' i ~ \ "-, t i i / I I . . . .  i ~ t \ 4 r i i i i i i 
i ~ i ! i " i , i ' i t i I } i " ' ~ I i ] i 

A 

L/ v O VvAV t v v 
Fig. 2.1. Some typical spectral profiles. (The spectrum is solid; curves of real A are dotted) 

Such a critical point is a point of  bifurcation of the spectrum. (See Fig. 2.1 for two 
typical spectral profiles; more may be found in [27], with detailed descriptions.) 
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Furthermore, asymptotic behavior for large real A shows that there are a countable 
number of such critical points on the real axis which approach jTr as j -~ c~, and 
at which a short "spine" of  spectrum bifurcates from the real axis into the complex 
)~ plane. In addition to these short spines of spectrum which are connected (through 
spectrum) to the real axis, examples related to solitons show that there can also exist 
curves of  spectrum in the complex A plane which are not connected (through spectrum) 
to the real axis. Nevertheless, this nonselfadjoint behavior is not as complicated as 
one might initially anticipate. In fact, it can be controlled with the aid of  certain 
"counting lemmas" which we now describe. 

2.3. Counting Lemmas 

Following P6schel and Trubowitz [29] for Hill 's  equation, one [20] can establish 
counting lemmas for control of the spectrum. For convenience, we assume that 

L e m m a  I (Counting Lemma for Critical Points). For q E H 1, set N = N(llqJJH1) E 
Z + by 

N(IIqIIH1) = 2[ltqll~ cosh(llqll2) + 3HqHH1 sinh(llqll2)], 

where [z] - first integer greater than x. Consider 

n ' ( ~ ; q )  d n ( . X ; q ) .  

Then 
�9 (i) A'(.k; q) has exactly 2N + 1 zeros (counted according to multiplicity) in the 
interior of the disc D - {.k E C: I.kl < (2N + 1)7r/2}; 
�9 (ii) Vk C Z, Ikl < N,  A'(A, q) has exactly one zero in each disc {x ~ c:  I ,-k l < 
7r/4}. 
�9 (iii) AI(,~; q) has no other zeros. 
�9 (iv) For I)q > (2N + 1)7r/2, the zeros o f A ' ,  {)~, IJl > N} ,  are all real, simple, 
and satisfy the asymptotics 

, ~ = j T r + o ( 1 )  as I J l - - + e c .  

Similar counting lemmas exist for the periodic points and for the Dirichlet 
eigenvalues [27]. The proof [20] of  these counting lemmas proceeds as is in [29]. 
Rather than present it here, we make several remarks: 

Remark 1. To understand the content of these lemmas, it is useful to begin with a 
consideration of the spectrum for q = 0, followed with the spectrum for q(x) = c, 
a constant independent of  x. In both of these cases the spectrum can be computed 
explicitly. The spectrum for a general potential approaches that for q = 0 as )~ -+ ec, 
as is easy to establish through asymptotic expansions. As a result, the critical points 
)~ must approach jTr for large j .  The counting lemmas provide somewhat different 
information than this asymptotic behavior. Rather than demanding that the critical 
point ),~ be extremely close to jTr, one relaxes the tolerance and only demands that 
)~ be within a disc of  radius 7r/4 centered at jTr (see Fig. 2.2). With this relaxed 
tolerance, the desired behavior sets in at much smaller j ,  I J[ > N.  
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- N - 2  -N-1  N+I N+2 ~) 

Fig. 2.2. The disc D and the integer N of the Counting Lemmas 

Remark2. Moreover, the lemmas state that this integer N is controlled by the H l 
norm of (. In the case of  Hill 's equation, similar control can be obtained by only the 
L a norm. For the Zakharov-Shabat system, such L 2 control is not possible, as can 
be seen from a counter example which is built from the potential q(k) = q exp(ikx), 
k E R. (The spectrum of q(k) is shifted by k/2 from the spectrum of q, yet q and q(k) 
have the same L 2 norm. Their H 1 norms differ, of course.) 

Remark3. From these two counting lemmas, one obtains very good control on the 
spectrum outside a disc D of radius (2N + 1)7r/2, together with some control of the 
integer N.  Within the disc D, little is known about possible spectral configurations; 
however, the problem of classifying all spectral configurations has been reduced to 
a finite counting problem - possibly a very difficult one. Nevertheless, all eccentric 
behavior due to the nonselfadjoint nature of  L is restricted to the interior of  this finite 
disc. 

Remark4. In the counting lemmas, the integer N is controlled by the H 1 norm of 
(. While this may be useful for controlling the behavior of  perturbations of  NLS, it 
is not an NLS invariant. Sobolev estimates can be used to replace the H 1 control by 
control in terms of  the first two invariants. 

Remark5. These counting lemmas amount to an extension of the Gersch-Goren 
theorems of  matrix linear algebra [33] to the (infinite dimensional) setting of  ordinary 
differential equations [28]. In the matrix setting, the bounds are optimal in the sense 
that matrices can be constructed which realize the bounds. It would be interesting to 
construct such realizations in the differential operator case [16]. 

2.4. Isospectral Sets 

Since the Floquet discriminant A is an NLS constant of  the motion, any spectral 
information obtained from it, such as that discussed above, is necessarily "action" 
information. The values of  these action variables fix a particular level set, 

.//~(�9 _-- {~' ~ . ~  ] zx(~; O = A(~; O w,  ~ c } .  
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For focusing NLS with nonselfadjoint /~, a global description of ~/K(q ~) is not yet 
available. (This is in contrast to the KdV situation [24] with its selfadjoint L.) 
Locally, in a sufficiently small neighborhood of an "N-phase" ON, J~(q-) is an infinite 
dimensional torus ( . . .  • S • S • S • . . .); it can be singular, with one or more of 
the circles pinched away. (See [23] for the similar local behavior in the sine-Gordon 
case.) 

Given an isospectral level set ~(q~), one seeks coordinates ("angles") for it. Such 
angle information is provided (modulo the problems of "reality constraints" [12]; [6]) 
by Dirichlet eigenvalues, which are defined as the zeros of M21: 

]~211)~=#j(q) : 0,  

where 3]I is a unitary transformation of the fundamental matrix M, 

= u M u * ,  u = 

These Dirichlet eigenvalues #j are not NLS invariants; rather, they execute oscillatory 
motion under the NLS flow. As indicated by the following "trace formulas,", Dirichlet 
eigenvalues provide the additional "angle" information, which together with the 
periodic eigenvalues, provide a representation of q(x): 

q(x) -~ r(X) = -- ~ [A2k -~ AZk_I -- 2>k(x)], 
kCZ 

q(x) - r(x) = i ~ [k2k -}- k 2 k _  1 - -  2uk(x)]. 
kEZ 

Here uj are the Dirichlet eigenvalues for iq, 

J~f21(1;/~; iq)]k=u j = O, 

and (>j (x), uj (x) ) denote eigenvalues for the translated coefficient q(~)(x ~) = q(x' + x). 
The counting lemma for the Dirichlet eigenvalues shows that these eigenvalues can 

be placed in a natural one-to-one correspondence with the critical points. In particular, 
for each j greater than the "N"  of the counting lemmas, there exists exactly one #O 

near the jth (real) critical point ~ ;  with exactly 2N + 1 #'s inside the disc of radius 

(2N + 1)~r/2. Moreover, symmetries of M show that at each real double point A d (a 
critical point at which A 2 -- 4 vanishes), the associated Dirichlet eigenvalue must be 
locked to that double point. On the other hand, at a complex double point [which is 
necessarily within the disc of radius (2N + 1)7c/2], the associated Dirichlet eigenvalue 
may either be locked or it may be free to move. This property of complex Dirichlet 
eigenvalues within the disc D of being either locked or free is central to the structure 
of the level sets; and, by the counting lemma, this feature is restricted to within the 
disc D. 

2.5. An Ordering of the Spectrum 

In this subsection we will use counting lemma 1 to introduce a natural ordering for 
the critical points {.k~). To understand this ordering, fix ~, N and a disc D by the 
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counting lemmas. (Refer to Fig. 2.2). Outside of the disc D, the critical points are 
real; thus, for IJl > N ,  

,'~LN_ 1 > At_N_2 > . . .  , 

;~v+l < ;~v+2 < . . .  

with ~ ------- jrr. The remaining (2N + 1) critical points {A~}, ]Jl -< N, lie inside 
the disc D. Here a "natural ordering" is not so clear; however, the 2N + 1 critical 
points are either real, or they occur in complex conjugate pairs. Thus, there are an 
odd number 2M + 1 of real critical points, M _< N. With this in mind, we fix ~, and 
complete the ordering: 
real, inside of D 

,~c_ M ~ /~CM+ I ~ , . .  ~ )~ < / ~ . . .  ~ ,~//; 

complex, upper half plane, inside of D 
C )~j, j = M + I ,  . . . , N ;  

complex, lower half plane, inside of D 
~ C  - C  . �9 �9 _ j = A j ,  j = M + I ,  . , N .  

