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EXAMPLES OF NONCOMMUTATIVE GROUPS WITH NONTRIVlAL EXIT-BOUNDARY 

V. A. Kaimanovich UDC 517.39:519.4 

A number of new counterexamples are given, disproving certain assumptions about 

the mutual relations of the exit-boundary (Poisson boundary)of a random walk on a 

group and the amenability and growth of the group. Random walks are constructed 

with nontrivial exit-boundary on the affine group of the dyadic-rational llne and 

on the infinite symmetric group. 

The present paper is devoted to the investigation of a number of examples, illustrating 

various situations which arise in the theory of boundaries of random walks on nonabelian 

groups. The paper is closely connected with [17] (cf. also [4]), where the basic facts of 

this theory which have been obtained recently are given. 

We recall some definitions. Let ~ be a countable discrete group, ~ be a nondegener- 

ate probability measure on ~ (i.e., B~p~ generates ~ as a semigroup). A homogeneous 

Markov process I~-0 with state space ~ , initial distribution be, (e is the identity 

of ~ ), and transition probabilities p(~l~)=~C~-~) is called a (right) random walk on 

~, given by the measure ~ �9 By (~, P~) we denote the space of trajectories ~}~=0 

of the walk (~,~) with the usual probability measure ~ . 

By the exit-boundary of (~,~) is meant the quotient space (r,~) of the space of 

trajectories of the walk, corresponding to its tail ~ -algebra. The boundary (~ 9) is 

canonically provided with the structure of a measurable ~ -space. We stress that for 

Abelian groups r is always a single point. ~here exist a whole lot of other definitions 

(stationary boundary, Poisson boundary, etc.), which lead to the same space (~,~) , which 

we shall simply call the boundary of the walk (~) [4, 17]. With the help of these 

definitions one can get various tests for trivality (= single-pointedness) of the boundary 

[3, 4, 7, 17]. Until recently the number of groups investigated was not large. In the 

present paper we investigate several new types of examples, which disprove certain old 

assumptions about the relations of the boundary, amenability, and growth of a group. 

In Sec. i we consider the group ~K = ~K A ~ Zz which is the additive group of con- 

figurations on ~ K (with addition m0~ Z ), extending the natural action of Z K . We 

establish effective tests for the trivality of the boundary for finite measures on the 
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groups ~K and we show that on ~I there exists a nonfinite measure for which the boundary 

is nontrivial, despite the triviality of the boundary for the inverse measure. 

In Sec. 2 we construct examples of measures with nontrivial boundary on the affine group 

of the dyadic-rational line. 

In Secs. 3 and 4 we give examples of random walks with nontrivial boundary on the in- 

finite symmetric group ~ and on a solvable locally finite group of uniformly polynomial 

growth. 

We stress that in this paper we are not pursuing the goal of a complete description of 

the boundary, but restrict ourselves to merely establishing its triviality or nontriviality. 

The idea of using the groups ~K and ~ for constructing nontrivial examples in the 

theory of random walks and other situations (cf. [i, 2, 6, 9]) was suggested by A. M. Ver- 

shik in connection with the general program of investigations of measures on groups. The 

author also thanks him for constant support and interest. 

i. Extended Configuration Groups (the Groups ~K ) 
K 

i. Random Walks on the Groups ~K �9 Let zK=~. I Z be the K -dimensional integral 

lattice, ~R~Z ~,z2)= ~K ~z be the direct sum of isomorphic copies of the group Z2 = [0, I~ , 

indexed by the elements of Z K (i.e., the group of finite Ze -valued functions on Z K ). 

It is also convenient to speak of {R~ (ZK ~a) as the additive group of finite configura- 

tions on ZK with the operation of pointwise addition m0~ ~ . We shall denote by ~(m) 

the value of the configuration ~ {~(Z K,~e) on the element ~eZ K , and by 5~ 

the support of the configuration # : 

By GK 

the group 

we d e n o t e  t h e  group  , w h i c h  i s  t h e  s e m i d i r e c t  p r o d u c t  o f  

by the group {R~(Z K, Zz) , in which ~ K acts by translations. The elements 

of 6K will be written as ordered pairs ~=(~,f) , where ~ Z  K 

Then the group operation in ~K can be written as follows: 

where m~ is the result of the action of ~ on ~ : 

All the groups 

growth. 

