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It is shown that the minimal subfield of the field of real numbers over which all 

real combinatorial types of convex polyhedra can be realized is the field of all 

real algebraic numbers. 

Let 5 = [~o,~41 be a block-scheme, S o be a finite set, S I be a system of subsets 

of So ; C a realization over ~ of the block-scheme S (where F is an ordered field) 

i.e., a polytope (convex polyhedron) in the space F ~, such that the block-scheme formed 

by the set of its vertices and system of hyperfaces, as a system of subsets of the set of 

vertices, is isomorphic with S . A configuration ~ in the projective plane ~ is called 

an ~ -realization of the block-scheme S over the projective plane ~ , if the block- 

scheme formed by the points of ~ and the lines of ~ , as subsets of the set of points, is 

isomorphic with S . The block-scheme of a polytope (configuration) will be called its com- 

binatorial type. Polytopes (configurations) with given combinatorial type are called combin- 

atorially equivalent. Some block-schemes are not combinatorial types. A given combinatorial 

type can have a C - (or ~ -) realization over one field and not over another. M. Perles con- 

structed a block-scheme of twelve points having a G-realization over R (for I=8 ) and 

not having a C -realization over ~ (cf. [1]). In other words, he gave an example of a 

polytope with twelve vertices in ~$, whose vertices cannot possibly be placed simultaneous- 

ly at rational points (i.e., be realized in ~8 ) so as to preserve the combinatorial type. 

A. M. Vershik suggested to the author proving the following improvement of this result: 

THEOREM. The minimal subfield of the field ~ over which all combinatorial types of 

polytopes realizable over ~ are realizable is the field of all real algebraic numbers ~ . 

In other words, i) for any finite extension ~ of the field of rational numbers, there ex- 

ists a polytope in ~, whose combinatorial type is not realizable over ~ ; 2) any com- 

binatorial type of polytopes realizable over ~ is realizable over ~ . 

In its own right, the basic auxiliary assertion is Lemma 1 which was suggested by Vershik 

and which generalizes Perles' construction and refines the basic theorem of projective geome- 

try. 

In Sec. i ~ we construct a series of block-schemes with the following property: they are 

-realizable over ~ , but for each finite extension ~D ~ one can find a block-scheme 

in this series which is not ~ -realizable over ~. In Sec. 2, with the help of the Gale 

transformation we make the transition from configurations to polytopes, which gives a series 

of block-schemes with the same property but not for G -realizability. In Sec. 3 we prove 
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that any block-scheme which is C -realizable over ~ is C -realizable over ~ , which 

completes the proof of the theorem. 

1 ~ The following lemma is a refinement of the fundamental theorem of projective geome- 

try (cf. [4]) for projective spaces over finite extensions of ~ . 

LEMMA I. For any finite extension ~D ~ there exists a block-scheme 5 F such that 

is ~ -realizable in P~ if and only if L 9F $v 
The collection of such schemes {~F ~ ' where F runs through all subfields of ~, 

which are finite extensions of ~ , forms a lower series. 

Proof. We shall call a block-scheme labeled if four points in general position, i.e., 

such that no triple of them lies in one block, are distinguished in it. By an ~ -realization 

of a labeled block-scheme in the plane ~ we mean any configuration in which the incidences 

indicated in the scheme hold and possibly some others, but the four distinguished points are 

in general position. To prove the lemma, we prove the 

Proposition. For any polynomial with integer coefficients % , one can find a labeled 

block-scheme ~ such that ~§ is realizable in , if and only if # has a root in 

L. 
To prove the proposition, we use the technique of geometric representation of algebraic 

equations developed in [2]] Namely, we fix in the abstract projective plane ~ an ordered 

collection ~ of four points in general position. Any such collection ("basis") determines 

an algebraic structure of "natural field ~ ": 

On the pencil of lines ~ incident with the first of the points of 8 , with the 

help of the construction there are defined operations of multiplication, addition, and their 

inverses. Lines of ~ which are incident with the three remaining points of the basis are 

given the symbols 0, I, o= Now to each #~ [x] one can associate a construction ~# 

which assigns to an element X of the natural field an element # (X) , where ~ is under- 

stood formally as a fixed sequence of additions and multiplications. The given construction 

is a finite sequence of unions and intersections, starting from a system of generators con- 

sisting of B and a line ~ in ~ . In the course of the construction there arises a 

labeled block-scheme T~ of points and lines. We add to the scheme T# an incidence 

guaranteeing tile coincidence of the line #(x) and the line 0 �9 The block-scheme ~# ob- 

tained is also, according to [2], the geometric representation of the equation ~ (x)= O 