Let ~+(z,  ~) denote the Bloch eigenfunctions of L at [~, A]. These eigenfunctions 
are defined (up to normalization) by the transfer condition across one period: 

~(x + 1, )9 = O(A)~7(x, ),). (2.8) 

Here 0()0 denotes the Floquet multiplier, which is related to the Floquet discriminant 
by 

I 4 A2 (,,~) 4]. (2.9) ~(~) = ~ [A()9  + 

and ~ are well defined functions on the Riemann surface for (~, x /A2(A)-  4), 

and gf+(x, ),) denote the values of ~ on the two sheets over A. At branch points 
(simple periodic or antiperiodic points), the two sheets touch and ~ i  become linearly 
independent. (This is compatible with the fact that at a simple eigenvalue, the 
eigenspace is one dimensional.) At real multiple points, g7 + remain linearly dependent, 
while at complex multiple points they may, but need not, become dependent. These 
two possibilities at the complex multiple points are the key to this nonselfadjoint 
spectral problem, and are intimately related to the fact that the transfer matrix cannot 
always be diagonalized at a complex multiple point. (At a complex multiple point, 
one can only guarantee that it can be placed in Jordan normal form.) 

In any case, for fixed A, these Bloch eigenfunctions can be represented explicitly 
in terms of the columns of the fundamental matrix M(x; A) = column{YO)(x;/X), 
Y(2)(x; ~)}: 

gTq-(x; ~) = a+{M21(1; ~)Y(I)(x;/~) -}- [M22(1; ,,~) - 0q-(/~)] Y(2)(x;/~)}, (2.10) 

where the choice 

a m = ei'ffa, f M H ( 1 , / ~ )  - L0:kl 

V M21(1 , ~) [z32(/~) - 4] 

guarantees the important symmetry 

~b-(x; ~) = •  )0]. (2.11) 
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Remark 1. In order to illustrate these eigenfunctions, it is useful to consider two trivial 
examples. First, consider the case ( =  O. In this case, the multiple points are all real, 
~J = jTr, with geometric multiplicity 2; the Bloch eigenfunctions for the Lax system 
are given by 

~ ( _ ) ) = e x p - i ( I c c + 2 A 2 t )  (01) �9 

Next, we consider the case of q(z, t) constant, independent of z: 

q(z, t) = c exp[-i(2c2t + 7)]. (2.12) 

In this case, the Bloch eigenfunctions are given by 

( e} ~+) ) = exp{+i[~()0 (:c + 2~t)]} ( cexp[-i(2c2t + 7)/2] 
(• - ~) exp[i(2c2t + 3')/2] / " 

In these formulas, ~(~) and ,~j are given by 

~(~)  = jrc. 

This example, of q(x, ~) constant, independent of x, is very useful for illustrating 
several crucial points. First, the spectrum of the linear operator L for coefficients 
independent of x is easily computed from the Floquet discriminant 

A[)~; q'(', t; c, 3')] = 2 cos t~(A) 

= 2 cos[(A 2 + c2)1/2]. 

This spectrum is depicted in Fig. 2.3. 

) 

v n . . - -  - -  v ~ A 

Fig. 2.3. Paths which order the spectrum for the constant potential 
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Remark2. At a solution q(x,t) of NLS, quadratic products of these eigenfunctions 
can be used to construct solutions of the linearization of NLS about q(x, t). Moreover, 
these solutions form a "biorthogonal" basis for Y [24, 7, 19, 2]. From this basis of 
linearized solutions, one can infer linearized stability and instabilities of q(x, t). For 
example, in the case (2.12) when one examines the elements of the basis which are 
labeled by double points in the spectrum, those associated with real double points are 
temporally oscillatory, with no growth in time. These solutions of the linearization 
represent neutrally stable linear modes. On the other hand, those elements associated 
with complex (in this case, purely imaginary) double points grow exponentially in 
time t at a rate 

aj = 4 IAjln(Aj). 

Such instabilities, associated with complex double points in the spectrum of L, will 
play a central role in this paper. 

Remark 3. One can ask for a natural ordering of these basis. For self adjoint problems, 
eigenfunctions are naturally ordered by their oscillations; however, for nonselfadjoint 
problems, such general orderings do not necessarily exist. Here, due to the counting 
lemmas, a natural ordering certainly exists for the eigenfunctions associated with 
spectrum outside of the disc D, leaving 2(2N + 1) members of the basis to be 
ordered. For fixed ~' C • any prescribed labeling of these 2(2N + 1) elements is 
valid; however, it is intriguing to ask how a prescribed labeling depends upon ~ One 
possibility, which is really an attempt to extend oscillation theory to this nonselfadjoint 
setting, is to use the function n(A) to construct an ordering [13, 7]. To illustrate this 
possibility, fix ((c,-y) = q(,  "; c, 7) and view n[A; ~c,-j] as an Abelian integral on the 

Riemann surface associated with ( V ~  + c2) . We fix a contour of integration to make 
this Abelian integral single valued. For this example, it is sufficient to consider two 
contour integrals on the complex A plane, one for each sheet on the Riemann surface: 

~• 4(~,~)] = dA 

• 

= V/'~- -~- C2 

where the integration is taken along the two contours depicted in Fig. 2.3. These 
contour integrals fix an ordering at q(c,;~) which can be uniquely extended to a small 
neighborhood of ~c,~). This neighborhood is finite. Its size is fixed by the integer N 
of the counting lemmas as follows: One locates the closest potential ( ,  to ~c,~) (in 

H 1) for which there exists a critical point A~ in the disc D such that A"(A~) = 0. 

8 is then defined as the H 1 distance from q, to ((c,:~). This distance 6 is positive 
(not zero) because there are only a finite number (2N + 1) critical points to check. 
One then chooses the neighborhood to be a ball of radius r < 6. Unfortunately, this 
ordering cannot be extended unambiguously to a global one valid throughout the H ~ 
ball of the counting lemma. It would be very interesting to understand the monodromy 
associated with this extension procedure, which because of the counting lemma is a 
finite dimensional problem. 

2.6. The First Variations of A(A; q-) 

Since the Floquet discriminant is entire in both q and A, it has derivatives which can 
be calculated by "variation of parameters" (see, for example, [27]): 



188 Y. Li, D.W. McLaughlin 

Lemma 2. 

�9 

A(A;q, r )  = i W ~ I r  kr162 ' (2.13) 

1 
dA x / Z ~ - 4  / + _ 
dA -- i W~:~b-2]  [~b, r + r 1 6 2  (2.14) 

o 

In these formulas, the Bloeh eigenfunctions ~2 :~ are given explicitly by Eq. (2.10). 

3. Critical Structure of Fj 

We f i x (  E .r a', as well as a small neighborhood of 0", Nb(q~). In terms of the ordering 
of Sect. 2.5, we introduce the important sequence of functionals: 

Fj:Nb(q-) --+ C by Fj ~ A(A~(q~);q). (3.1) 

Two points must be emphasized: First, for IJl > N,  Fj  is real and Fj E [ - 2 , 4 2 ] ;  

second, for complex critical points IJl = M + l, . . . ,  N,  Fj = F} ~ + iF~ is not 
necessarily real. Thus, it will sometimes be convenient to use an equivalent sequence 
of real valued constants Gj: 

Fj, [Jl _<M, 

�89 + F  i ] ,  j = M + I , . . . , N ,  

G j =  1 
[ F j - F _ i ]  ~ , j = - M - 1 , . . . , - N ,  

( -1)JFj ,  [j] > N.  

3.1. First Variational Condition 

We fix j ,  and, for 0' E N b throughout which AP'(A~) r 0, we study critical points 
of the functional F]. Formulas 2.14 and 2.13, together with the fact that AC(q -) is 
differentiable because it is a simple zero of A ~, immediately yield the following 
representation of grad Fj:  

Lemma 3. 

V/-~__4  + . c - . c 
gradFj(q,r) = i  W ~ : ~ b - - I  + �9 c - �9 ~ " (3.2) 

[r  (z, ~ j )~ l  (x,) ,3)]  

Remark 1. Formula (3.2) for the grad Fj is actually valid even if A"[A~(q~); q~] = 0, 
as a limiting calculation shows. 

Remark2. The functions qb E S at which A"[A$(0"b);~D] = 0 are branch points 
for the functionals Fj(q-). This branching presents challenging obstacles to a global 
theory (see Sect. 5). When working with the functionals Fj(q), it is judicious to avoid 
a branch point ( =  q*b with the condition A"[A~(q~); ~ ~; O. 
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For real critical points, the invariant Fj(q-) is a real valued functional on g ' ;  
however, for complex critical points, this invariant is complex valued and we view 
the functional as two real valued ones: 

FCq-) = + iVS(q-). 
These two invariants are functionally independent, as the following lemma states. 

L e m m a  4. For a complex critical point A~(q~), we assume that gradFj Iq ~ O, and that 
q and qx are linearly independent as functions ofx.  Then F~ and FXj are functionally 
independent. 

Proof. It's sufficient to prove that Fj and ~'j are functionally independent. The 

complex critical points have been ordered so that A~ = )~Lj. This ordering, together 
with representation (3.2) for the first variation of Fj, shows that we need only to 

prove that ( ~ + r  and (Zb+~b-)(A~) are linearly independent. The assumption 
that they are linearly dependent, together with the squared eigenfunction equation, 
implies that either q and qx are linearly dependent or )~ = A~ - thus establishing the 
lemma. 