(2) 

G K are solvable of stage 2, finitely generated and have exponential 

Now let ~ be some probability measure on QK ; we shall denote by {C~,{~=~ the 

collection of increments of the random walk defined by the measure ~ (i.e., all (~,~L) 

are independent and have distribution ~); then 

{4} 

is the �9 -th coordinate of the trajectory of the random walk defined by the measure ~ . 

The following relations, which express the next coordinate of the trajectory of the random 

walk in terms of the preceding one and the corresponding increment, follow from the defini- 

tion (2) of the group operation in GK: 
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I~ +4 "~ +~+4 

(5} 

2. Nontriviality of the Boundary for Finite Measures. We consider an arbitrary finite 

nondegenerate measure ~ on the group ~ (K >5) . Since any nondegenerate random walk on 

ZK for K >5 is nonrecurrent [I0], ~ leaves any finite subset ~ K for almost all 

trajectories {(~'~0 of the random walk (~K,~) �9 The measure ~ is finite, so 

for sufficiently large ~ the support of the configuration ~ ~+I does not intersect 

any previously given subset of the lattice ~ K . Thus, the values of the configuration 

~ at any fixed point Z e ZK almost surely stabilize in ~ . In other words, the 

configuration @~ converges pointwise a.s. to some (now nonfinite) configuration. Thus 

for any Z ~ ~ K the corresponding set of trajectories of the random walk 

A={{(~,~,)]7=0: ~(z)=0} (6) 

i s  a t a i l .  The n o n t r i v i a l i t y  o f  A o b v i o u s l y  f o l l o w s  from t h e  n o n d e g e n e r a c y  of  t h e  measure  

�9 Thus, ~(~K,~) is nontrivial. We have proved 

THEOREM i.i. Let ~ be a finite nondegenerate probability measure on the group 

; then the boundary F(~K,~) of the random walk defined by the measure ~ is CT~C K>5) 
nontrivial. 

Remark. 

walk ~ ~ =o 

In the proof of the theorem we have used essentially the nonrecurrence of the 

on Z K and the finiteness of the set U 5~pp # , where the union is taken 

over all elements C~,~)Es~pp~. 
3. Test for Triviality of the Boundary. Now we give a simple sufficient condition for 

the triviality of the boundary on the groups ~K �9 The following useful lemma is due to 

Furstenberg [13]: 

LEMMA i.i. Let the subgroup ~o C ~ be a set of recurrence for the random walk on 

~, defined by the measure ~ . We define on G ~ a probability measure ~~ as follows: 

~o(~) is the probability that after the walk leaves the identity e the first return to 

G ~ occurs at the point ~E G ~ . Then the boundaries F(~,~) and F(G~ ~ are canon- 

ically isomorphic as spaces with measure. In particular, the triviality of F(~,~) is 

equivalent with the triviality of F(O~ ~ 

THEOREM 1.2. If the measure ~ on the group ~K is such that the walk induced by it 

on ZK is recurrent, then the boundary F(GK,~) is trivial. 

Proof. The hypothesis of the theorem means that the subgroup ~K = (m, e OK: m=0} 
O 

is recurrent for the walk (~K,~) �9 But the subgroup ~K is Abelian, i.e., the boundary 

of any walk on it is trivial by the Choquet-q)eny theorem [12]. On the basis of the lemma we 

get that F(~K,~) is trivial. 

The theorem just proved combined with Theorem i.i allows us to get necessary and suf- 

ficient conditions for the triviality of the boundary for finite measures on the groups ~K �9 

THEOREM 1.3. The random walk defined by the finite measure ~ on the group ~K has 

trivial boundary if and only if the projection of the walk onto Z K is recurrent. In 
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particular, for symmetric finite measures ~ the boundary r(G~,~) is trivial for K=I,Z , 

and nontrivial for K ~3 �9 

4. Boundary for Nonfinite Measures. It follows from Theorem 1.3 that for finite 

measures ~ on the group G~ one has the following alternative: either i) the boundary 

~(~K,~) is trivial, or 2) for almost all trajectories {(~,~)}~-0 of the random walk 

(GK,~L) the configurations ~ converge pointwise and ~CCT~,~) is nontrivial. Thus, 

for finite measures the triviality or nontriviality of the boundary is completely deter- 

mined by the presence or absence of stabilization of the sequence {~(Z)}7=0 (Z e Z K). 