~ has the following properties which are important for us: 

a) any realization of ~# as a labeled block-scheme is uniquely determined by a fixa- 

tion of the points of B in general position and the line ~ in the distinguished pencil; 

b) if ~# is realized, then the line corresponding to X in the natural field, de- 

fined by the points corresponding to ~ , is a root of the formal polynomial ~ in this 

natural field, and conversely; 

c) if some basis B is fixed in the projective plane ~ and the line X is a root 

of ~ as a formal polynomial in the corresponding natural field, then application of the 

algorithm ~i gives a realization ~# �9 
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We shall show that R~ has the properties needed. If ~ is a plane over a field, 

any natural field of it is isomorphic with the ground field [3]. Let ~§ be realized so 

that the points of ~ are in general position. Then in the natural field defined by them, 

in accord with b) there is a root of the formal polynomial ~ . Consequently, if the 

ground field contains ~ , then by virtue of the isomorphism, there is a root of the polyno- 

mial ~ in it, as a polynomial ~Z[x] �9 

Converse. Suppose there is a root of F in ~ we take some four points of P~ in 

general position, and in the corresponding natural field we take a line X which is the 

image of a root of ~ under the isomorphism. After this, by c) we get a realization R~ �9 

The proposition is proved. 

Now we take F O~[ to be a finite extension. Then ~ = ~ (~ , ~ being a prim- 

itive element of ~ over ~ . Let p=!~(~,7) By hypothesis, ~p can be realized 

in P~ as a labeled block-scheme if and only if LD~(~), ~ being a root of p , but 

~(~)=~(~)=F We shall show that any two realizations of the labeled block-scheme ~p 

are combinatorially equivalent, and consequently, are realizations in the usual sense of some 

block-scheme ~p , which also satisfies the conditions of the lemma. Let C~C~ be two 

realizations of the labeled block-scheme ~p in planes 04 = PLI ' = L~' 4 

~ ~I ~ be the bases corresponding to CI,C ~ for ~4 and nz , and NI , ~z be the 

corresponding natural fields of 01,0 ~ Let ~4, ~ be roots of the formal polynomial 

p in the natural fields ~I , ~ defined by C I , C~ according to property b) of the 

proof of the proposition. Let ~i,~ be the imbeddings of ~ ~)=F in N4, ~ genera- 

ted by ~4 and ~ �9 PI , Pz are the imbeddings of P~ in ~4 , Ng generated by these 

imbeddings. By construction, all points of C~ and Cz lie: those of C~ in Pl , and 

those of C~ in P~ . Since P is irreducible, there exists an isomorphism ~ ~4--*~ 

carrying ~I into d~ The triple ~I~ J ~ determines a semilinear map ~: P~ " ~ , 

which is a collineation [4] and which carries ~I into ~z , the line ~I into the line 

~ , and consequently [by property c) of the proof of the proposition] carries C~ into 

C~ , as configurations in Pl , Pz It is easy to verify that the correspondence gen- 

erated by ]~ between the points of C I and C~ extends to an isomorphism of block-schemes 

of points and lines of C4 into C~ as configurations in ~I and ~% . 

2 ~ . LEMMA 2. For any finite extension FD~ ( ~ being an ordered field), there 

exists a block-scheme U~ such that U~ C is realizable over ~ if and only if ~ D~ �9 

Proof. By a ~ -realization of a block-scheme ~ is meant a Gale diagram in the spaces 

~3 ( ~ being an ordered field) such that the block-scheme formed by the points, simplices 

containing @ in the relative interior, and the incidences between them is isomorphic with 

z We shall consider Let 65 be an ~ -realization of the block-scheme S in PE 

P~ as the projective space of lines incident with zero in ~ We note on the lines of 

~ pairs of antipodal points of ~[~ corresponding to the vertices of ~ . The collec- 

tion of points ~@ in ~5 so obtained will be considered as a Gale diagram. Let S ~ be the 

combinatorial type of Gale diagrams containing ~ If ~ =~F ( SF is from the proof of 

Lemma i), it is easy to verify that the ~-realizability of $~ over ~ is equivalent 
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with the g-realizability of S~ over ~ . Then by the standard passage from Gale diagrams 

to convex polytopes, we get a block-scheme SF whose C-realizability over ~ is equivalent 

with the ~ -realizability of S~ over L Now we set U F �9 ~-S~. The UF so constructed 

satisfy the condition of the lemma being proved. 

3 ~ . LEMMA 3. Any block-scheme ~ , which is C -realizable over ~ , is G-realizable 
over A 

Proof. Let ~ be a block-scheme, $0=I :~ be the set of its elements. Let ~= 

~L~ESo0gL~ ~ be a collection of points of R ~, indexed by ~o . Let ~ be the 

i -th coordinate of the point ~ . The condition that ~ is the set of vertices of a 

polytope, which is a C -realization of S under the isomorphism b---~ , can be written 

in terms of the equality to zero and conditions on the signs of determinants composed of co- 

ordinates of points of A~. This means that ~ is the set of vertices of a polytope which 

is a C-realization of ~ under the isomorphism ~--~ if and only if the matrix of 

coordinates of V [~L~} ~So~:a , as a point of R ~ , lies in a certain semialgebra- 

ic variety ~ (~) . In this variety, if it is not empty, one can necessarily find points 

with algebraic coordinates. 

1. 
2. 

3, 
4. 
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