Next, for fixed j ,  we consider critical potentials q. for which 

gradFjlq, = 0. (3.3) 

The following lemma is seen to be valid, mostly by inspection of formula (3.2): 

Lemma 5. Except for the trivial case q = O, 

1) ~F j = 0 ,(:ez 
6q 

5Fj 
5~ = 0 , v  M ( 1 ;  ),~, 0",) = •  

2) gradVjlq, = 0 ~ A'(A~(0",); 0~,) = 0, 

IFj(0",)[ = 2, 
.~( ( . )  is a multiple point. 

Remark. The reverse implications for statement 2 of this lemma are not valid. There 
exists 0' c Y with a (complex) double point ),~(q~) at which Fj = 2 and A' ---- 0, and 
yet gradFj ~ 0. Indeed, such potentials, which can be constructed with B~cklund 
transformations (see Sect. 4.2), are at the heart of a hyperbolic structure which is 
central to our theory. 

Remark. In the exceptional ( =  0 case, grad A vanishes identically in .~, as is apparent 
from (3.2). 

Remark. The facts that 

1. = = 0 ,  

2. 5 q V ~ = 0 ~ F j  = 0  

are immediate consequences of Lemma 5. Fact 1 states that F~ and F~ share the same 

critical manifold. Fact 2 states that critical functions of F~ must lie on the level set 

F~ = 0. These two facts will be important for a Morse theory for NLS level sets, as 
discussed in Sect. 5. 
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3.2. Critical Tori 

Assume that neighborhood N b contains an "N-phase" potential q'N and is small 
enough that, for typical ( ~ N b, the isospectral level sets consist of (infinite) 
dimensional tori; the critical points q, lie on "singular" tori, with one or more of 
the circles pinched off. (One circle is pinched off for each critical F 1 associated to a 
real critical point, while several circles may be pinched for each critical Fj associated 
with a complex critical point.) These singular tori themselves are lower dimensional 
tori, with or without "whiskers." The existence of these critical tori is guaranteed 
by inverse spectral theory which can be used to construct some of them in terms of 
finite genus theta functions. (The remaining critical tori could be obtained through 
limits to infinite genus theta functions, and the whiskered toil can be constructed 
by B~icklund transformations of the singular tori as discussed in Sect. 4.2.) It would 
be interesting to construct these critical tori directly from variational problem (3.3), 
without invoking inverse spectral theory except in a context which is natural to that 
variational problem. However, we have not done so. Rather, to construct critical tori, 
we have freely used results from the general theory of the inverse spectral transform. 

3.3. The Hessian of Fj 

For fixed j and 0" E N b in which A'/(A~) r 0, the critical points of Fj consist in a 
subset Sj C N 6 such that 

gradFjlq, = 0, q', E Sj .  

F i has critical values of -t-2 on S 4. Here we fix 0", E S~., and consider the Hessian of 

F i at q,. 
This Hessian can be expressed in terms of quadratic products of eigenfunctions 

(2.10) at the double point A,a, with a different normalization which is valid in a 

neighborhood of A], provided A"(AJ) r 0: 

i 
O~+ ~ O~- ~ 

Here the coefficient b (assumed 5k 0) is given by 

1 

b = f M12M22doc. 
0 

It will also be useful to define two additional coefficients 

1 

a = / MllM21dx , 

o 

1 

e = f t M l l M =  + M12M21]dx. 
o 
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The following relationship between these coefficients can be established: 

A"(A d) = A(A d) [4ab - c21. 

In terms of these coefficients, one computes (see [20]) two squared eigenfunctions: 

X(+) = [@+)]2 + [r 

= [z~,/]--l /2{ z~tt(AJ ) } 
bA(xd)  (y(2))2 -F 2[a(y(2)) 2 -- c(Y(1)Y (2)) -? b(Y(1)) 2] , 

X(-- ) : [r __ [~)(--)]2 

= v~[Mtt(1)]3/2 [2b[---c (Y(2))2 _ y(1)y(2)] 

If one decomposes X (--) into 3" | i,.~. 

x i  = x~  + X ~  , 

�9 : k  

then X~ and ~Xif E 5 .  Finally, we define the projections 

= (-iKx +s,  q3, 

~5.~ 2 = (_fiX2 , ~Sq~ , (3.4) 
= (Kx2, eq , 

The symmetries satisfied by the X's, together with the fact that ~ (C  • ,  show that 
these projections ~ are real. In order to understand why these projections are natural, 
recall that "squared eigenfunctions" generate a biorthogonal basis. When expanding G0' 
in terms of the linearized basis, the expansion coefficients are computed by projections 
onto members of its adjoint basis. 

In addition to the reality of the projections, a second important property is the 
+ + dimension of the span of {X f ,  XS,  iXi , iX~ } In general, at a complex double Z 

point of geometric multiplicity 2, these four }functions are linearly independent and 
the dimension is four. On the other hand, at a real double point, the span is two 
dimensional, and one has the following dependencies: 

A] real, Mll = - 1 ( o  zSH(AJ) > 0): 

/~J real, M n = 1 ( o  A"(~ d) < 0): 

where F is defined by 

J r  . 

)qs = Fx~),  (3.5) 

-}- m ~ .  - -  

Xif  = F X~f , 

r=-V  

(3.6) 

A calculation (see [20]) then yields 
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Theorem 2. Let @ denote a critical point of F]. The Hessian of Fj at @ is given by 
1. AJ real." 

Sial z ~2Fj = ~ 2 F R - -  Z~H(~F[(~,_,~I)2-Jr-(~_,2)2], 
Sial 2 . . . .  2 

62Fj = 6 2 F  i f -  Att--777T~[(b=3) -F(6•)21 ,  
t a p  

2. A~ complex: 

A" > 0; 

A"  < 0.  

(3.7) 

(52F~ ~-- [(6,_.,~1) 2 -j- (~5,_,~2) 2] - [((5~,3) 2 Jr- (6,_~4) 2] 
(3.8) 

62F] : 2[(6s 9 (~&) - (~s~) (~s3)]. 

For applications, even functions of x are particularly important. When both 0"(x) 
and 6~(x) are even functions of x, the projections 6 ~  become dependent and the 
following corollary results. 

Corol lary 1. Let ~(x) and 6((x) be even functions of x, and consider a purely 
imaginary complex double point AJ. One has 

4a~ (6S2 _ 6S32 ) -g- 

4a~4(a~) 

4a~,a(>, 9 

""(,"F) 
A(.k d) = - 2 ,  A(A]-------)- > 0; 

40,9  = 2, a(,xJ-----; > o; 

a"(:~ 9 
A(A d) = - 2 ,  A(AJ------S- < 0; 

za"(xJ) 
-4ag  (6Z2 + 6F2 ) A ( I  d) = 2, - -  < O. 
- 7 -  ' a(~ 1) 

Remark. For ~' independent of x, one has " a d A Ob)/A( l j )  > 0 when A = - ) , .  We 
suspect, but have not been able to establish, this condition for even functions q', with 

Remark. Examples indicate that the Hessians in (3.7) and (3.8) actually have limits 
at the branch points, q* ~ @b. We will not make use of this regularity, however, 

3.4. The Hessian and Passage Through Spectral Singularities 

The Hessian of Fj, as summarized in Theorem 2, contains considerable information 

about the structure of the spectrum of L even though it involves only local information 
in a small neighborhood of ~.. In particular, it enables us to describe spectral 
configurations near singular ones. The passage through these spectral singularities 
occurs in the numerical experiments on perturbed NLS equations and is central to 
the chaotic behavior observed in those experiments. We conclude this section with a 
brief discussion of the Hessian and these spectral configurations. 
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First, consider the information about the spectrum of L which is contained in this 
Hessian. At a real critical point ),~, Fj has a maximum of +2 (or a minimum value 
of - 2 )  at a critical potential q..  In a neighborhood of q, ,  the value of F 5 can only 
decrease (increase). But Fj can be interpreted as the height of the Floquet discriminant 

A(A) over the critical point A~. This fact, together with the saddle structure of the 
real part of the analytic function A(A), shows that, in a neighborhood of the critical 
point A j,  no gaps on the real axis can appear in the spectrum of L; that at the critical 
point A~, a spine of spectrum bifurcates off the real axis into the complex A plane; 
and that the length of the jth spine vanishes when Fj is critical as a functional of ~. 
Typical "spine-like" spectral configurations are depicted in Fig. 3.1. 