For nonfinite measures the situation is more complicated, and examples arise here of dif- 

ferent tail behavior. 

Proposition i.i. On the group G~ there exist a (nonflnlte) probability measure 

such that the boundary rc~1,~ ) is nontrivial, but nevertheless for a.a. trajectories 

~,t,~)~=0 and all ZE~ the sequence [~n~z)}~=0 does not stabilize. 

Proof. We consider on the group G~ the following measure: 

jt (t,o) 

(7) 

~(0,Vo+~+ +~)=~ (~+1)(~.z) 

Obviously the projection {~}~:0 of the random walk (O~,~) on Z is nonrecurrent and 

~-~-~ Here, since the jumps on Z are by not more than one, going to _~o the 

sequence ~}7=0 goes through all the points 0, --1, --2, .... Moreover, by definition of 

the measure 

< , + , 
~\CK+~i(T-~z) ~C~z• + ) "  (8) 

Since, as is evident from (5), ~,~(Z)=~CZ)§ by the Borel--Cantelli lemma we get 

that the equation ~+~(Z-~)=~ a.s. holds an infinite number of times, i.e., the sequence 

{~(Z)}~.0 does not stabilize. 

On the other hand, the difference ~(~)-~ff(0) now stabilizes a.s. In fact, from the 

definition of the measure ~ we get that ~(~)-~(0) # ~(I)-~+,(0) only when ~+, =~o + 

...,~_~ , but the probability of this event is ~/~(-~+I)(-~+~))(~<0) . It is easy 

Yl ~__!__<oo to show that for almost all trajectories ~0 I~,I ~ , and hence the difference 

~ff(~)-~(0) with probability 1 changes its value a finite number of times, i.e., stabilizes. 

Thus ~(~,~) is nontrivia!. 

Remark. In connection with the problem of the complete description of the boundary for 

the group ~, the following question arises. Let {A~ be an increasing sequence of 

finite subsets, exhausting ~" . By ~IA we shall denote the restriction of the configur- 

ation ~ to the finite subset A ~ Z ~ . It is easy to see that the stochastic process 

{(~,~IA) ~-0 ' where {(~,~)~-0 is the original random walk, is Markov. Is it 

true that the tail sets defined by the final behavior of the trajectories ~(~a,~IA~)}7= 0 

form a basis of the entire tail ~-algebra of the random walk (~,~) ? 
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5. Boundary for the Inverse Measures. The entropy test for the trivality of the bound- 

ary asserts [4, 17], that for a measure ~ with finite entropy H (~) on a countable group 

0 , the boundary C(C~,~) is trivial if and only if the entropy ~(Cr,~) of the group 

with measure vanishes. It is easy to see that if the measure ~ in inverse to the measure 

d~ (i.e., ~(~)=~(~-I) V~eCT ), then ~(Cr,~)=~(~,~), so the boundaries r(~,~) and 

F (~,A) are trivial or nontrivial simultaneously. 

On the other hand, the triviality of F(G,~) is equivalent with the convergence of the 

convolutions of the measure ~/ to a left-invariant mean on ~ , and the triviality of 
v 

C(~,~) is equivalent with the convergence of the convolutions of the measure ~ to a left- 

invariant mean, or what is the same, the convergence of the convolutions of the measure 

to a right-invariant mean [4, 17]. Thus, for measures ~ with finite entropy, convergence 

of the sequence of convolutions ~ of the measure .~ to a left-invariant mean is equivalent 

with convergence to a right-invariant mean. 