Fig. 3.1. Typical "spine-like" spectral configuration 

Much more interesting behavior is associated to complex critical points. At a 
complex critical point A~, Theorem 2 shows that Fj has a saddle structure as a 
functional of ~ While Fj still has critical value +2 ( -2 )  at a critical potential ( . ,  its 
saddle structure in a neighborhood of 0 + has striking consequences which are easiest 
to demonstrate in the case of a purely imaginary critical point A j under the constraint 
of even potentials ((x). Under these constraints, Fj is real valued in a neighborhood 
of q, ,  and can still be interpreted as the height of the Floquet discriminant over the 
critical point A~. Near q,,  [Fj] can increase above 2 and a gap can develop in the 
purely imaginary band of spectrum; for other q near q'., [Fj[ can drop below 2 and 

a spine in the spectrum can bifurcate at A j into the first and second quadrants of 
the complex A plane. That is, the spectrum configuration can develop a "cross-like" 
structure. (See Fig. 5.5.) Furthermore, when the constraints are dropped, still more 
complicated spectral configurations emerge as consequences of the saddle structure of 
the Hessian [27]. Such behavior of the functionals {Fj } should help in understanding 

the "tree structure" in the spectrum of the nonselfadjoint operator L. 
In addition to spectral information, one can also extract information about the NLS 

level sets in function space ~ from this Hessian. Consider a ( E 3 -  for which the 
isospectral set ,S~(q ~) is an (infinite) product of circles. At issue here is how these tori 
change with ~, that is with the (values of) the spectrum, and how they stratify (or 
fill out) the phase space ~ .  Clearly, such a stratification by tori will be organized 
by neighborhoods of those "critical tori" for which one or more of the circles in the 
infinite product has "pinched off." 
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Our idea is to use the functionals Fj(q-) to describe this stratification. The 
vanishing of the first variation should determine the critical tori, and the Hessian 
should determine the "saddle" or "center" of these critical tori. Before discussing 
the possibility of such a Morse theory of NLS level sets in more detail, we first 
use Bficklund transformations to construct the critical level sets; more precisely, to 
construct the stable and unstable manifolds of the critical tori. The indices of the 
Hessian can be used to count the dimension of these stable and unstable manifolds. 
These unstable manifolds are called "unstable whiskers;" the stable manifolds are 
called "stable whiskers;" and the complete structures are called "whiskered toil" [1]. 
This B~icklund construction is the topic of the next Sect. 4. 

4. Global Representations of Whiskered Tori 

In dynamical systems theory, one is often primarily interested in temporal instabilities 
under a particular time flow; here, under the NLS flow generated by the NLS 
Hamiltonian. The saddle structure unveiled by the above expansion does not guarantee 
this NLS instability; rather, it shows that certain Hamiltonian flows generated by 
Fj possess instabilities. Comparison of the Hamiltonian vector fields J grad H and 
J grad F could assess the temporal instability of NLS; however, we have not done 
this comparison. Rather, we address the NLS flow directly. 

4.1. Linearized Instabilities 

Fix a solution 0'(x, t) of the NLS equation which is periodic in z and quasipeilodic in 
t; more precisely, fix a q" on one of the invariant tori. Linearizing NLS about q' yields 
a linearized equation. As mentioned in Sect. 2.5, quadratic products of solutions of 
the Zakharov-Shabat linear system, 

d 

- icr3 ~ + qq + 2~0 + iq~ 

(4.1) 

generate a basis of solutions of the linearization. With this basis one can assess the 
linear stability properties of the solution ~. First, (in the absence of higher order 
multiple points), the basis splits into two parts, one labeled by simple eigenvalues 
and one labeled by double points. There is no exponential growth associated with that 
part of the basis associated to the simple eigenvalues, nor to that part associated to 
real double points. The only possible exponential instabilities are labeled by complex 
multiple points. By the counting 1emma, these are at most finite in number and 
they reside in the disc D. Typically, for each complex double point there is one 
exponentially growing and one exponentially decaying linearized solution. These 
instabilities are associated with the saddle structure described above. However, that 
saddle structure is associated with the topological properties of the critical level set 
while temporal instabilities are associated with one particular flow, the NLS flow. It 
can happen that this particular flow does not "pick up" the unstable direction, and thus 
is accidentally stable. In the case of the sine-Gordon equation, examples exist [10] of 
complex double points which are indeed associated to instabilities and others which 
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are associated to stable behavior for one particular flow. At present, each complex 
double point must be investigated individually for instability with respect to a given 
flow. Those linearized solutions which do behave exponentially generate a basis for 
the (finite dimensional) tangent spaces of the stable and unstable manifolds (for the 
NLS flow) of the critical toms. 

4.2. Biicklund Transformations 

Using B~cklund transformations one can exponentiate these linearized solutions to 
obtain global solutions of the NLS equation. Fix a periodic solution q'(z, t) of NLS 
which is quasiperiodic in t, for which the linear operator L has a complex double 
point u of geometric multiplicity 2 which is associated with an NLS instability. We 
denote two linearly independent solutions of the Zakharov-Shabat linear system (4.1) 
at A = u by (q~+, q~-). Thus, a general solution of the linear system at (q', u) is given 
by 

j(x,  t; u; c+, c )  : c+~ + + c_q~-. (4.2) 

We use j to define a transformation matrix [30] G by 

G = G ( A ; u ; ~ ) - N (  A-uO )~_f,O ) N - l ,  (4.3) 

where 

Then we define Q and k~ by 

and 

I@1 - -  (}2 ] (4.4) 
N~-~ ~)2 ~i " 

Q(z,  t) =_ q(x, ~) + 2 ( u  - p) ~b1~2 
@1(~i -~- ~b2(~2 

(4.5) 

k~(x, t; A) - G(A; u; r t; A), (4.6) 

where ~fi solves the linear system (4.1) at (~ u). Formulas (4.5) and (4.6) are the 
B/icklund transformations for the potential and eigenfunctions, respectively. We have 
the following 

Theorem 3. Let q(x, t) denote a periodic solution of NLS, which is lineaHy unstable 
with an exponential instability associated to a complex double point u in a(L(q-)). Let 
the complex double point u have geometric multiplicity 2, with eigenbasis (r r  
for linear system (4.1), and define Q ( x , t) and ~ ( x , t; A) by (4.5) and (4.6). Then 

(i) Q(x, t) is an solution of NLS, with spatial period 1; 
(ii) cr(s = cr(L(q~)), �9 

(iii) Q(x, t) is homoclinic to q(z, t) in the sense that Q(z,  t) --+ %< (z, t), exponentially 
as exp(-cr, lt [) as t --~ 4coo. Here qo• is a "'torus translate" of q, o-~ is the nonvanish- 
ing growth rate associated to the complex double point u. For finite dimensional tori 
explicit formulas exist for this growth rate and for the translation parameters O=k. 

(iv) k~(x, t; A) solves the linear system (4.1) at (Q, ,\). 
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This theorem is quite general, constructing homoclinic solutions from a wide class 
of  starting solutions q'(z, t). Its proof  is one of direct verification, following the sine- 
Gordon model [8] with the formalism of [30]. Periodicity in x is achieved by choosing 
the transformation parameter A = v to be a double point. 

In references [26] and [27], several qualitative features of these homoclinic 
orbits are emphasized: (i) Q(x, t) is homoclinic to a torus which itself possesses 
rather complicated spatial and temporal structure, and is not just a fixed point; (ii) 
nevertheless, the homoclinic orbit typically has still more complicated spatial structure 
than its "target torus." (iii) When there are several complex double points, each with 
nonvanishing growth rate, one can iterate the B~icklund transformations to generate 
more complicated homoclinic manifolds. (iv) The number of  complex double points 
with nonvanishing growth rates counts the dimension of the unstable manifold of  
the critical torus in that two unstable directions are coordinatized by the complex 
ratio c+/c_. Under even symmetry only one real dimension satisfies the constraint of 
evenness, as will be clearly illustrated in the following example. (v) These B~icklund 
formulas provide coordinates for the stable and unstable manifolds of the critical toil; 
thus, they provide explicit representations of  the critical level sets which consist in 
"whiskered toil." 

4.3. An Example: The Spatially Uniform Plane Wave 

As a concrete example, we mtum to the spatially uniform plane wave discussed in 
Remark 1 of  Sect. 2.5. From the eigenfunctions given in that remark, one can construct 
the fundamental matrix 

A 
cos nx + i - sin nx 

M(x; A; C) = - 
i C sin nx 

from which the Floquet discriminant can be computed: 

A(A; C) = 2 cos n .  

From A, spectral quantities can be computed: 

Simple Periodic Points: A ~: = -4-/c; 

Double Points: ~(A]) = j r r ,  j E Z ,  

c d Critical P o i n t s :  Aj  = Aj  , j E Z ,  

A~ = O. 

c ] 
i - -  sin ecx 

/g 

A 
cos ~x - i - sin ~x 

/g 

j s k 0 ;  

j r  

(4.7) 

(4.8) 

For this spectral" data, there are 2 N  purely imaginary double points, 

(.~d)2 = 71.2j2 _ C2,  j ----- 1,2, . . . ,  N ,  (4.9) 

where 
[ r r 2 N  2 - e 2] < 0 < [ r r 2 ( N  -t- 1) 2 - e 2 ] .  