The following example (partly evoked by an example from M. Rosenblatt [18], which was 

shown to the author by B. A. Rubshtein) shows that if one waives the finiteness of entropy 

H(~) condition, then this equivalence is lost. 

THEOREM 1.4. There exist a solvable group ~ and a nondegenerate probability measure 

on it such that the boundary r(CL~ ) is nontrivial, but the boundary of r(~,f) is 

trivial, i.e., the sequence of convolutions of the measure ~ converges to a right-invariant 

mean on [~ which is not left-invariant. 

Proof. We consider on the group CT =~i the measure JR , defined as follows: 

~(~,0)=~ 
(0, %) - ~,o 

81 j~(o,% ) =j~(o,%+%) : T  (9) 

(o,%) -y (o,~, + %) :yCo,%+%) -- j~(.o,% + ~. %): ~--'. 
" 

~ ~ ~ 5~ = ' - -  Obviously where the positive numbers s are so chosen that 7". 5,. =-f , 
. , o o  . . = o  

the measure ~ is nondegenerate, and H(~) =0~ �9 

We shall show that r(~,~) is nontrivial. By the choice of ~, for almost all tra- 

jectories {[~m,~m)}~=0 of the random walk (~,~) we have ~m----~. Since the measure 

is concentrated on configurations which only burden the positive half-axis of 7/ , the 

configurations ~m converge pointwise a.s., and hence F(Cz,~) is nontrivial. 

We proceed now to the proof of the triviality of F(CT,A ) . We note first of all that 

by the definition of the group operation in Gi 

(~,~)-, (_~,(_~)~) (lO) 

and hence 

( ,o~-- 6 , 
v b j~(-4,o) - ~ ,  
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We s h a l l  prove first tbat f o r  a]most ~,]_i trajectories {(~_I,~,I~ 

(Q,JI~.) and a l l  conf~,~,urat~ons ~E{'Ul1.(~_,Ze) one has 

(here ~L~ is the ~%-th c.o,,volution n[ the measure .~ ). 

s,~pp ~ is finite, one can find an m >0 such tha t  

5'~Pp I C [-~t*1, ,-I.-~] ). We cow, sider the traiectory 

. 

of the random walk 

(12) 

We fix Since 

,~(~) :0  for a l l  I ~ : 1 ~ .  (i.e., 

{(~,h0,t)}~= 0 of the random walk 

(13) 

where (~, ~) are the inc,:Pme,~ts oF the random walk. ]'he probabiiity ~ that ~ml[,~,~) ~ 0 

is ~0 = ~. ~i. by definition of the measure ,)~ ; a~alogously, the probability PK that 

(-Yyt,t I [i~ .~) =- ,) iS Oy. = ~--:,'t." E~. The t-andom wal_k I ,~.t~,~= ~ on Z , going to --~', 

passes throu~zb_ a l ]  p o i n t s  O, --1,  -~,~ . . . ,  bu t  

by the choice of {C~ I. Thus, hy the Borel--Cant,_~llJ lemma, for almost all trajectories 

~fil,,'~)},~ 0 one can find an Jnlinite set of ~ such that ,~K ~I~l[,~,o~)=0 (i.e., 

1 0 ) .  

Now we consider the following transformation in the space of trajectories of the random 

walk. We choose the smallest K such that ~4 ~_-nt and ~K-~. I [~H.,~o)~ 0 and we change 

the increment I'~ to I~'~-~"-'il~ ~I~' i.e., !~ ~'~ =!I .... [~ ~i , leaving all other incre- 

ments unchanged. We denote the traiectory, so obtained by {(~I ;~ ~)}T=0 The transforma- 

tion I('J ''~''~) ~t=O ~-" ('I~,I'~ ~=0 is defined a.e., is oue-one, and by the definitions of 

and .].~ it preserves the measure in the space of_ traiectories. 

for all ~t ~ K 

Now let 

(0, I )  ~- O 

Moreover, obviously 

(15) 

(12) now follows directly from this. 

g be some bounded .~-harmonic function on !~ . We denote by ~ the element 

Then 

f (e)  = ~ .  F-(~ ),j({~ (~t) (16) 

and 

(17) 

Subtracting (17) from (16), we get 

�9 f i v _~ 

F(e) - F( ~ ) = ~_~ F( k),ju ~ (I~) -ju ~ (~ h.)) (18) 
: k 

By the boundedness of F and (12), the right side of (18) tends to zero with ~ , i.e., 

F(e)=F(~). One can prove analogously that F(~,~)=F(3c,0) for any element (~,#)e el- , 

i.e., the function ['(06)---F(~c~) is harmonic on the Abelian group 7/ Thus it follows 
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from the Choquet--Deny theorem that F is constant. Thus on ~ there are no nontrivial 

bounded ~ -harmonic functions, i.e., ~(~,~) is a single point. The theorem is proved. 

2. Affine Group 

Basing ourselves on the results given above, we now consider the group ~ =Q~IQZ [~]) 

of matrices of the form (~ ~ ) , where p= Z K , ~= ~ ( K, m, ~ are integers), with 

the operation of matrix multiplication -- the affine group of the dyadic-rational line ~ [~]. 

The group ~ is isomorphic with the semidirect product of the group ~ m {(~)} by the 

group ~[~] ~ { i '  ._.L )} 0 ~ , is solvable of stage 2, has exponential growth, and can be 

defined by the generators R-Q~ ?) and $=Q~ I) and the relation $~=R~ It is 

essential for us that the group ~ is the homomorphic image of the group O =~x #~(Z,~) 

under the canonical homomorphism ~F: G--~O 

Thus, the study of the boundaries of random walks on the group G can be reduced to 

the study of boundaries of the group ~ and their behavior under the homomorphism 

More precisely, if ~ is some preimage of the measure ~c on ~ , then the boundary of 

F(O,~) is the quotient-space of the boundary F(~,~) by the partition into ergodic com- 

ponents with respect to the action of the kernel 

n (2) 

of the homomorphism ~ [7]. Now the theory of random walks on the group ~ is close to the 

theory of random walks on the group ~1=~(~,~z) 

THEOREM 2.1. For any symmetric finite measure ~ on the group ~ =~II(~[~]) the 

boundary ~LO,~) is trivial, but there exist nonfinite symmetric and finite nonsymmetric 

measures on ~ with nontrivial boundaries. 

Before proving the theorem we give the following lemma: 

LEMMA 2.1. Let the random walk (Z;~) on ~ , defined by some nondegenerate prob- 

ability measure ~ , be nonrecurrent; then for almost all trajectories {~}::0 of the 

walk (Z,~) the sum Z~____.=oZ-I~I is finite. 

Proof. We shall show that actually the integral ~ ~ ~ L~0~-l~"l~ P~(~)- - , is finite, where 

P~ is the canonical measure in the space of trajectories ~={~I~=0 of the walk (~,~). 

In fact, 

I - 

I I .  K = -  oc, K = - ~  II, K - - - ~  

(3) 

where 0(K) = ~0 ~(K ) is the kernel of the Green's function of the random walk (~,~) �9 

Since due to the nonrecurrence the function @ is bounded [i0], the sum ~ Z-IKI@ (K) is 

finite. The lemma is proved. 
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Proof of Theorem 2.1. I) Let ~ be a symmetric finite measure on the group ~ ; then 

z ~ the projection of the random walk (G,~) to the subgroup { ( 0 0 )} , isomorphic with 

, is recurrent. Since the group {<0 ~)} is Abelian, by Lemma i.i (cf. the proof 

of Theorem 1.2) the boundary F(~,~) is trivial. 

2) Now we proceed to the construction of a measure ~ on ~ with nontrivial boundary. 

We set 

t -1  4 )} 
(4) 

where ~' is some probability measure on Z . Obviously the symmetry (or finiteness) of 

is equivalent with the symmetry (or finiteness) of ~' Now we choose ~' to be sym- 

metric nonfinite or finite nonsymmetric, defined so that its walk on Z is nonrecurrent. 