The linearized basis as mentioned in Sect. 2.5 shows that these complex double points 
are indeed associated with instabilities, with temporal growth rates given by 

~rj = 41AJlec(Aaa.), j = 1,2, . . . ,  N .  (4.10) 
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From this spectral data, the homoclinic orbits can be explicitly computed. A 
single B~icklund transformation at one purely imaginary double point yields Q = 
Q H(X, t; c, 7; k = 7r, c+/ c_): 

[cos 2p - si_n p sech ~- cos(2kx + r  -_ i sin 2p tanh ~-] Q~ [ 1 + sinp sech ~-cos(2kx + r ] 

x ce -~(2c2t+~) - - +  e~:2iPee -i(2c2t+'y) as co ~ T o e ,  (4.11) 

where c+/c_ ==_ exp(0 + i/3) and p is defined by k + u = cexp(ip), ~- =- at  - ~, and 
r =-- p - (fl + rr/2). 

Several points about this homoclinic orbit need to be made. 
(i) The orbit depends only upon the ratio c+/c_,  and not upon c+ and c_ 

individually. 
(ii) QH is homoclinic to the plane wave orbit; however, a phase shift of - 4 p  occurs 

when one compares the asymptotic behavior of the orbit as t --+ - o e  with its behavior 
as t --* +oe.  
(iii) For small p, the formula for QH becomes more transparent: 

QH -~ [(cos 2p i sin 2p tanh T) - 2 sin p sech ~- cos(2kx + r ce -i(2c2t+v) . 

(iv) The complex transformation parameter c + / c  = exp(co + i/3) can be thought of 
as S • R. In the formula an evenness constraint in x can be enforced by restricting 
the phase r to one of two values - 

r = 0,7r. (evenness) 

In this manner, evenness reduces the formula for QH from S x R to two copies 
of R, and even symmetry disconnects the level set. Each component constitutes 
one whisker. While the target q is independent of x, each of these whiskers has x 
dependence through the cos(2kx). One whisker has exactly this dependence and can 
be interpreted as a spatial excitation located near x = 0 - while the second whisker 
has the dependence cos (2k (x -  7r/2k)), which we interpret as spatial structure located 
near x = 1/2. In this example, the disconnected nature of the level set is clearly 
related to distinct spatial structures on the individual whiskers. 

In this example the target is always the plane wave; hence, it is always a circle of 
dimension one, and in this example we are really constructing only whiskered circles. 
On the other hand, in this example the dimension of the whiskers need not be one, 
but is determined by the number of purely imaginary double points which in turn is 
controlled by the amplitude c of the plane wave target and by the spatial period. (The 
dimension of the whiskers increases linearly with the spatial period.) When there are 
several complex double points, Bgcklund transformations must be iterated to produce 
complete representations. While these iterated formulas are quite complicated, their 
parameterizations admit rather direct qualitative interpretations [31]. 

Thus, B~icklund transformations give global representations of the critical level 
sets. In the next section we discuss neighborhoods of these critical level sets. 

5. Toward a Morse Description of the Isospectral Stratification 

In this section we introduce a Morse theoretic description of the NLS level sets [9]. 
A goal of such a Morse theoretic study of the integrable NLS system would be to 
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understand how the tori and singular tori, which constitute the invariant isospectral 
sets of f~, stratify the phase space S .  This phase space is too large. In order to make 
use of the control provided by the counting lemmas, we restrict to a smaller invariant 
subset of fi~. 

First, we use the invariants of H 0 (the L 2 norm) and H 2 (the energy) in order to 
define a subset 2 (h) C Aft-: For fixed positive numbers h 0 and h 2, 

9 (h) - {4E .Yl  H0 -< h0, I//21 -< h2}, 

Sobolev arguments show that the set 3 (h) is a closed invariant set which is bounded 
in H 1 and therefore compact in L 2. For q' E ~(h), the "counting lemmas" identify an 
integer N = N (h) and a disc D = D (h) in the complex plane. 

For q" �9 .2(h), all critical points {A~}IJI> N are real and can be ordered without 

ambiguity V0" C 2 (h) by the counting lemma. On the other hand, for the 2 N +  1 critical 
points inside the disc D, a single valued ordering throughout 2 (h) is impossible 
because of collisions of critical points which occur when A'[A~(q-); 4] = 0. At best, 

any fixed local ordering, at a fixed 4 �9 2 (h), extends throughout . 2  (h) to a multiple 
valued ordering involving permutations of the colliding critical points. Following [2], 
for any fixed j ,  IJ[ <- N, A~(4) is a multiple valued analytic function whose values 

lie in the set {l~(q ~) Vk, [k[ _< N}. The "branch points" are those functions qb �9 ~(h) 
on a variety in . 2  (h) defined by 

att '~;(qb);  qb] = At'[/~;(0*b); q'b] : O, 

for some ]Jl -< N. 
In terms of this ordering, we consider the sequence of functionals: 

Fj:3(h)---~ C by Fj = A(A~(~;q3, (5.1) 

together with the equivalent sequence Gj as defined immediately below Eq. (3.1). The 

functionals Gj, ]j] _< N, inherit the multivaluedness of the ordering. For q �9 j~(h), 

the sequence {j[Gj(qO - 2]} �9 12. In fact, the decay in j is even faster. 

Note that the definition 2 (h) does not explicitly show that it consists only in 
functions 4(x) �9 C ~ ,  for which the terms in the sequence {Gj} decay faster than 
any polynomial. We further restrict: Fix a sequence of positive numbers {~Sj}ljl> N 
which decay faster than any polynomial as [j] ~ oc. Then we use the sequence of 
constants of motion, {Gj}]jI>N, as ordered by the counting lemma, to define a smaller 
invariant set: 

2(h,6) _ {0+�9 .~(h) I 0 _< []Gj(q3 - 211 <_ 6j Viii < N(h~}. 
3 (h'e) C 5 is a closed, bounded, invariant set with boundary. Since . 2  h'6) C ,73 (h), 
the counting lemma still applies. Moreover, .r (h,6) is compact in C k. 

Our restricted initial goal is to stratify .~2 (h,e) by the level sets of L. Our strategy 
will be to use the entire family { G j , j  = - c o ,  . . . ,  +eo} of constants of motion, 

together with the spectral theory of L, to describe this stratification. Next, we define 
a critical function: 

Definition 1. A function q. �9 2(h'6) is critical if 
1. q,  �9 0 2  (h'6), or 
2. q, is a branch point; or 
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3. on a fixed sheet, away from branch points, members of the set {grad Gj}+~_~ 
are linearly dependent at ( , .  

Several remarks are appropriate: 

Remark l.  Type 1 critical functions are artificial in that the boundary O ~  (h'6) is 
artificial. We will not consider them further. 

Remark 2. ~, is a type 2 critical function for Gj r 

ZV(;~(0",); ( , )  = z~"(~(0",); ~,) = 0. 

Remark 3. ( ,  is a type 3, but not type 2, critical function for Gj e ,  3 at least one j 
such that, at ( =  0",, 

d grad Gj = 0; that is Fj = :L2 and #j = Aj. 

Therefore, for type 3 critical functions, it is sufficient to focus attention upon the 
condition grad Gj = 0. 

Remark4. The type 3 critical functions cannot be isolated points in Z unless 
grad Gj = 0 Vj. Moreover, by a version of "Borg's Theorem" for the Zakharov- 

Shabat operator L, the only function for which all of these gradients vanish is 

the point q', = O. The reason that critical functions cannot be isolated is that the 
functionals {GjVj} constitute a family of commuting constants of motion for the 
NLS Hamiltonian system. Given a critical function ( ,  for which grad G z = 0 while 
grad G k r 0, one can use G k as a Hamiltonian with which to map the original critical 
function ~, to 0', (~-k). The functions ( ,  (Tk) provide a continuous one parameter family 
(indexed by the flow parameter 7-k) of distinct critical functions for which grad G t = 0. 
At 7- k = 0, q,(T k) = ( , ;  the original critical function is certainly not isolated! 

Thus, critical functions of a commuting family of constants of motion are rarely 
isolated. In order to develop a Morse theory for integrable systems, one must study 
manifolds of critical functions for an entire family {Gj, Vj} of constants of motion. 
One approach to such a study in finite dimensions was introduced Bott [3, 5], and 
later adapted to Hamiltonian systems by Fomenko [11]. This theory begins with the 
notion of a "Bott function:" 

Definition 2. Let F be a real valued, differentiable function on a differentiable Hilbert 
manifold J ~ .  A connected submanifold ~" of . ~  is called a non-degenerate critical 
manifold of F,  if 
1. Every point q E ~" is a critical point of F; that is, gradFIq = 0. 
2. For each point q c Y ,  the null space of the Hessian of F is precisely the tangent 
space to U'. 

A function F which possesses such a critical manifold is call a Bott Function. 

This definition is a natural extension to an infinite dimensional setting of a 
definition introduced in [4] for finite dimensions. It immediately applies outside of 
the disc D. 

5.1. Outside theDisc D : I j  ] > N 

In this subsection, we consider Gj ,  I J[ > N. By the counting lemma, the critical 
points {A~, IJl > N} are real and simple; A"(A ~) 7~ 0. Hence, there are not type 2 
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Fig. 5.1. The level set of Gj, fixed IJ] > N. (The value of Gj fixes the radii of the circles which 
comprise the disc on the right) 

critical functions associated with these critical points outside the disc D. Each Gj is 
maximal, with maximal value of 2, at its critical potentials. A consequence is that, 
for each j ,  lit > N ,  for each value of Gj, [2 - Gj] = q ,  the level set is topologically 

a circle. Moreover,  as 6* runs over [0, 5j], this circle fills out a closed disc, as is 
depicted in Fig. 5.1. 