Let ~ be the preimage of the measure j~ on ~ : 

(5) 
, ):i~'(K) 

Due to the nonrecurrence of the random walk (~[,#t) we get that for almost all trajec- 

tories {(~,~)}~=0 of the random walk <~,~) the functions ~0~ converge pointwise 

to some (nonfinite) function ~ (and consequently F <~,~) is nontrivial). 

the sum 7 ~. h0~(K)g ~ is almost surely finite. Since the action of Kez ~r on 
K<0 

does not change the quantities 

[~___~ hO~=(,K) P_ K ] (6) 
K<O 

( [~C] denotes the greatest integer in the number 0C ), we get that on r(~,#) there 

exists a nontrivial measurable Kez ~ -invariant function. Thus, r (G~) is nontrivial. 

COROLLARY. Let ~ be a finite measure on CT=@#t(Z[-Iz]) ; then the boundary F(G,~) 

is trivial if and only if the projection of the random walk (G,~) onto the subgroup 

[CZ0K 4~ is recurrent. 

3. Infinite Symmetric Group 

We consider the symmetric group @~ of finite permutations of a countable set. The 

group ~ is obviously countable and locally finite. It is clear that due to the local 

finiteness of the group ~ any finite measure on it is contained in some finite subgroup, 

and hence has trivial boundary. Nevertheless, there exist on ~=~ nonfinite measures with 

nontrivial boundary. 

THEOREM 3.1. On the group ~ there exists a symmetric probability measure ~ for 

which the boundary of the random walk F (~,~) is nontrivial. 

Proof. We shall assume that the group ~ is realized as the group of finite permuta- 

tions ~:V--~V of some countable set V �9 On V there is defined a natural right 

action of ~=~ : 

By Lemma 2.1, 
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t;.1 :i-'(~) ~'~v, ~G6"~, (i) 
The basic idea of the proof is to construct a measure ~ on ~== , for which the 

homogeneous Markov process on V with transition probabilities 

p{ ,l (2) 

induced by the action (1) of the group ~ on V , has nontrivial exit-boundary. The 

preimage of any tail event of the induced process on V will obviously be a tail event for 

the random walk, andhence from the nontriviality of the exit-boundary of the induced process, 

the nontriviality of the boundary F(~,~) of the original random walk on ~== follows. 

In what follows it will be convenient to provide the set V with the additional struc- 

ture of a binary tree and to consider it as the set of sequences ~-(&i~...,8m) of finite 

length 0~I~I=~<~, consisting of zeros and ones (the vertex of the binary tree, the empty 

sequence ~ , has length I~I = 0 ). We denote by Vm the set of vertices of the Vm-th level 

(3) 

We define two sequences {~}~-0 and {B~}:, 0 of elements of ~ as follows: 

[(~, ,~,0), ~---,. 
~. , .C~, . . . ,~ ,O= { (~ , , . . . , ~ ,<_ , )  , K-, .+~ 

/ 

LCr 

[(P--,," "., ~K ,1) , 
6,,C~.~,...,~,~)= ~(~, . . . ,~ .K- , ) ,  

L ( ~ ' .  ,~,,0 

In other words, OM. transposes the elements Vm and 

and 

and 

K=YI, 

K = rl, +4 

' :{C~-,,...,~+,): V t1,+1 

~ does the same to the elements V~. and Vk'.,.t ={CF-.h...,g~+0: 
~ are not automorphisms of the binary tree!). 

Now we define the probability measure ~ on ~ as follows: 

(4) 

~+4 = O~ 

( 5 )  

where ~, An= 4 , A~ > 0 �9 Then for the induced Markov process on V we get the following 

values of the transition probabilities (2): 

"pC.(~,,...,~,,-01(~,,...,g,.))= ~-,,-.._.__L,~_ 

P (C~.,, ..., ~,. ,o)I (~,, ... ,~,O) = @ (6) 

p C.C ~,,.., ~.,~, 01 (~,,..., ~-,0) = ~ " 
.., t 4. 4.~.-I p(.( .~t , .  ~ , , . ) 1 ( ~ , , . . . , ~ , . ) ) -  - " - - - z  �9 

Thus, the induced Markov process {::r..M.:}:. 0 on V has nontrivial exit-boundary (con- 

sisting of the ends of the binary tree), if the Markov process on Z+ = {0,1,2,... } with 

transition probabilities 
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p(:"--f I . , )  --""-'  
?_. 

p ( . . * l  I ..) =~L.. 

p { " - I " - ) :  ~ - i . . -  
(7) 

is nonrecurrent. 

Processes of this type on ~+ have been thoroughly studied (cf., e.g., [8, Chap. 3]). 

A necessary and sufficient condition for nonrecurrence applicable to our case is the finite- 

ness of the sum 

Now choosing a sequence [&~} such that (8) holds, we get that the measure ~ on ~ , 

defined by (5), has nontrivial boundary F ~,~) o The theorem is proved. 

Remarks. I. All elements of the support of the measure ~ constructed are elements 

of the second order (~= ~= e ) and the measure ~ is thus symmetric. 

2. The support supp~ of the measure j~ constructed generally does not generate 

the entire group C~ , but only some subgroup of it, but by modifying somewhat the con- 

struction given above, it is easy to give an example of a nondegenerate measure .~ on 

~ with nontrivial boundary. In fact, let {~}~=0 and { ~}~=0 be two sequences of 

positive numbers such that ~(~+~)=~~.0 Now as before we set ~)=~(~)=-~- and 

in addition ~(~) =__~ for all transpositions ~ of pairs of elements (CI, ,8~)EV~ and 

(~, .,g~,~+~)eV~+l (i.e., transposition of pairs of elements lying on one edge of the 

binary tree). The measure ~ so constructed is obviously nondegenerate on ~ . Choosing 

{~} and {~J so that ~0~' ~(~+~) <=~ (i.e., so that the induced process on V 

has nontrivial exit-boundary), we get a nondegenerate measure on ~ with nontrivial bound- 

ary. 

3. The measure ~ with nontrivial boundary F CC~,~) can be chosen to have finite 

entropy H (~) , as is evident from its construction. On the other hand, for any finite 

measure ~' on ~ the entropy ~(~,~I) is zero due to the local finiteness of ~ . 

This shows that generally an arbitrary probability measure ~ on a countable group G can- 

not be approximated (in any sense) by finite measures ~(K) such that the entropies ~ (~,~(K)) 

converge to the entropy k(G,~) 

4. Let the group ~ be realized as the group of finite permutations of some countable 

set V (as in the proof of the theorem). It is unknown whether the boundary F (~,~) 

admits a complete description in terms of the exit-boundary of the induced Markov process on 

V , and in particular, whether from the triviality of the exit-boundary of the induced 

process the triviality of F(~,~) follows. 

4. Solvable Locally Finite Group 

Let D" #~(~, ~) be the countable direct sum of groups ~= {0,~} , indexed by 

the natural numbers l, 2, 3, .... It is convenient to assume that D is the group of func- 

tions ~:~--~ with finite supports 5~pp{~{~E~ : ~)~0~ (or: O is the group of 

finite configurations on ~ with the operation of pointwise addition ~0~ Z )- 
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We denote by ~bl.lt(O, 7/&') 

tion of pointwise addition. In other words, 

of copies of the group ~z. The group D 

#F(Ir =F(# +k) 

By ~ we denote the semidirect product 

the group of finite functions F: D > Z Z  with the opera- 

#R~(D, ~z) is the countable direct sum D 

We shall establish some of 

acts canon ica l ly  on { ~ ( D , z , ) :  

~= 0~1(~,~) defined by the action (i). The 

group ~ as a set consists of pairs of elements (~,[) , where ~eD , Fe~MR(D~) , 

with the group operation 

(#,, F, )(,#~, F&)= (,#, +#z, F, + I, F~) (2) 

Let ~ be the identity of the group O : 

~(~) =0 V~e~ (3) 

We shall denote by ~(~) the generator of the group D : 

~ (~)= {;, ~I. = l~t (4) 
o~erwise. 

We denote by qD the identity of the group IRR(D,~z) : 

v eD (5) 

We single out another element ~)~ #RR(D, Iz): 

We shall denote the identity ( ~  Cp) of the group ~ by e 

The group ~) is a locally finite solvable group of stage 2. 

its more special properties. 