To describe this situation, we first set 6* ----- 0VIj] > N.  In this case, inverse 

spectral theory guarantees that f d  (h,6) is a manifold ~.~N h of dimension [2(N+l)] :  

j ~ h  ~_ ~,~(h;6,6_ N . . . . .  6 N ,0) 

For a fixed 5j = 6* ( r  0), IJl > N,  ff2 (h,6*) is topologically a direct product of 9 N  h 
with discs Dj ,  one for each IJl > N.  

This fact can be restated in the standard language of Morse theory: We define the 
single real valued functional 

G : . 2  (h'6) ---+ R ,  

G - Z 5J - 1 1 2 -  G j ] .  
IAI>N 

T he o rem 4. (1) gradGIq * = 0 r ~', E ~ ;  
(2) G is a Bott function; 
(3) The gradient flow for G shows that 2 (h'6) is homotopic to 2 ~ ;  i.e., 2 N  h is a 
deformation retract of ~(h,6). 

Remark. The functional G controls the smoothness of  ~" because it controls the 
tail of {Fj}. However,  it provides no control of {Fj} for IJl < N;  thus, mollifiers 
must be used to guarantee that the gradient flow for G is well defined on 
.2(h,6). 

The proof of this theorem is only a reformulation of the spectral material described 
above, once one uses the representation of grad G in terms of "squared eigenfunc- 
tions." Part (1) follows from the linear independence of these "squares." 

To summarize, that part of  the stratification associated with the infinite dimensional 
tail IJl > N consists in nested tori, just as in the KdV case with selfadjoint L. 
Thus, it is sufficient to restrict attention to the [2(N + 1)] dimensional invariant set 
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Fig. 5.2. First spectral transition on the invariant plane 7r 

5.2. Inside the Disc D :F j, IJl < N 

The invariant set 2 ~ ,  as defined by setting Gj = 2, ]j] > N,  is a finite dimensional 
invariant manifold with boundary, which is closed, bounded, and compact. To describe 
its stratification by level sets, one can restrict attention to the constants {Gj } rJl-<N" 

Inside the disc D, critical points A c can exist for which A"(A c) = 0; that is, type 
2 critical functions can exist. On the other hand, away from branch points, one can 
estimate the number N D of linearly independent members of the set {grad Gj}IJI_<N 
as follows: 

2 ( N -  N a) + 1 <_ N D ___ 2 N +  1 N O = 2 ( N -  N~) ,  

where N d = the number of double points in the upper half complex plane, counted 
according to multiplicity, and Nff = the number of upper half plane double points 
with a Dirichlet # locked to the double point. 

In contrast to the simple behavior associated with IJl > N,  very complicated 
homotopic behavior can be associated to Gj, - N  < j _< N ,  which in turn is 
associated to passage through critical spectral configurations within the disc D. Of 
particular importance will be the colliding of critical points A~ and transition values 
at which A~ changes from real to complex. Both of these transitions are associated 
with type 2 critical functions. 

A global Morse theory, even for .2~ ,  seems very difficult to us, primarily because 
of the difficulty in labeling all possible critical spectral configurations within the disc 
D; it is certainly beyond our reach at this time. The following examples illustrate 
concretely the difficulties which arise; yet, we believe that they also indicate the 
potential power of a method which uses spectral theory to implement a Morse 
description of the level sets. 

5.2.1. Example 1: Near an Invariant Whisker. Let H denote the plane of constants, 

and, setting N = 1, we define the disc ~(h)  C H by 

~(h)  ~ H n ~ .  

The spectrum of L(qD, for ~' ~ ~(h), consists in the real axis union a single band 
on the imaginary axis. We choose the parameter h large enough that two complex 
double points (conjugates of each other) can exist on this band of purely imaginary 
spectrum, but small enough that no more than two can exist. Figure 5.2 depicts the two 
classes of spectral configurations, together with an important critical configuration. 
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Fig. 5.3, The open annuli B 0 and B a which do not contain the critical circle 

Fig. 5.4. Spectral configuration and level set foliation of real Morse function G~ for real critical 
points inside the disc 

[The origin is always a critical point. Typically, it is simple (A 't r 0); at the critical 
configuration, is is double (A"  = 0).] 

Potentials in ~ (h )  which have this critical spectral configuration consist in a circle 
in ~(h) ,  tq[ = re, which divides 2 (h) into two annuli JS  o and J~l:  

~o:0_~ Iq[ _~ re, ~l:rc~_lql~_rm~x. 
We also introduce two smaller open annuli . 2  o and 3 1  which do not contain the 
critical circle. (See Fig. 5.3). 

Since N = 1, the manifold . ~  is six dimensional. We introduce two six 
dimensional neighborhoods (open cylinders) in ~ ,  U0 and 01, containing the annuli 
~ 0  and ~ 1 ,  respectively. The spectrum of L(q~) for even • E ~-0, is shown in Fig. 5.4, 
and for even r E U1, in Fig. 5.5. Notice that there are two distinct types of spectrum 
for ~ E U1. These two types are important in the following. 

3.2.2. Even Functions. First, we dispence with U0, which is trivial and analogous to 
the behavior associated to [j] > N.  Rather than treat the general case, we focus upon 
the submanifold of functions which are even about x = 0, i.e. ~ ( - x )  = r This 
submanifold ~ h  C 2 ~  is four dimensional and plays an important role throughout 
our studies. The condition of evenness leads us to consider the constraints 

Go = 90, go ~ ( - 2 , 2 ) ,  fixed, 

G _ I = G  1, G 1 free.  
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B C 
A 

xS 1 

A B 

Fig. 5.5 The Trouser for even potentials and its spectral identification 

c 

In this case, the critical value of  G 1 is - 2 ,  which the Hessian shows is a minimum. 
The critical level set is a circle containing only functions on the plane of  constants 
iF/. As G 1 increases from its critical value - 2 ,  the neighboring level sets in ~ h  are 
two tori. The spectral configurations, together with a schematic of  the level sets, are 
depicted in Fig. 5.4. Thus, this trivial case of  U0 is essentially the same as that for 
real critical points outside the disc D. 

Turning to the more interesting case of  U1, we continue with even functions, 
~h  • U-a, for which the complex double point A1 a lies in the band of  spectrum on 
the imaginary axis, and G 1 vanishes identically. We are left with two independent 
constants of  motions, G o and G 1. We define a submanifold by setting G o = 9o, 
g0 E ( -2 .2) ,  9o fixed. This submanifold is three dimensional, lying within •1 h N U1. 
For our choice of  go, Go has no type 2 or type 3 critical points on this submanifold. 
We intend to view G 1, restricted to this submanifold, as a Bott function. 

In this even case, the critical value of G 1 is - 2 ,  and the critical set is once again a 
circle containing only functions on the plane of  constants H.  The Hessian is a 3 • 3 
matrix with one positive, one negative, and one zero eigenvalue. Its null vector is 
tangent to the critical circle; the saddle structure which exists since the Hessian has 
index 1 shows that this circle is a "whiskered circle." 

Next, we use B~icklund transformations to construct an explicit representation of 
this whiskered circle; that is, to construct the critical level set. In the even case, the 
B/icklund formula 4.11 

QH = [ cos 2p -- sin p sech r cos(2kx + r  ~ / s i n  2p tanh r ] 
[ 1 + sinp sechr  cos(2kx + r J 

X ce -i(2c2t+7) --+ eq:2iPce -i(2c2t+7) as ~o ---+ Too  (5.2) 

must be specialized in order to ensure evenness by one of two choices of  r r = 0, 
re. There are two disjoint whiskers, one for each choice of  r each whisker is two 
dimensional, parameterized by ~) and % For fixed % a "figure eight" structure appears. 
Orbits on the critical level set are homoclinic to the critical circle, which is also 
parameterized by % Note the phase shift of  4/) experienced by these homoclinic 
orbits. 
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A neighborhood of the critical level set in this even setting is depicted as a 
"trouser" in Fig. 5.5. The B~icklund formula explicitly shows that one leg of  the 
trouser is associated with a spatial excitation located near x = 0, while the other leg 
is associated with an excitation located near x = 1/2. This fact plays a central role 
in the interpretation of chaotic behavior which arises when the integrable system is 
perturbed [27]. 

In this even setting, the "trouser" can be described in the language of Morse (Bott) 
theory. In order to discuss the homotopy transitions, we define 

M ~ ~ {q6 ~th n gl I G, S c}, 

then 
M - 2 - e  = 2 D  x S 1 ; 

M - 2  = / )  x S1; 

M -2+e = D x S 1 . 

Here e is sufficiently small, D denotes a two-disc, and 2D denotes two disjoint two 
discs. ]3 denotes a two-disc with two points on its boundary identified. The homotopy 
transition formula is then given by 

D X S 1 ~ f )  X S 1 = [2D x S 1 U e l ] .  

Here U represents cell attachment and e 1 represents a 1-cell (see Fig. 5.6). A 1-cell 
is attached because the Morse index of G 1 is 1. 