LEMMA 4.1. The set {~} generates the group 

Proof. Since {~R}~.I generates the group O , it suffices to show that the D- 

orbit of the element ~ generates the entire group ~(D, Iz) Let Fe~m(D, Zz), 
iRppF= {~i.~, I ; then obviously F=~I~+Iz~+...§ The lemma is proved. 

LEMMA 4.2. The orders of all elements of ~ do not exceed four. 

Proof. Let ~=(#,F)e~; then since ~+#=~ and F+F=m for all ~6D , 

Fe#umCD,Z~) ,  one has ~=({+I,F.+{F)=(@,F + ~ F )  . from which ~"=(~,F+~F)Z= 
(~,F+F +#F +IF) :(.r = e. 

LEMMA 4.3. The orders of the finitely generated subgroups of ~ with no more than 

K generators are bounded for all K 

Proof. We fix some set T of K elements of the group ~ Without loss of 

generality one can assume the set T is symmetric and contains the identity e , so the 

0 T~ while the sets T ~ do not decrease, i.e., group generated by T is ~I r(,T) - -o ' 

{e} =]~cT~c ..~T~cT~*~ .... We estimate the cardinality of the set T ~ Let 

L)}L=~ be some collection of elements of T ; then 

( {,, F, ) . . . . . ( ~ , r , )  = ({,§ ~ ~,F, + {, F~+... �9 (~,....+ ~,_,) F~). (7) 
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The subgroup of O consisting of all sums ~i+.. +~ has no more than K generators of 

order 2, and hence consists of no more than ~K elements. Thus, the subgroup {~ <D, ~z> 

generated by elements of the form ({,* ,+I,-I)[, has no more than K.~ K generators of 

order 2, and consists of no more than 2 K~K elements. Finally we get IT~I~ 2~ ~ K~ 

for all ~ The lemma is proved. 

We recall that the group ~ is called a group of uniformly polynomial growth [ii, 17], 

if there exists a collection of polynomials m~ such that 

I T ~ I ~ PK <~) (8) 

for all subsets T C G consisting of no more than K elements. Thus, ~ is a group of 

uniformly polynomial growth. (We note that the symmetric group ~ has weakly exponential 

growth; cf. [17].) 

THEOREM 4.1. On the group ~ there exists a nondegenerate symmetric probability 

measure ~ with finite entropy H(~). for which the boundary [ <~,~) is nontrivial. 

The proof goes by the same scheme as in Theorem i.i. We consider a probability measure 

on ~ , given as follows: 

# (~)= p~, j~(~)=~, #(e)~ r (9) 

where p , ,~ ,  r >o , ~ , p ~ + ~  + r  = 4 The measure ~t is obviously symmetric, and on the 

basis of eemma 4.1 is nondegenerate. Let {<k~,H~)~T. 0 be a random walk defined by the 

measure ~ , i.e., 

( k~, H~)-(~, ,F, ).....({~, F~) (lO) 

where (#[,FL) are independent ~ -valued random walks with distribution ~ (increments of 

the random walk). Since the supports of all F~ are either empty or consist of the unique 

point ~ . for the nontriviality of the boundary C (~,~) it is sufficient that the 

random walk { k~}~= 0 on O is nonrecurrent (then the functions H~ will be a.s. point- 

wise stabilized; cf. the Remark on Theorem i.i). It is known that if, for example, 

~ =I then the walk {~} ~-0 on D is nonrecurrent [i0], and consequently r ~,~) 

is nontrivial. The theorem is proved. 

Remarks. I. We recall that for finitely generated groups of polynomial growth Gromov's 

theorem [14] combined with the triviality of the boundary for nilpotent groups [5] shows 

that the boundary is trivial for any measure. The theorem proved gives an example of the 

fact that for groups with an infinite number of generators the situation is very different 

from the case of finitely generated groups. 

2. The somewhat more "complicated" group O A #~m (D; D) was considered by Hulanicki 

[15] (cf. also [16]), who proved the nonsymmetry of its group algebra. The results of this 

section carry over almost word for word to this group. 
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