5.2.3. No Spatial  Symmetry.  Next, we remove the constraint of  evenness. In this case, 
there are three independent constants of  motion, { G  1, Go, G1}. We are tempted to 
freeze G_ 1 = g-1 and G o = 90, and to use G 1 as a Bott function; however, unless 
the value g-1 = 0, G 1 has no critical functions. Moreover, at the level 9-1 = 0, G_  1 
necessarily has a critical function whenever G 1 does. (See Lemma 7 of  Sect. 3.) The 
upshot is that one must consider the pair G_  1 and G I simultaneously. (This situation 
necessarily extends the Fomenko strategy [11].) 

We begin by considering 

G I : U  1 - * R .  

The critical value of  G 1 is - 2 ,  and the critical set is once again a circle containing 
only functions on the plane of constants H.  The Hessian has 2 positive and 2 negative 
eigenvalues, showing the existence of  a saddle structure. 

At a critical function, the value of  G 1 is - 2 ,  and the value of G_  1 is necessarily 
0. Freezing G O at value 9o, we use B~icklund transformations to construct explicitly 
the critical level set 

Go = 90, g0 E ( - 2 ,  2),  fixed 

G 1 = 0 ,  

G 1 = - 2 .  
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~ '  "~ ' 2 ~  

Fig. 5.7a. The construction of the whisker by identifying r with 4 + ~r 

",\ 
I 

Fig. 5.7b. Half of the whole whisker (note the twist) 

xS 1 

) 
For convenience, we again repeat the B~icklund formula: 

QI4 = [cos2p - sinpsech~-cos(2kz__+ r -_ i s in2ptanhT]  

1 + sinp sech ~-cos(2kz + ~b) ] 

• ce -i(2c2t+7) ---+ eT2iPee -i(2c2t+7) as L) --+ zz~oo. 

The situation is depicted in Fig. 5.7. 
The critical level set is constructed from a family of "figure eights," one for 

each value of the angle qk The Bficklund formula shows that the critical level set 
is parameterized by 0 E (0, +oc), r E [0, 2~r), and 7 E [0,270; together with the 
boundaries 0 = 0, ~ = +oc,  each of which consists in a circle parameterized by 
r E [0, 2~). Realizing that all points on the horizontal (r axis of Fig. 5.7a are 
actually identified, one is lead to Fig. 5.7b, which depicts the level set as S • ~2, 
where ~2 denotes a two-sphere with two points identified, together with a twist as 
is seen to be required by examining Fig. 5.7b. The critical level set is connected; we 
have already seen that constraints such as evenness can disconnect it. 

In order to describe a neighborhood of the critical level set, we next consider the 
set 

Go = 9o, 9o E ( - 2 ,  2), fixed, 

G_ 1 = 0 ,  

G 1 = 9 1 ,  91 E ( - 2 - e , - 2 + e ) ,  91 free. 

(5.3) 

This set is not a manifold, but consists in manifolds of dimension 4, together with 
boundary components. Selecting 9o so that G o has no critical points on the 4- 
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, - . ;  : ,, 

Fig. 5.8a. The level set for 91 < - 2  (note the twist, half of the whole figure) 

~ ~ ~', 

' ~', L', ~ ' ,  

( ; 

I �9 

Fig. 5.8b. The level set for g > - 2  (note the twist, half of the whole figure) 

manifolds, one can view the 4-manifolds as three manifolds x S. This situation is 
depicted in Figs. 5.8a and 5.8b. 

To understand these figures, first fix 91 < - 2 .  The spectrum of /~  has a gap on 
the imaginary axis, and the level set is a three toms T 3 as depicted. Note the twist. 
As gl < - 2  varies, one generates a nested family of three tori. 

On the other hand, fix gl > - 2 .  The spectrum of /~ now has a cross on the 
imaginary axis. The level set remains a three torus T 3, but one looking very different 
as depicted. Again, note the twist. 

In summary, as G 1 varies near its critical value of - 2 ,  the neighboring level sets 
are three tori, T 3. Moreover, each level set is connected. The three tori T 3 differ 
depending upon whether G 1 is less than, or greater than, - 2 .  In particular, the three 
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A' [3' 

Fig. 5.8e. The exotic trouser and its spectral identification 

c'  

toil have a twist. The consequences are that the level sets near the critical one appear 
as an "exotic trouser,"as depicted in Fig. 5.8c. 

ha an attempt to set up a Morse theory for these level sets, we begin with the set 

Go = 90, g0 E ( - 2 , 2 ) ,  fixed, 

G_  1 = 0 ,  

GI = g l ,  gl E ( - 2  - e, - 2  + e), 91 free. 

Fomenko 's  strategy of using G 1 as a Bott function will not work because 
�9 this set is not a manifold; 
�9 G_I has critical functions in the set; 
�9 the pair G_  1 and G 1 must be considered simultaneously. 

Nevertheless, one can anticipate the homotopy transitions: Define 

then 
M - 2  e = ( S 1  x D 2) x $1;  

M - 2  = ~ 3  x ,5 '1" 

M 2+~ = B 3 x S I . 

Here 6 is sufficiently small, (S 1 • D 2) is a solid toms , / )3  is a 3-ball with two points 
on its surface identified, and /3  3 is a 3-ball. The homotopy transition formula is then 
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3-ball 

e 2 

Fig. 5.9. Homotopy transitions without even constraints 

given by 
B 3 x S 1 ~ / ) 3  x S 1 = (S t X D z) X S x U e 2 . 

Here U represents cell attachment and e 2 represents the 2-cell (see Fig. 5.9). 

5.2.4. Higher Order Critical Points. This example, near the plane of constants, also 
contains type 2 critical behavior which occurs when A"(A(c); 0) = 0 and involves 
the collision of two or more critical points. Type 2 behavior can occur under even 
symmetry, and it has occurred (with both simple and rather complicated spectral 
configurations) in the numerical experiments of [27] which show temporally chaotic 
behavior of solutions of NLS under perturbations. Several explicit examples of type 
2 spectral and level set behavior may be found in [20]. Limitations of space prevent 
us from presenting those examples here. 

5.3. Discussion 

As one begins to develop a Morse theory for the stratification of isospectral invariant 
sets for the NLS system, the first obstacle that one faces is the infinite dimensionality 
of the system. With the "counting lemmas" this difficulty is readily overcome. 
The infinite dimensional "tail" of the sequence of constants, {Fj}IJI> N, which is 
constructed from (necessarily real) critical points in the exterior of the disc D, is quite 
tame. Nothing emerges but nested toil, just as in the KdV case with its selfadjoint 
spectral problem. 

The real obstacles to a global theory originate from the complicated spectral 
configurations for this nonselfadjoint spectral problem which can occur inside the 
disc D. Although these configurations are finite in number, they seem difficult to 
classify. Any classification or ordering will certainly depend upon the configurations 
of critical points of high order [A~ such that A"(A~) = 0, etc.] Because of the 
presence of these higher order critical points, any Morse or Bott theory based upon 
the constants {Fj} seems necessarily local in function space. Our examples have 
displayed submanifolds, defined by freezing all constants but one, which possess 
critical functions for that one remaining constant for which the index is not invariant 
over the entire submanifold. Other examples show that type 2 critical functions, 
which are branch points for the functionals Fj, necessarily exist. These examples 
make it clear that to study such type 2 critical functions, several constants, {Fj}, 
for several values of j ,  must be studied simultaneously. In addition, in a general 
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situation without additional constraints such as evenness, complex double points also 
require the simultaneous study of two constants, the real and imaginary parts of F. 
Such vector valued Bott functions take one beyond classical Bott theory and pose 
challenging mathematical problems. 

6. A Melnikov Vector 

When studying perturbations of integrable systems, one frequently begins with 
whiskered tori for the integrable system and asks about their persistence under 
perturbations. If the lower dimensional tori persist, hyperbolic structure such as the 
stable and unstable manifolds of the tori persists as well. In the integrable case the 
stable and unstable manifolds coincide, guaranteeing the existence of orbits in the 
integrable system which are homoclinic to the low dimensional critical toil. Under 
perturbations, these stable and unstable manifolds split apart; typically homoclinic 
orbits do not persist. If, however, the perturbed stable manifold intersects transversety 
the perturbed unstable manifold, orbits homoclinic to the persistant tori will exist. 
One method which is commonly used to measure the splitting of stable and unstable 
manifolds is that of Melnikov [32], which uses "Melnikov functions" to provide 
estimates of the distance between these manifolds. These Melnikov methods are 
particularly natural tools with which to prove existence of homoclinic orbits in 
perturbations of integrable systems. 

The detailed geometry of these transverse intersections differs from system to 
system, and from case to case; it is certainly beyond the scope of this article to describe 
this geometry in any detail. Examples in the framework of soliton systems may be 
found in [18, 27, 31, 25, 21]. Here we simply note that in all cases, the Melnikov 
function is based upon the projection of the perturbed vector field (which defines the 
perturbed dynamical system) onto the gradient of an unperturbed constant of motion. 
Our point here is that the constants {Fj}, together with B~icklund transformations, 
provide natural representations of Melnikov vectors for perturbed soliton pde's. 

We begin with a whiskered torus as represented by the B~icklund formulas of 
Theorem 4. First, we consider the case of one instability associated with a complex 
double point u, for which the homoclinic orbit on the whisker is given by B~icklund 
formula (4.5), 

~lq~2 
QH(X, t) = q(x, t) -}- 2(L t -- D) ~1~1 -~- q)2q~2 ' 

where q' lies on the critical lower dimensional toms and f denotes a general 
eigenfunction of L at (q', u), which, when expressed in terms of the Floquet basis 
{~(+), ~7(-)}, takes the form 

Next, we consider a perturbation of the NLS equation generated by a perturbed 
vector field ef(q-). In this setting the Melnikov function can be defined using the 
constant {Fj }, where A~ = u: 

Mj = f [(gradFj, f)Iq=o]dt, (6.1) 

where the integrand is evaluated along the unperturbed homoclinic orbit q' = QH- 
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This integrand can be expressed rather explicitly using B~icklund transformations. 
We begin with Eq. (3.2) for the gradFj ,  

(~Fj__ _ ~ ' ~  -- 4 [~2/ITI(+)fft(--)~2 x 
65  i W [ ~ i ~ t ~ - _ )  ] ~lTt(+)fft(_) J , (6.2) 

", =1 =1 

where ~ +  are a Floquet basis at (OH, u). This Floquet basis can be obtained from 
Backlund formula (4.6): 

~(• t; ~) - G(~; u; ~)~(• t; ~),  

with the transformation matrix G given in terms of the general eigenfunction q~ at 
(5, u) by 

G = G ( A ; u ; f ) = N (  A - u  0 ) N-1 
0 A-F, ' 

N -  ~2 ~1 " 

These B~icklund formulas are rather easy to manipulate to obtain explicit informa- 
tion. For example, the transformation matrix G(/~, u) has a simple limit as/~ --+ u: 

lim G(),, u) -- u - ~ ( 02q~2 --q~lq~2 (6.3) 
:'--><' I~1 ~ t --q52(~1 q)l(~l ) ' 

where I~12 is defined by 

1~712 - ~1(~1 Jr- (~2(~2 . 

With formula (6.3) one quickly calculates 

lim gT(e) = lim GgT{• 

I ~  1 ' 

from which one sees that k~ (+) and k~ (-) are dependent at ((~H, A = u), 

~ ( + ) _  c_ ~(_).  

c+ 

Remark. The dependence of ~ff(+) and k ~(-) is required because, for (~H on a whisker, 
the geometric multiplicity of u is only one, even though its algebraic multiplicity 
is two or higher. Also, it is interesting to note that by manipulating the Bficklund 
formula for ~(• before taking the limit as )~ ---+ u, one can obtain explicitly a second 
linearly independent solution of Lk~ = u~ff, but this second solution is not periodic 
in x. 

Next, the B~icklund formula gives a nice representation of the Wronskian 

W[g ,(+), ~(-)]  = (A - u) (A - P) W [ r  (+), ~( - ) ] ,  

from which the following limit is easy to compute: 

x / ~  - 4 v/A(u)  A"(u)  
lim -- . (6.4) 
x--~ W[~(+),kv(-)]  (u - p )W[~(+) ,~ ( - ) ]  
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With formulas (6.2-6.4), one obtains the explicit representation of the grad Fj: 

w[r (+), r 
~ = C u i(~l 4 t (~2)  , (6.5) 

where the constant C~ is given by 

C~ - i (u  - r,) v I A ( u )  A " ( u ) .  

Remark. Since r = c+~ (+) + c ~  (-), one sees explicitly from formula (5.5) that 
5Fj  (Q,v) 
~5~ ~ 0 as c+/c_ -+ O, oc. Also, since the eigenfunctions ~(+) and ~(-) at the 

complex double point u grow or decay exponentially, 

~(+) ~ exp(~zo-~t), t --+ oc, 

and the formula also shows explicitly that gradFjl(Q,~ ) --+ 0 as t -+ ec. The vector 

field grad Fj must vanish because, in these limits, the point (~H on the whisker tends 
to a critical function of Fj. 

Remark. This exponential decay in t leads to convergence of the Melnikov integral 
When one uses other constants of motion to define the Melnikov integral, they need 
not be critical on the critical circle, the integrals need not converge, and a rather 
strange notion of conditional convergence must be developed [15]. It seems more 
natural to us to use constants which are critical on the "target" to define the Melnikov 
integrals in the first place. 

With these ingredients, one obtains the following beautiful representation: 

Theorem 5. The Melnikov function associated to the general complex double point u 
admits the representation: 

+oc i 

- k Ir J 
--e:x~ 0 

In the case of several complex double points, each associated with an instability, 
one can iterate the B~icklund transformations and use those functionals Fj which are 
associated with each complex double point to obtain a representation of a Melnikov 
Vector. 

A geometric interpretation of Melnikov function in the setting of damped driven 
perturbations of NLS will be given elsewhere [21, 20]. Here we only emphasize that 
the constant Fj is natural for both Melnikov and Morse studies. 

7. Conclusion 

In this paper we have studied the focusing NLS equation (2.1) under periodic boundary 
conditions as a Hamiltonian system for functions 0' E J .  This NLS equation is 
completely integrable through the spectral transform for the Zakharov-Shabat linear 
operator L. We have developed the nonselfadjoint Floquet spectral theory for the 
operator L in sufficient generality for later use in studies of perturbations of the NLS 
equation. 
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Specifically, through H 1 counting lemmas we have shown that all eccentricities 
due to the nonselfadjointness of L are restricted to lie within a disc D in the complex 
eigenvalue plane whose radius is controlled by the H 1 norm of ~. We then used these 
counting lemmas to introduce a natural local ordering of the spectrum and of a basis 
of L 2 which is constructed from "squared eigenfunctions," each member of which 
satisfies the linearized NLS equation. Obstructions to a global ordering for this basis 
were discussed which lead to an intriguing monodromy problem. This basis was then 
used to associate instabilities with complex multiple points in the spectrum, of L. 

In this manner, critical spectral configurations were identified. Backlund trans- 
formations at these critical spectral configurations were then used to produce global 
representations of whiskered tori, together with proofs that the whiskeres are finite 
dimensional with estimates for their maximal dimension. 

The operator L is not selfadjoint, making its Floquet spectral theory interesting. 
That spectral theory is studied through the A dependence of the Floquet discriminant 

ZI:C x.Y-~ C, 

which is an NLS constant of motion for every value of ),. Through A we have 
introduced a natural sequence of constants of motion, 

Fs(q3 - a[A~(q3; q-I, 

where A~ denotes the jth critical point of A, as ordered by the counting lemma. This 

sequence of constants (Fj  } is useful for understanding both the spectrum of L and 
its isospectral level sets. 

First, we computed the first and second variational derivatives of {Fj } in terms of 
squared eigenfunctions. The first variation vanishes at certain critical functions, which 
in turn are related to the critical spectral configurations. The Hessian at these critical 
functions provides information about the spectrum of /~. Specifically, it identifies 
allowed bifurcations in the spectrum at critical spectral configurations; thus, these 
local calculations identify interesting nonselfadjoint behavior such as crosses and 
gaps in the spectrum within the disc D, while confirming that only trivial behavior 
occurs outside that disc. 

The Hessian also contains topological information about the isospectral level sets 
in the function space ~g~'. The cons t an t  F j, as the height of A over the jth critical 
point, admits a natural interpretation as a Morse (or Bott) function. In Sect. 5 we 
have investigated this interpretation, showing that it is valid outside the disc D, and 
that it works well locally within the disc D. However, there are obstacles to a global 
Morse theory within the disc D. These obstacles occur because of the existence of 
higher order critical points A~ for which AH(A~) = 0; they are closely related to 
the monodromy problem for the global ordering mentioned above. Examples show 
that the resolution of these difficulties will require consideration of several of the 
constants simultaneously. Nevertheless, such Morse-like considerations do produce 
rather beautiful geometric examples of the behavior of the foliation near critical tori, 
as illustrated in the sketches in Sect. 5. 

We emphasize, however, that the local bifurcation behavior of both the spectrum 
and the level sets, as successfully identified by the sequence of constants {Fj}, is 
both adequate and sufficient for use in the analysis of the damped driven perturbation 
experiments surveyed in [27]. For example, the "trouser" diagram under even 
symmetry as discussed in Sect. 5.2.2 is central to one chaotic response of NLS to 
perturbations. Currently a study [17] including movie displays this perturbed chaotic 



Morse and Melnikov Functions for NLS Pde's 213 

behavior on an unperturbed background of "nested trousers." We hope that these 
examples will convince others to develop a global Morse description of NLS level 
sets. 

Finally, we have remarked that the constants F j  are closely related to natural Mel- 
nikov functions which can be used for the analysis of perturbations of NLS. B~icklund 
transformations provide general and explicit representations of these Melnikov func- 
tions, representations which converge precisely because the gradients of F j  vanish 
at the critical tori. Geometric interpretations of these Melnikov functions for specific 
examples in the NLS framework will be presented elsewhere. 
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